

1M x 32 CMOS STATIC RAM MODULE

IDT7MP4120

FEATURES

- · High-density 4MB Static RAM module
- Low profile 72-pin ZIP (Zig-zag In-line vertical Package) or 72-pin SIMM (Single In-line Memory Module)
- Fast access time: 20ns (max.)
- Surface mounted plastic components on an epoxy laminate (FR-4) substrate
- Single 5V (±10%) power supply
- Multiple GND pins and decoupling capacitors for maximum noise immunity
- Inputs/outputs directly TTL-compatible

PIN CONFIGURATION(1)

NC PD3 PD0 I/O0 I/O1 I/O2 I/O3 VCC A7 A8 A9 I/O4 I/O5 I/O6 I/O7 WE A14 CS1	2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36	1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35	NC PD2 GND PD1 I/O8 I/O9 I/O10 I/O11 A0 A1 A2 I/O12 I/O13 I/O14 I/O15 GND A15 CS2	PD0 - GND PD1 - NC PD2 - GND PD3 - NC
CS3 A16 GND I/O16 I/O17 I/O18 I/O19 A10 A11 A12 A13 I/O20 I/O21 I/O22 I/O23 GND A19 NC	38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72	37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71	CS4 A17 OE I/O 24 I/O 25 I/O 26 I/O 27 A3 A4 A5 VCC A6 I/O 28 I/O 29 I/O 30 I/O 31 A18 NC	3019 drw 0'
				22.2.2

ZIP, SIMM TOP VIEW

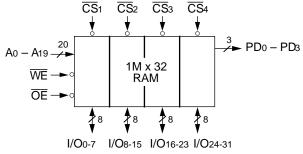
NOTE:

 Pins 3, 4, 6 and 7 (PDo, PD1, PD2 and PD3 respectively) are read by the user to determine the density of the module. If PDo reads GND, PD1 reads NC, PD2 reads GND and PD3 reads NC, then the module has a 1M depth.

The IDT logo is a registered trademark of Integrated Device Technology Inc.

DESCRIPTION

The IDT7MP4120 is a 1M x 32 Static RAM module constructed on an epoxy laminate (FR-4) substrate using 8 1M x 4 Static RAMs in plastic packages. Availability of four chip select lines (one for each group of two RAMs) provides byte access. The IDT7MP4120 is available with access time as fast as 20ns with minimal power consumption.


The IDT7MP4120 is packaged in a 72-pin FR-4 ZIP (Zigzag In-line vertical Package) or a 72-pin SIMM (Single In-line Memory Module). The ZIP configuration allows 72 pins to be placed on a package 4.05" long and 0.365" wide. At only 0.60" high, this low-profile package is ideal for systems with minimum board spacing while the SIMM configuration allows use of edge mounted sockets to secure the module.

All inputs and outputs of the IDT7MP4120 are TTL-compatible and operate from a single 5V supply. Full asynchronous circuitry requires no clocks or refresh for operation and provides equal access and cycle times for ease of use.

Four identification pins (PD0, PD1, PD2 and PD3) are provided for applications in which different density versions of the module are used. In this way, the target system can read the respective levels of PD0, PD1, PD2 and PD3 to determine a 1M depth.

The contact pins are plated with 100 micro-inches of nickel covered by 30 micro-inches minimum of selective gold.

FUNCTIONAL BLOCK DIAGRAM

3019 drw 02

PIN NAMES

I/O0-I/O31	Data Inputs/Outputs
A0-A19	Addresses
CS1-CS4	Chip Selects
WE	Write Enable
ŌĒ	Output Enable
PD0-PD3	Depth Identification
Vcc	Power
GND	Ground
NC	No Connect

3019 tbl 01

CAPACITANCE (TA = $+25^{\circ}$ C, F = 1.0MHz)

Symbol	Parameter ⁽¹⁾	Conditions	Max.	Unit
CI/O	Data I/O Capacitance	V(IN) = 0V	15	pF
CIN1	Input Capacitance (Address)	V(IN) = 0V	60	pF
CIN2	Input Capacitance (WE, OE)	V(IN) = 0V	75	pF
Сімз	Input Capacitance (CS)	V(IN) = 0V	20	pF

NOTE:

1. This parameter is guaranteed by design but not tested.

,, p.

RECOMMENDED DC OPERATING CONDITIONS

Symbol	Parameter	Min.	Тур.	Max.	Unit
Vcc	Supply Voltage	4.5	5.0	5.5	V
GND	Supply Voltage	0	0	0	V
ViH	Input High Voltage	2.2	_	6.0	V
VIL	Input Low Voltage	-0.5 ⁽¹⁾	_	0.8	V

NOTE:

1. V_{IL} (min) = -1.5V for pulse width less than 10ns.

TRUTH TABLE

Mode	<u>cs</u>	E	WE	Output	Power
Standby	Н	Χ	Χ	High-Z	Standby
Read	L	L	Η	DATAout	Active
Write	L	Χ	L	DATAIN	Active
Read	L	Н	Н	High-Z	Active

3019 tbl 05

3019 tbl 06

ABSOLUTE MAXIMUM RATINGS(1)

Symbol	Rating	Value	Unit
VTERM	Terminal Voltage with Respect to GND	-0.5 to +7.0	٧
TA	Operating Temperature	0 to +70	°C
TBIAS	Temperature Under Bias	-10 to +85	°C
Tstg	Storage Temperature	-55 to +125	°C
IOUT	DC Output Current	50	mA

NOTE:

 Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

RECOMMENDED OPERATING TEMPERATURE AND SUPPLY VOLTAGE

Grade	Ambient Temperature	GND	Vcc
Commercial	0°C to +70°C	0V	5.0V ± 10%

3019 tbl 04

3019 tbl 03

3019 tbl 02

DC ELECTRICAL CHARACTERISTICS

 $(VCC = 5.0V \pm 10\%, TA = 0^{\circ}C \text{ to } +70^{\circ}C)$

Symbol	Parameter	Test Conditions	Min.	Max.	Unit
ILI	Input Leakage (Address and Control)	Vcc = Max.; Vin = GND to Vcc	_	80	μΑ
LI	Input Leakage (Data)	Vcc = Max.; Vin = GND to Vcc	_	10	μΑ
ILO	Output Leakage	Vcc = Max.; $\overline{\text{CS}}$ = ViH, VouT = GND to Vcc	_	10	μΑ
Vol	Output LOW	Vcc = Min., IoL = 8mA	_	0.4	V
Vон	Output HIGH	VCC = Min., IOH = -4mA	2.4	_	V

3019 tbl 07

Symbol	Parameter	Test Conditions	7MP4120 Max.	Unit
Icc	Dynamic Operating Current	f = fMAX; $\overline{\text{CS}}$ = VIL Vcc = Max.; Output Open	1280	mA
ISB	Standby Supply Current	CS ≥ VIH, VCC = Max. Outputs Open, f = fMAX	480	mA
ISB1	Full Standby Supply Current	$\overline{CS} \ge Vcc - 0.2V$; f = 0 Vin > Vcc - 0.2V or < 0.2V	120	mA

3019 tbl 08

AC TEST CONDITIONS

Input Pulse Levels	GND to 3.0V
Input Rise/Fall Times	5ns
Input Timing Reference Levels	1.5V
Output Reference Levels	1.5V
Output Load	See Figures 1 and 2

2769 tbl 09

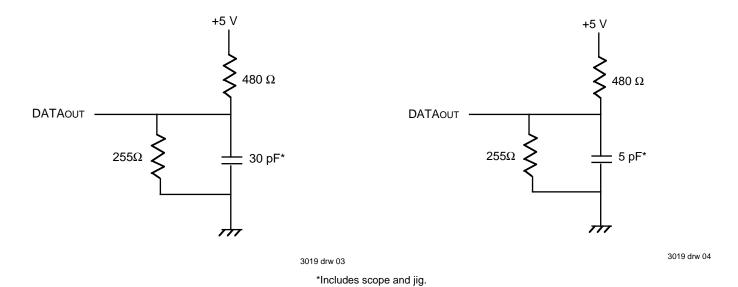
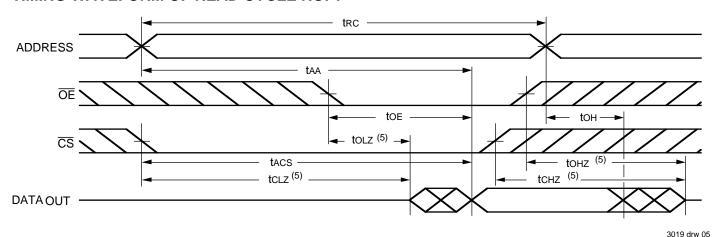


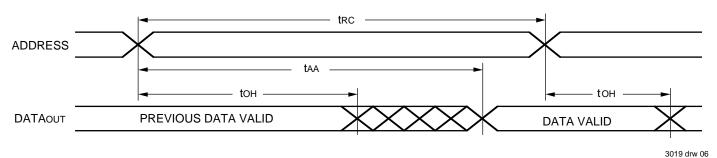
Figure 1. Output Load

Figure 2. Output Load (for tolz,toHz, tcHz, tcLz, twHz, tow)

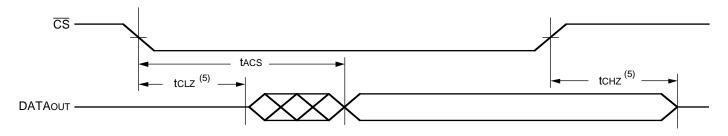
AC ELECTRICAL CHARACTERISTICS


 $(VCC = 5V \pm 10\%, TA = 0^{\circ}C \text{ to } +70^{\circ}C)$

		7MP4120SxxZ/M				
		-2	20	-2	25	
Symbol	Parameter	Min.	Max.	Min.	Max.	Unit
Read Cy	cle					
trc	Read Cycle Time	20	_	25	_	ns
taa	Address Access Time	_	20	_	25	ns
tacs	Chip Select Access Time	_	20	_	25	ns
tCLZ ⁽¹⁾	Chip Select to Output in Low-Z	3	_	3	_	ns
tOE	Output Enable to Output Valid	_	12	_	15	ns
tolz ⁽¹⁾	Output Enable to Output in Low-Z	0	_	0	_	ns
tCHZ ⁽¹⁾	Chip Deselect to Output in High-Z	_	10	_	12	ns
tohz ⁽¹⁾	Output Disable to Output in High-Z	_	10	_	12	ns
tон	Output Hold from Address Change	3	_	3	_	ns
tpu ⁽¹⁾	Chip Select to Power-Up Time	0	_	0	_	ns
tPD ⁽¹⁾	Chip Deselect to Power-Down Time	_	20	_	25	ns
Write Cy	cle	5				
twc	Write Cycle Time	20	_	25		ns
tcw	Chip Select to End-of-Write	17	_	20	_	ns
tAW	Address Valid to End-of-Write	17	-	20	-	ns
tas	Address Set-up Time	0	-	0	-	ns
twp	Write Pulse Width	15	-	20	-	ns
twr	Write Recovery Time	3	_	3	_	ns
twhz ⁽¹⁾	Write Enable to Output in High-Z	_	10	_	15	ns
tDW	Data to Write Time Overlap	12	_	15	_	ns
tDH	Data Hold from Write Time	0	_	0	_	ns
tow ⁽¹⁾	Output Active from End-of-Write	0		0	_	ns
OTE:						3019 tb

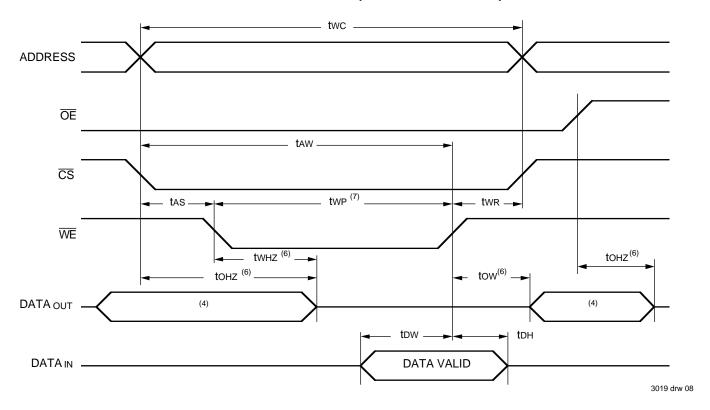

1. This parameter is guaranteed by design, but not tested.

7.07 4

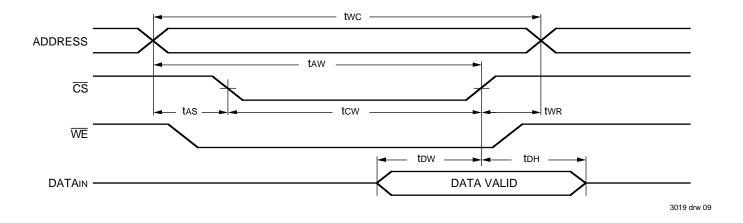

TIMING WAVEFORM OF READ CYCLE NO. 1(1)

TIMING WAVEFORM OF READ CYCLE NO. 2^(1,2,4)

TIMING WAVEFORM OF READ CYCLE NO. 3^(1,3,4)



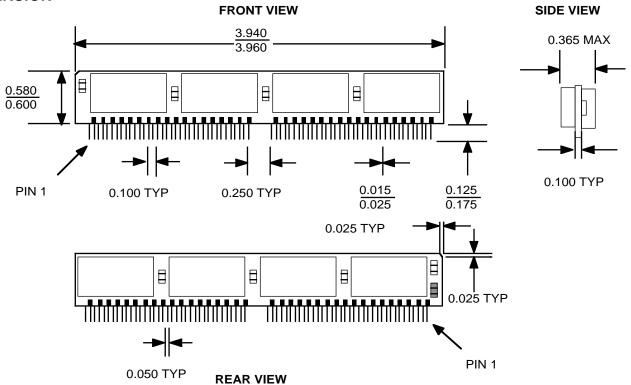
3019 drw 07


NOTES:

- 1. WE is HIGH for Read Cycle.
- 2. Device is continuously selected. $\overline{CS} = VIL$.
- 3. Address valid prior to or coincident with $\overline{\text{CS}}$ transition LOW.
- 4. $\overline{OE} = VIL$.
- 5. Transition is measured $\pm 200 \text{mV}$ from steady state. This parameter is guaranteed by design, but not tested.

TIMING WAVEFORM OF WRITE CYCLE NO. 1 (WE CONTROLLED) (1, 2, 3, 7)

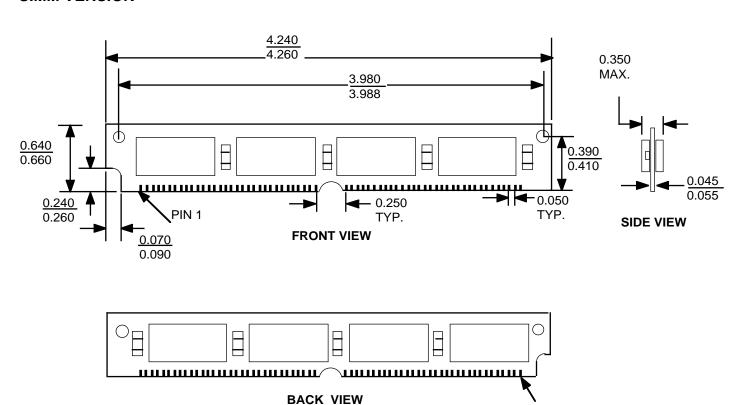
TIMING WAVEFORM OF WRITE CYCLE NO. 2 (CS CONTROLLED) (1, 2, 3, 5)



NOTES:

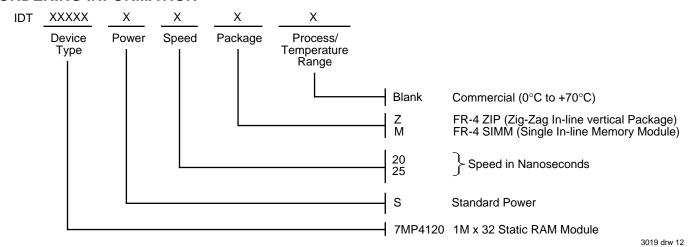
- 1. $\overline{\text{WE}}$ or $\overline{\text{CS}}$ must be HIGH during all address transitions.
- 2. A write occurs during the overlap (twp) of a LOW $\overline{\text{CS}}$ and a LOW $\overline{\text{WE}}$.
- 3. two is measured from the earlier of \overline{CS} or \overline{WE} going HIGH to the end of write cycle.
- 4. During this period, I/O pins are in the output state, and input signals must not be applied.
- 5. If the CS LOW transition occurs simultaneously with or after the WE LOW transition, the outputs remain in a high-impedance state.
- 6. Transition is measured ±200mV from steady state with a 5pF load (including scope and jig). This parameter is guaranteed by design, but not tested.
- 7. If \overline{OE} is LOW during a \overline{WE} controlled write cycle, the write pulse width must be the larger of twp or (twHz + tow) to allow the I/O drivers to turn off and data to be placed on the bus for the required tow. If \overline{OE} is HIGH during a \overline{WE} controlled write cycle, this requirement does not apply and the write pulse can be as short as the specified twp.

PACKAGE DIMENSIONS


ZIP VERSION

3019 drw 10

3019 drw 11


SIMM VERSION

7.07 7

PIN 1

ORDERING INFORMATION

