

Contents

Page	Section	Title
5	1.	Introduction
5	1.1.	Features
6	1.2.	Features of the MAS 35x9F Family
7	1.3.	Application Overview
8	2.	Functional Description of the MAS 35x9F
8	2.1.	Overview
8	2.2.	Architecture of the MAS 35x9F
8	2.3.	DSP Core
8	2.3.1.	RAM and Registers
9	2.3.2.	Firmware and Software
9	2.3.2.1.	Internal Program ROM and Firmware, MPEG-Decoding
9	2.3.2.2.	Program Download Feature
9	2.4.	Audio Codec
9	2.4.1.	A/D Converter and Microphone Amplifier
9	2.4.2.	Baseband Processing
9	2.4.2.1.	Bass, Treble, and Loudness
9	2.4.2.2.	Micronas Dynamic Bass (MDB)
10	2.4.2.3.	Automatic Volume Control (AVC)
10	2.4.2.4.	Balance and volume
10	2.4.3.	D/A Converters
10	2.4.4.	Output Amplifiers
11	2.5.	Clock Management
11	2.5.1.	DSP Clock
11	2.5.2.	Clock Output At CLKO
11	2.6.	Power Supply Concept
11	2.6.1.	Power Supply Regions
12	2.6.2.	DC/DC Converters
12	2.6.3.	Power Supply Configurations
14	2.7.	Battery Voltage Supervision
15	2.8.	Interfaces
15	2.8.1.	I2C Control Interface
15	2.8.2.	SPDIF Input Interface
15	2.8.3.	S/PDIF Output
15	2.8.4.	Multiline Serial Audio Input (SDI, SDIB)
15	2.8.5.	Multiline Serial Output (SDO)
15	2.8.6.	Parallel Input/Output Interface (PIO)
16	2.9.	MPEG Synchronization Output
16	2.10.	Default Operation
16	2.10.1.	Stand-by Functions
16	2.10.2.	Power-Up of the DC/DC Converters and Reset
17	2.10.3.	Control of the Signal Processing
17	2.10.4.	Start-up of the Audio Codec
17	2.10.5.	Power-Down

Contents, continued

Page	Section	Title
18	3.	I ² C Interface
18	3.1.	General
18	3.1.1.	Device Address
18	3.1.2.	I2C Registers and Subaddresses
19	3.1.3.	Naming Convention
20	3.2.	Direct Configuration Registers
20	3.2.1.	Write Direct Configuration Registers
20	3.2.2.	Read Direct Configuration Register
25	3.3.	DSP Core
25	3.3.1.	Access Protocol
26	3.3.1.1.	Run and Freeze
26	3.3.1.2.	Read Register (Code Ahex)
26	3.3.1.3.	Write Register (Code Bhex)
26	3.3.1.4.	Read D0 Memory (Code Chex)
27	3.3.1.5.	Short Read D0 Memory (Code C4hex)
27	3.3.1.6.	Read D1 Memory (Code Dhex)
27	3.3.1.7.	Short Read D1 Memory (Code D4hex)
27	3.3.1.8.	Write D0 Memory (Code Ehex)
28	3.3.1.9.	Short Write D0 Memory (Code E4hex)
28	3.3.1.10.	Write D1 Memory (Code Fhex)
28	3.3.1.11.	Short Write D1 Memory (Code F4hex)
28	3.3.1.12.	Clear SYNC Signal (Code 5hex)
28	3.3.1.13.	Default Read
29	3.3.1.14.	Fast Program Download
29	3.3.1.15.	Serial Program Download
29	3.3.2.	List of DSP Registers
30	3.3.3.	List of DSP Memory Cells
30	3.3.3.1.	Application Select and Running
30	3.3.3.2.	Application Specific Control
40	3.3.4.	Ancillary Data
40	3.3.5.	DSP Volume Control
41	3.3.6.	Explanation of the G.729 Data Format
41	3.4.	Audio Codec Access Protocol
41	3.4.1.	Write Codec Register
41	3.4.2.	Read Codec Register
42	3.4.3.	Codec Registers
49	3.4.4.	Basic MDB Configuration
50	4.	Specifications
50	4.1.	Outline Dimensions
51	4.2.	Pin Connections and Short Descriptions
53	4.3.	Pin Descriptions
53	4.3.1.	Power Supply Pins
53	4.3.2.	Analog Reference Pins
53	4.3.3.	DC/DC Converters and Battery Voltage Supervision
54	4.3.4.	Oscillator Pins and Clocking
54	4.3.5.	Control Lines

Contents, continued

Page	Section	Title
54	4.3.6.	Parallel Interface Lines
54	4.3.6.1.	PIO Handshake Lines
54	4.3.7.	Serial Input Interface (SDI)
54	4.3.8.	Serial Input Interface B (SDIB)
54	4.3.9.	Serial Output Interface (SDO)
54	4.3.10.	S/PDIF Input Interface
55	4.3.11.	S/PDIF Output Interface
55	4.3.12.	Analog Input Interfaces
55	4.3.13.	Analog Output Interfaces
55	4.3.14.	Miscellaneous
56	4.4.	Pin Configurations
58	4.5.	Internal Pin Circuits
60	4.6.	Electrical Characteristics
60	4.6.1.	Absolute Maximum Ratings
61	4.6.2.	Recommended Operating Conditions
64	4.6.3.	Digital Characteristics
65	4.6.3.1.	I ² C Characteristics
66	4.6.3.2.	Serial (I ² S) Input Interface Characteristics (SDI, SDIB)
68	4.6.3.3.	Serial Output Interface Characteristics (SDO)
70	4.6.3.4.	S/PDIF Input Characteristics
71	4.6.3.5.	S/PDIF Output Characteristics
72	4.6.3.6.	PIO As Parallel Input Interface: Demand Mode
73	4.6.3.7.	PIO as Parallel Output Interface
74	4.6.4.	Analog Characteristics
77	4.6.5.	DC/DC Converter Characteristics
78	4.6.6.	Typical Performance Characteristics
80	4.7.	Typical Application in a Portable Player
81	4.8.	Recommended DC/DC Converter Application Circuit
82	5.	Data Sheet History

License Notice

Supply of this implementation of AAC technology does not convey a license nor imply any right to use this implementation in any finished end-user or ready-to-use final product. An independant license for such use is required.

contact: aacla@dolby.com

MPEG Layer 2/3, AAC Audio Decoder, G.729 Annex A Codec

Release Note: Revision bars indicate significant changes to the previous edition. This data sheet applies to MAS 35x9F version A2.

1. Introduction

The MAS 35x9F is a single-chip, low-power MPEG layer 2/3 and MPEG2-AAC audio stereo decoder. It also contains the G.729 Annex A speech compression and decompression technology for use in memory-based or broadcast applications. Additional functionality is achievable via download software (e.g. CELP voice decoder, Micronas SC4 (ADPCM) encoder / decoder)

The MAS 35x9F decoding block accepts compressed digital data streams as serial bitstreams, or parallel format and provides serial PCM and/or S/PDIF output¹⁾ of decompressed audio. In addition to the signal processing function the IC incorporates a high-performance stereo D/A converter, headphone amplifiers, a stereo A/D converter, a microphone amplifier, and two DC/DC converters.

Thus, the MAS 35x9F provides a true 'ALL-IN-ONE' solution that is ideally suited for highly optimized memory based portable music players with integrated speech decoding function.

In MPEG 1 (ISO 11172-3), three hierarchical layers of compression have been standardized. The most sophisticated and complex, layer 3, allows compression rates of approximately 12:1 for mono and stereo signals while still maintaining CD audio quality. Layer 2 (widely used in e.g. in DVD) achieves a compression of 8:1 without significant losses in audio quality.

The MAS 35x9F supports the 'Advanced Audio Coding' (AAC) that is also defined as aprt of MPEG 2. AAC provides compression rates up to 16:1. MPEG 2 defines several profiles for different applications. This IC decodes the 'low complexity profile' that is especially optimized for portable applications.

The MAS 35x9F also implements a voice encoder and decoder that is compliant to the ITU Standard G.729 Annex A.

SC4 is a proprietary Micronas speech codec technology that can be downloaded to the MAS 35x9F to allow recording and playing back speech at various sampling rates.

1.1. Features

Firmware

- MPEG 1/2 layer 2 and layer 3 decoder
- Extension to MPEG 2 layer 3 for low bit rates ("MPEG 2.5")
- Extraction of MPEG Ancillary Data
- – MPEG 2 AAC²⁾ decoder (low complexity profile)
 - Master or slave clock operation
 - Adaptive bit rates (bit rate switching)
 - Intelligent power management (processor clock is dependent on sampling frequencies)
 - Micronas G.729 Annex A speech compression and decompression
 - SDMI-compliant security technology
 - Stereo channel mixer
 - Bass, treble and loudness function
 - Micronas Dynamic Bass (MDB)
 - Automatic Volume Control (AVC)

Interfaces

- 2 serial asynchronous interfaces for bitstreams and uncompressed digital audio
- Parallel handshake bit stream input
- Serial audio output via I²S and related formats
- S/PDIF data input and output
- Controlling via I²C interface

Hardware Features

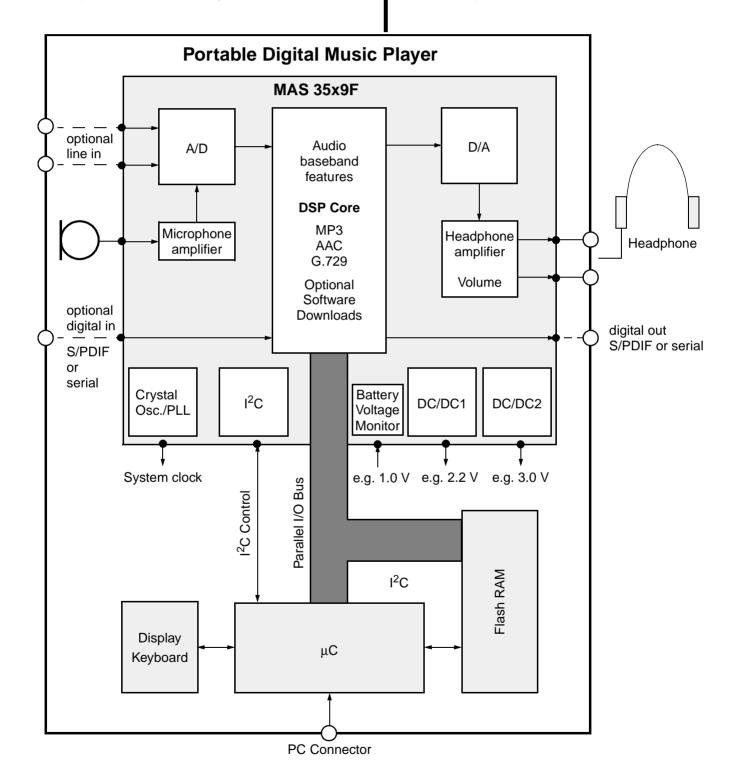
- Two independent embedded DC/DC converters (e.g. for DSP and flash RAM supply)
- Low DC/DC converter start-up voltage (0.9 V)
- DC converter efficiency up to 95 %
- Battery voltage monitor
 - Low supply voltage (down to 2.2 V)
 - Low power dissipation (<70 mW)
 - High-performance RISC DSP core
 - On-chip crystal oscillator
 - Hardware power management and power-off functions
 - Microphone amplifier
 - Stereo A/D converter for FM/AM-radio and speech input
 - CD quality stereo D/A converter
 - Headphone amplifier

MAS 35x9F **ADVANCE INFORMATION**

- Noise and power-optimized volume
- External clock or crystal frequency of 13...20 MHz
- Standby current < 10 μA

- ¹⁾ Not yet supported in version A2 ²⁾ See License Note on page 4

■ 1.2. Features of the MAS 35x9F Family


I	Feature	3509	3519	3529	3539	3549	3559
I	Layer 3 Decoder	Χ	Х	Х	Х		
I	G.729 Encoder/Decoder	Х	Х			Х	
	AAC Decoder	Х		Х			Х

1.3. Application Overview

The following block diagram shows an example application for the MAS 35x9F in a portable audio player device. Besides a simple controller and the external flash memories, all required components are integrated in the MAS 35x9F. The MAS 35x9F supports both speech and radio quality audio encoding, as well as compressed-audio decoding tasks.

Fig. 1–1 depicts a portable audio application that is power optimized. The two embedded DC/DC converters of the MAS 35x9F generate optimum power supply voltages for the DSP core and also for state-of-the art flash memories that typically require 2.7 to 3.3 V supply.

The performance of the DC/DC converters reaches efficiencies up to 95 %.

Fig. 1–1: Example application for the MAS 35x9F in a portable audio player device

2. Functional Description of the MAS 35x9F

2.1. Overview

The MAS 35x9F is intended for use in portable consumer audio applications. It receives S/PDIF, parallel or serial data streams and decodes MPEG Layer 2 and 3 (including the low sampling frequency extensions) and MPEG 2 AAC. In addition, special downloadable software expands the function to a low-bitrate CELP codec for speech recording. Other download options (SDMI, other audio encoders/decoders) are available on request. Compressed speech data may be stored in an external memory via the parallel port.

2.2. Architecture of the MAS 35x9F

The hardware of the MAS 35x9F consists of a high-performance RISC Digital Signal Processor (DSP),

and appropriate interfaces. A hardware overview of the IC is shown in Fig. 2–1.

2.3. DSP Core

The internal processor is a dedicated DSP for advanced audio applications.

2.3.1. RAM and Registers

The DSP core has access to two RAM banks denoted D0 and D1. All RAM addresses can be accessed in a 20-bit or a 16-bit mode via I²C bus. For fast access of internal DSP states the processor core has an address space of 256 data registers which can be accessed by I²C bus. For more details please refer to Section 3.3.

I on page 25.

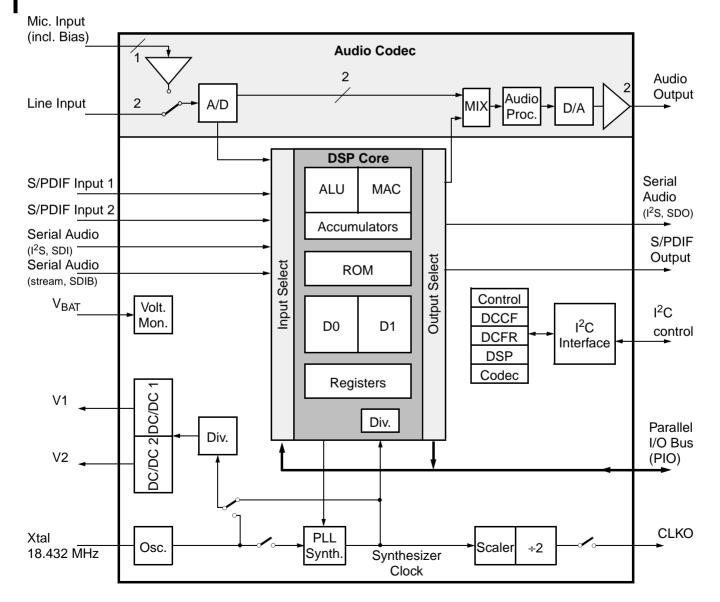


Fig. 2−1: The MAS 35x9F architecture

2.3.2. Firmware and Software

2.3.2.1. Internal Program ROM and Firmware, MPEG-Decoding

The firmware implemented in the program ROM of the MAS 35x9F provides MPEG 1/2 Layer 2, MPEG 1/2 Layer 3 and MPEG 2 AAC-decoding as well as a G.729 encoder and decoder.

The DSP operating system starts the firmware in the "Application Selection Mode". By setting the appropriate bit in the Application Select memory cell (see Table 3–6 on page 31) the MPEG audio decoder or the G.729 Codec can be activated.

The MPEG decoder provides an automatic standard detection mode. If all MPEG audio decoders are selected, the Layer 2, Layer 3 or AAC bitstream is recognized and decoded automatically.

To add/remove MPEG layers while running in MPEG decoding mode (e.g. Layer 2, Layer 3 (0x0c) to Layer 2, Layer 3, AAC (0x1c)), the application selection has to be reset before writing the new value.

For general control purposes, the operation system provides a set of I²C instructions that give access to internal DSP registers and memory areas.

An auxiliary digital volume control and mixer matrix is applied to the digital stereo audio data. This matrix is capable of performing the balance control and a simple kind of stereo basewidth enhancement. All four factors LL, LR, RL, and RR are adjustable, please refer to Fig. 3–3 on page 40.

2.3.2.2. Program Download Feature

The standard functions of the MAS 35x9F can be extended or substituted by downloading up to 4 kWords (1 Word = 20 bits) of program code and additionally up to 4 kWords of coefficients into the internal RAM .

The code must be downloaded by the *Fast Program Download* command (see Section 3.3.1.14. on page 29) into an area of RAM that is switchable from data memory to program memory. A *Run* command (see Section 3.3.1.1. on page 26) starts the operation.

2.4. Audio Codec

A sophisticated set of audio converters and sound features has been implemented to comply with various kinds of operating environments that range up to highend equipment (see Fig. 2–2 on page 10).

2.4.1. A/D Converter and Microphone Amplifier

A pair of A/D converters is provided for recording or loop-through purposes. In addition, a microphone amplifier including voltage supply function for an electret type microphone has been integrated.

2.4.2. Baseband Processing

The several baseband functions are applied to the digital audio signal immediately before D/A conversion.

2.4.2.1. Bass, Treble, and Loudness

Standard baseband functions such as bass, treble, and loudness are provided.

2.4.2.2. Micronas Dynamic Bass (MDB)

The Micronas Dynamic Bass system (MDB) was developed to extend the frequency range of loud-speakers or headphones below the cutoff frequency of the speakers. In addition to dynamically amplifying the low frequency bass signals, the MDB exploits the psychoacoustic phenomenon of the 'missing fundamental'. Adding harmonics of the frequency components below the cutoff frequency gives the impression of actually hearing the low frequency fundamental, while at the same time retaining the loudness of the original signal. Due to the parametric implementation of the MDB, it can be customized to create different bass effects and adapted to various loudspeaker characteristics.

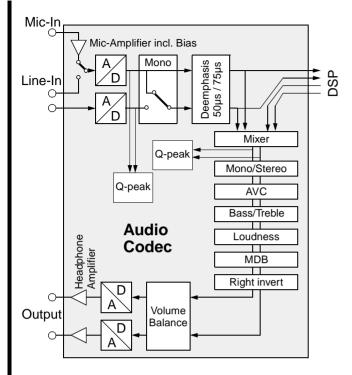


Fig. 2-2: Signal flow block diagram of Audio Codec

2.4.2.3. Automatic Volume Control (AVC)

In a collection of tracks from different sources fairly often the average volume level varies. Especially in a noisy listening environment the user must adjust the volume to achieve a comfortable listening enjoyment. The Automatic Volume Correction (AVC) solves this problem by equalizing the volume level.

To prevent clipping, the AVC's gain decreases quickly in dynamic boost conditions. To suppress oscillation effects, the gain increases rather slowly for low level inputs. The decay time is programmable by means of the AVC register (see Table 3–13 on page 42).

For input levels of -18 dBr to 0 dBr, the AVC maintains a fixed output level of -9 dBr. Fig. 2–3 shows the AVC output level versus its input level. For volume and baseband registers set to 0 dB, a level of 0 dBr corresponds to full scale input/output.

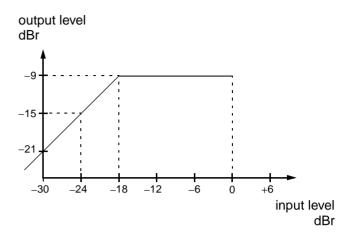


Fig. 2-3: Simplified AVC characteristics

2.4.2.4. Balance and volume

To minimize quantization noise, the main volume control is automatically split into a digital and an analog part. The volume range is –114...+12 dB with an additional mute position. A balance function is provided.

2.4.3. D/A Converters

A pair of Micronas' unique multibit sigma-delta D/A converters is used to convert the audio data with high linearity and a superior S/N. In order to attenuate high-frequency noise caused by noise-shaping, internal low-pass filters are included. They require additional external capacitors between pins FILTx and OUTx.

2.4.4. Output Amplifiers

The integrated output amplifiers are capable of directly driving stereo headphones or loudspeakers of 16...32 Ω impedance via 22- Ω series resistors. If more output power is required, the right output signal can be inverted and a single loudspeaker can be connected as a bridge between pins OUTL and OUTR. In this case for optimized power the source should be set to mono.

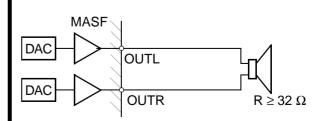


Fig. 2-4: Bridge operation mode

2.5. Clock Management

The MAS 35x9F is driven by a single crystal-controlled clock with a frequency of 18.432 MHz. It is possible to drive the MAS 35x9F with other reference clocks. In this case, the nominal crystal frequency must be written into memory location D0:348. The crystal clock acts as a reference for the embedded synthesizer that generates the internal clock.

For compressed audio data reception, the MAS 35x9F may act either as the clock master (Demand Mode) or as a slave (Broadcast Mode) as defined by bit 1 in IOControlMain memory cell (see Table 3–7 on page 32). In both modes, the output of the clock synthesizer depends on the sample rate of the decoded data stream as shown in Table 2–1.

In the BROADCAST MODE (PLL on), the incoming audio data controls the clock synthesizer via a PLL.

In the DEMAND MODE (PLL off) the MAS 35x9F acts as the system master clock. The data transfer is triggered by a demand signal at pin $\overline{\text{EOD}}$.

2.5.1. DSP Clock

The DSP clock has separate divider. For power conservation it is set to the lowest acceptable rate of the synthesizer clock which is capable to allow the processor core to perform all tasks.

2.5.2. Clock Output At CLKO

If the DSP or audio codec functions are enabled (bits 11 or 10 in the Control Register at I^2C subaddress $6a_{\text{hex}}$), the reference clock at pin CLKO is derived from the synthesizer clock.

Dependent on the sample rate of the decoded signal a scaler is applied which automatically divides the clock-out by 1, 2, or 4, as shown in Table 2–1. An additional division by 2 may be selected by setting bit 17 of the OutClkConfig memory cell (see Table 3–7 on page 32). The scaler can be disabled by setting bit 8 of this cell.

The controlling at OutClkConfig is only possible as long as the DSP is operational (bit 10 of the Control Register). Settings remain valid if the DSP is disabled by clearing bit 10.

2.6. Power Supply Concept

The MAS 35x9F has been designed for minimal power dissipation. In order to optimize the battery management in portable players, two DC/DC converters have been implemented to supply the complete portable audio player with regulated voltages.

2.6.1. Power Supply Regions

The MAS 35x9F has five power supply regions.

The VDD/VSS pin pair supplies all digital parts including the DSP core, the XVDD/XVSS pin pair is connected to the digital signal pin output buffers, the AVDD0/AVSS0 supply is for the analog output amplifiers, AVDD1/AVSS1 for all other analog circuits like clock oscillator, PLL circuits, system clock synthesizer and A/D and D/A converters. The I²C interface has an own supply region via pin I2CVDD. Connecting this to the microcontroller supply assures that the I²C bus always works as long as the microcontroller is alive so that the operating modes can be selected.

Beside these regions, the DC/DC converters have start-up circuits of their own which get their power via pin VSENSx.

Table 2–1: Settings of bits 8 and 17 in OutClkConfig and resulting CLKO output frequencies

	Output Frequency at CLKO/MHz							
f _s /kHz	Synth. Clock bit 8=1		er On bit 17=0	Scaler Plus Extra Division bit 8=0, bit 17=				
48	24.576	E40.f	24.576	0504	12.288			
44.1	22.5792	512⋅f _s	22.5792	256·f _s	11.2896			
32	04.570	768·f _s	24.576	384·f _s	12.288			
24	24.576	E40 f	12.288	2504	6.144			
22.05	22.5792	512⋅f _s	11.2896	256⋅f _s	5.6448			
16	04.570	768·f _s	12.288	384·f _s	6.144			
12	24.576	E40.f	6.144	0504	3.072			
11.025	22.5792	512·f _s	5.6448	256·f _s	2.8224			
8	24.576	768·f _s	6.144	384·f _s	3.072			

2.6.2. DC/DC Converters

The MAS 35x9F has two embedded high-performance step-up DC/DC converters with synchronous rectifiers to supply both the DSP core itself and external circuitry such as a controller or flash memory at two different voltage levels. An overview is given in Fig. 2–9 on page 14.

The DC/DC converters are designed to generate an output voltage between 2.0 V and 3.5 V which can be programmed separately for each converter via the I^2C interface (see table 3.3). Both converters are of bootstrapped type allowing to start up from a voltage down to 0.9 V for use with a single battery or NiCd/NiMH cell. The default output voltages are 3.0 V. Both converters are enabled with a high level at pin DCEN and enabled/disabled by the I^2C interface.

The MAS 35x9F DC/DC converters feature a constant-frequency, low noise pulse width modulation (PWM) mode and a low quiescent current, pulse frequency modulation (PFM) mode for improved efficiencies at low current loads. Both modes – PWM or PFM – can be selected independently for each converter via I²C interface. The default mode is PWM.

In PWM mode the switching frequency of the power-MOSFET-switches is derived from the crystal oscillator. Switching harmonics generated by constant frequency operation are consistent and predictable. When the audio codec is enabled the switching frequency of the converters is synchronised to the audio codec clock to avoid interferences into the audio band. The actual switching frequency can be selected via the I²C-interface between 300 kHz and 580 kHz (for details see DCFR Register in Table 3–3 on page 21).

In PFM operation mode the switching frequency is controlled by the converters themself, it will be just high enough to service the output load thus resulting in the best possible efficiency at low current loads. PFM mode does not need a clock signal from the crystal oscillator. If both converters do not use the PWM-mode, the crystal clock will be shut down as long it is not needed from other internal blocks.

The synchronous rectifier bypasses the external Schottky diode to reduce losses caused by the diode forward voltage providing up to 5% efficiency improvement. By default, the P-channel synchronous rectifier switch is turned on when the voltage at pin(s) DCSOn exceeds the converter's output voltage at pin(s) VSENSn and turns off when the inductor current drops below a threshold. If one or both converters are disabled, the corresponding P-channel switch will be turned on, connecting the battery voltage to the DC/DC converters output voltage at pin VSENSn. However, it is possible to individually disable both synchronous rectifier switches by setting the corresponding bits (bit 8 and 0 in DCCF-register).

If both DC/DC-converters are off, a high signal may be applied at pin DCEN. This will start the converters in their default mode (PWM with 3.0 V output voltage). The PUP signal will change from low to high when both converters have reached their nominal output voltage and will return to low when both converters output voltages have dropped 200 mV below their programmed output voltage. The signal at pin PUP can be used to control the reset of an external microcontroller (see Section 2.10.2. on page 16 for details on start up procedure).

If only DC/DC-converter 1 is used, the output of the unused converter 2 (VSENS2) must be connected to the output of converter 1 (VSENS1) to make the PUP signal work properly. Also, if a DC/DC-converter is not used (no inductor connected), the pin DCSO must be left vacant.

2.6.3. Power Supply Configurations

One of the following supply configurations may be used:

- Power-optimized solution (recommended operation). DC/DC 1 (e.g. 2.2 V) drives the MAS 35x9F DSP and the audio circuitry, DC/DC 2 (e.g. 2.7 V) supplies controller and flash (see Fig. 2–5 on page 13)
- Volume-optimized solution. DC/DC 1 (e.g. 2.7 V) supplies controller, flash and MAS 35x9F audio parts, DC/DC 2 generates e.g. 2.2 V for the MAS 35x9F DSP (see Fig. 2–6 on page 13).
- Minimized external components. DC/DC 1 operates on e.g. 2.7 V and feeds all components, DC/DC 2 remains off (see Fig. 2–7 on page 13).
- External power supply. All components are powered by an external source, no DC/DC converter is used (see Fig. 2–8 on page 13).

If DC/DC converter 1 is used, it must supply the analog circuits (pins AVDD0, AVDD1) of the MAS 35x9F.

If only one DC/DC converter is required, DC/DC1 must be used. Pin DCSO2 must be left vacant, pin VSENS2 should be connected to pin VSENS1.

If the DC/DC converters are not used, pin DCEN must be connected to VSS, DCSOx must be left vacant.

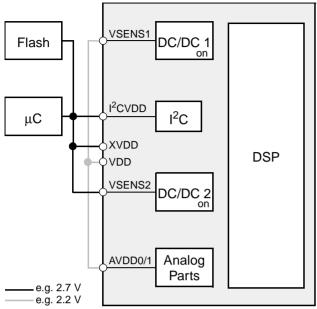


Fig. 2–5: Solution 1: Power-optimized

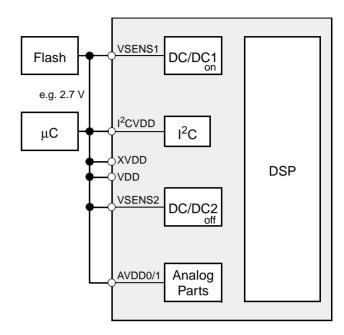


Fig. 2-7: Solution 3: Minimized components

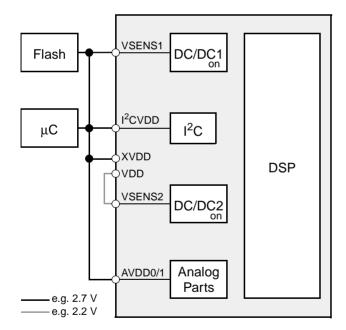


Fig. 2-6: Solution 2: Volume-optimized

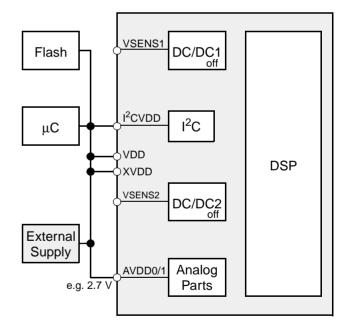


Fig. 2–8: Solution 4: External power supply

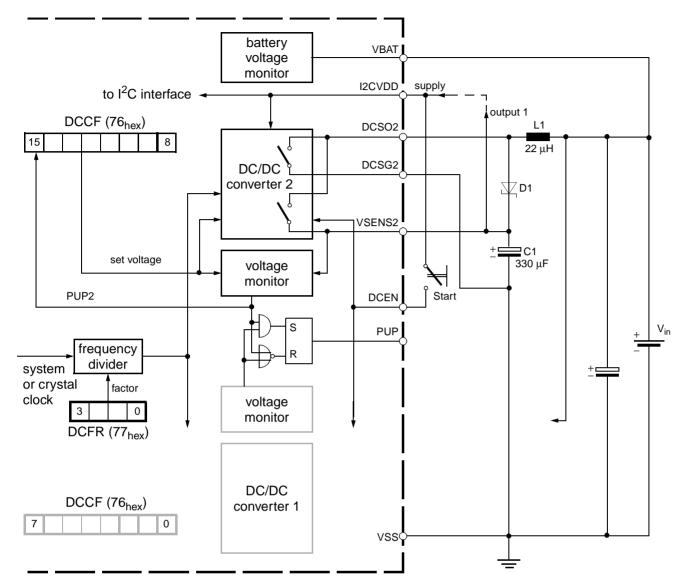


Fig. 2–9: DC/DC converter overview. The DCEN input must be connected to pin I2CVDD via the start-up push button.

2.7. Battery Voltage Supervision

A battery voltage supervision circuit (at pin VBAT) is provided which is independent of the DC/DC converters. It can be programmed to supervise one or two battery cells. The voltage is measured by subsequently setting a series of voltage thresholds and checking the respective comparison result in register $77_{\rm hex}$.

2.8. Interfaces

The MAS 35x9F uses an I²C control interface, a serial input interface for MPEG bit streams, and a digital audio output interface for the decoded audio data (I²S or similar). Alternatively, SPDIF input and output interfaces can be used. A parallel I/O interface (PIO) may be used for fast data exchange.

2.8.1. I²C Control Interface

For controlling and program download purposes, a standard I²C slave interface is implemented. A detailed description of all functions can be found in Section 3.

2.8.2. SPDIF Input Interface

The SPDIF interface receives a one-wire serial bus signal. In addition to the signal input pin SPDI1/SPDI2, a reference pin SPDIR is provided to support balanced signal sources or twisted pair transmission lines.

The synchronization time on the input signal is < 50 ms.

The SPDIF input signal can also be switched to the SPDO pin. In this case the analog input circuit of the SPDIF inputs (see Fig. 4–18 on page 59) restores the SPDIF input signal to a full swing signal at SPDO.

For controlling details please refer to Table 3–7 on page 32.

2.8.3. S/PDIF Output

In the next version of the IC the S/PDIF output of the baseband audio signals will be provided at pin SPDO.

2.8.4. Multiline Serial Audio Input (SDI, SDIB)

There are two multiline serial audio input interfaces (SDI, SDIB) each consisting of the three pins SI(B)C, SI(B)I, and SI(B)D. The standard firmware only supports SDIB for bitstream signals.

The interfaces can be configured as continuous bit stream or word-oriented inputs. For the MPEG bit-streams the word strobe pin SIBI must always be connected to V_{SS} , bits must be sent MSB first as created by the encoder.

If the optional downloadable software uses the inputs for PCM data, the interface acts as a I^2S -type with SI(B)I as a word strobe.

In case of the Demand Mode (see Section 2.5.), the signal clock coming from the data source must be higher than the nominal data transmission rate (e.g. 128 kbit/s). Pin EOD is used to interrupt the data flow whenever the input buffer of the MAS 35x9F is filled.

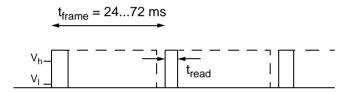
For controlling details please refer to Table 3–7 on page 32.

2.8.5. Multiline Serial Output (SDO)

The serial audio output interface of the MAS 35x9F is a standard I²S-like interface consisting of the data lines SOD, the word strobe SOI and the clock signal SOC. It is possible to choose between two standard interface configurations (16-bit data words with word strobe time offset or 32-bit data words with inverted SOI-signal).

If the serial output generates 32 bits per audio sample, only the first 20 bits will carry valid audio data. The 12 trailing bits are set to zero by default.

2.8.6. Parallel Input/Output Interface (PIO)


The parallel interface of the MAS 35x9F consists of the 8 data lines PI12...PI19 (MSB) and the control lines PCS, PR, PRTR, PRTW, and EOD. It can be used for data exchange with an external memory, for fast program download and for other special purposes as defined by the DSP software.

For MPEG-data input, the PIO interface is activated by setting bits 9,8 in D0:346 to 01. For the handshake protocol please refer to Section 4.6.3.6. on page 72

MAS 35x9F ADVANCE INFORMATION

2.9. MPEG Synchronization Output

The signal at pin SYNC is set to '1' after the internal decoding for the MPEG header has been finished for one frame. The rising edge of this signal can be used as an interrupt input for the controller that triggers the read out of the control information and ancillary data. As soon as the MAS 35x9F has received the SYNC reset command (see Section 3.3.1.12. on page 28), the SYNC signal is cleared. If the controller does not issue a reset command, the SYNC signal returns to '0' as soon as the decoding of the next MPEG frame is started. MPEG status and ancillary data become invalid until the frame is completely decoded and the signal at pin SYNC rises again. The controller must have finished reading all MPEG information before it becomes invalid. The MPEG Layer 2/3 frame lengths are given in Table 2–2. AAC has no fixed frame length.

Fig. 2–10: Schematic timing of the signal at pin SYNC. The signal is cleared at t_{read} when the controller has issued a Clear SYNC Signal command (see Section 3.3.1.12. on page 28). If no command is issued, the signal returns to '0' just before the decoding of the next MPEG frame.

Table 2-2: Frame length in MPEG Layer 2/3

f _s /kHz	Frame Length Layer 2	Frame Length Layer 3
48	24 ms	24 ms
44.1	26.12 ms	26.12 ms
32	36 ms	36 ms
24	24 ms	24 ms
22.05	26.12 ms	26.12 ms
16	36 ms	36 ms
12	not available	48 ms
11.025	not available	52.24 ms
8	not available	72 ms

2.10. Default Operation

This sections refers to the standard operation mode "power-optimized solution" (see Section 2.6.3.).

2.10.1. Stand-by Functions

After applying the battery voltage, the system will remain stand-by, as long as the DCEN pin level is kept low. Due to the low stand-by current of CMOS circuits, the battery may remain connected to DCSOn/VSENSn at all times.

2.10.2.Power-Up of the DC/DC Converters and Reset

The battery voltage must be applied to pin DCSOn via the 22-µH inductor and, furthermore, to the sense pin VSENSn via a Schottky diode (see Fig. 2–9 on page 14).

For start-up, the pin DCEN must be connected via an external "start" push button to the I2CVDD supply, which is equivalent to the battery supply voltage (> 0.9 V) at start-up.

The supply at DCEN must be applied until the DC/DC converters have started up (signal at pin PUP) and then removed for normal operation.

As soon as the output voltage at VSENSn reaches the default voltage monitor reset level of 3.0 V, the respective internal PUPn bit will be set. When both PUPn bits are set, the signal at pin PUP will go high and can be used to start and reset the microcontroller.

Before transmitting any I^2C commands, the controller must issue a power-on reset to pin \overline{POR} . The separate supply pin I^2CVDD assures that the I^2C interface works indepentently of the DSP or the audio codec. Now the desired supply voltage can be programmed at I^2C subaddress 76_{hex} .

The signal at pin PUP will return to low only when both PUPn flags ($\rm I^2C$ subaddress $\rm 76_{hex}$) have returned to zero. Care must be taken when changing both DC/DC output voltages to higher values. In this case, both output voltages are momentarily insufficient to keep the PUPn flags up; the resulting dip in the signal at the PUP pin may in turn reset the microcontroller. To avoid this condition, only one DC/DC output voltage should be changed at a time. Before modifying the second voltage, the microcontroller must wait for the PUPn flag of the first voltage to be set again.

The operating mode (pulse width modulation or pulse frequency modulation, synchronized rectifier for higher efficiency) are controlled at I^2C subaddress 76_{hex} , the operating frequency at I^2C subaddress 77_{hex} .

2.10.3. Control of the Signal Processing

Before starting the DSP, the controller should check for a sufficient voltage supply (respective flag PUPn at I^2C subaddress 76_{hex}). The DSP is enabled by setting the appropriate bit in the Control register (I^2C subaddress $6a_{hex}$). The nominal frequency of the crystal oscillator must be written into D0:348. After an initialization phase of 5 ms, the DSP data registers can be accessed via I^2C .

Input and output control is performed via memory location D0:346 and D0:347. The serial input interface SDIB is the default. The decoded audio can be routed to either the SPDIF, the SDO and the analog outputs. The output clock signal at pin CLKO is defined in D0:349.

All changes in the D0-memory cells become effective synchronously upon setting the LSB of Main I/O Control (see Table 3–7 on page 32). Therefore, this cell should always be written at last.

The digital volume control (see Table 3–7 on page 32) is applied to the output signal of the DSP. The decoded audio data will be available at the SPDO output interface in the next version.

The DSP does not have to be started if its functions are not needed, e.g. for routing audio via the A/D and the D/A converters through the codec part of the IC.

2.10.4. Start-up of the Audio Codec

Before enabling the audio codec, the controller should check for a sufficient voltage supply (respective flag PUPn at I²C subaddress 76_{hex}).

The audio codec is enabled by setting the appropriate bit at the Control register (I 2 C subaddress 6a $_{\rm hex}$). After an initialization phase of 5 ms, the DSP data registers can be accessed via I 2 C.The A/D and the D/A converters must be switched on explicitly (00 00 $_{\rm hex}$ at I 2 C subaddress 6c $_{\rm hex}$). The D/A converters may either accept data from the A/D converters or the output of the DSP, or a mix of both $^{1)}$ (register 00 06 $_{\rm hex}$ and 00 07 $_{\rm hex}$ at I 2 C subaddress 6c $_{\rm hex}$). Finally, an appropriate output volume (00 10 $_{\rm hex}$ at I 2 C subaddress 6c $_{\rm hex}$) must be selected.

2.10.5. Power-Down

All analog outputs should be muted and the A/D and the D/A converters must be switched off (register 00 10_{hex} and $00~00_{\text{hex}}$ at I^2C subaddress $6c_{\text{hex}}$). The DSP and the audio codec must be disabled (clear DSP_EN and CODEC_EN bits in the Control register, I^2C subaddress $6a_{\text{hex}}$). By clearing both DC/DC enable flags in the Control register (I^2C subaddress $6a_{\text{hex}}$), the microcontroller can power down the complete system.

¹⁾ mixer available in version A2 and later; in version A1 please use selector 00 0f_{hex}.

MAS 35x9F ADVANCE INFORMATION

3. I²C Interface

3.1. General

3.1.1. Device Address

Controlling the MAS 35x9F is done via an I 2 C slave interface. The device addresses are 3C/3E $_{hex}$ (device write) and 3D/3F $_{hex}$ (device read) as shown in Table 3–1. The device address pair 3C/3D $_{hex}$ applies if the DVS pin is connected to VSS, the device address pair 3E/3F $_{hex}$ applies if the DVS pin is connected to VDD.

Table 3-1: I²C device address

A7	A6	A5	A4	А3	A2	A1	W/R
0	0	1	1	1	1	DVS	0/1

 $\ensuremath{\text{I}}^2\ensuremath{\text{C}}$ clock synchronization is used to slow down the interface if required.

3.1.2. I²C Registers and Subaddresses

The interface uses one level of subaddresses. The MAS 35x9F interface has 7 subaddresses allocated for the corresponding I²C registers. The registers can be divided into three categories as shown in Table 3–2.

The address $6A_{hex}$ is used for basic control, i.e. reset and task select. The other addresses are used for data transfer from/to the MAS 35x9F.

The I²C registers of the MAS 35x9F are 16 bits wide, the MSB is denoted as bit[15]. Transmissions via I²C bus have to take place in 16-bit words (two byte transfers, MSB sent first); thus, for each register access, two 8-bit data words must be sent/received via I²C bus.

Table 3-2: I²C subaddresses

Sub- address (hex)	I ² C- Register Name	Function
Direct Co	onfiguration	
6A	CON- TROL	Controller writes to MAS 35x9F control register
76	DCCF	Controller writes to first DC/DC configuration register
77	DCFR	Controller writes to second DC/DC config reg.
DSP Core	e Access	
68	DATA (WRITE)	Controller writes to MAS 35x9F DSP
69	DATA (READ)	Controller reads from MAS 35x9F DSP
Codec A	ccess	
6C	CODEC (WRITE)	Controller writes to MAS 35x9F codec register
6D	CODEC (READ)	Controller reads from MAS 35x9F codec register

3.1.3. Naming Convention

The description of the various controller commands uses the following formalism:

- Abbreviations used in the following descriptions:
 - a address
 - d data value
 - n count value
 - o offset value
 - r register number
 - x don't care
- A data value is split into 4-bit nibbles which are numbered beginning with 0 for the least significant nibble.
- Data values in nibbles are always shown in hexadecimal notation.
- A hexadecimal 20-bit number **d** is written, e.g. as $\mathbf{d} = 17C63_{hex}$, its five nibbles are $d0 = 3_{hex}$, $d1 = 6_{hex}$, $d2 = C_{hex}$, $d3 = 7_{hex}$, and $d4 = 1_{hex}$.
- Variables used in the following descriptions:
 I²C address:

DW $3C/3E_{hex}$ DR $3D/3F_{hex}$

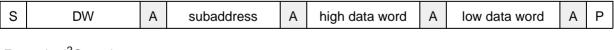
DSP core:

data_write 68_{hex} data_read 69_{hex}

Codec:

codec_write 6C_{hex} codec_read 6D_{hex}

- Bus signals
 - S Start
 - P Stop
 - A ACK = Acknowledge
 - N NAK = Not acknowledge
- Symbols in the telegram examples
 - < Start Condition
 - > Stop
 - dd data bytes
 - xx ignore


All telegram numbers are hexadecimal, data originating from the MAS 35x9F are greyed.

Example:

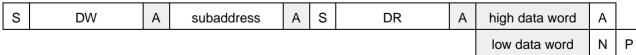

<DW 68 dd dd> write data to DSP <DW 69 <DR dd dd> read data from DSP and stop with NAK

Fig. 3–1 shows I²C bus protocols for write and read operations of the interface; the read operations require an extra start condition and repetition of the chip address with the device read command (DR). Fields with signals/data originating from the MAS 35x9F are marked by a gray background. Note that in some cases the data reading process must be concluded by a NAK condition.

Example: I²C write access

Example: I²C read access

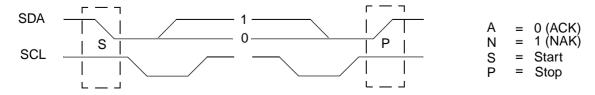


Fig. 3-1: Example of an I²C bus protocol for the MAS 35x9F (MSB first; data must be stable while clock is high)

MAS 35x9F ADVANCE INFORMATION

3.2. Direct Configuration Registers

The task selection of the DSP and the DC/DC converters are controlled in the direct configuration registers Control, DCCF, and DCFR.

3.2.1. Write Direct Configuration Registers

S	DW	Α	subaddress	Α	d3,d2	Α	d1,d0	Α	Р
---	----	---	------------	---	-------	---	-------	---	---

The write protocol for the direct configuration registers only consists of device address, subaddress and one 16-bit data word.

3.2.2. Read Direct Configuration Register

To check the PUP1 and PUP2 power-up flags, it is necessary to read back the content of the direct configuration registers.

Table 3–3: Direct Configuration Registers

I ² C Sul addres (hex)		Name
6A	Control Register (reset value = 3000 _{hex})	CONTROL
	bit[15:14] Analog Supply Voltage Range	
	Code AGNDC recommended for voltage range of AVDD 00 1.1 V 2.0 2.4 V (reset) 01 1.3 V 2.4 3.0 V 10 1.6 V 3.0 3.6 V 11 reserved reserved	
	Higher voltage ranges permit higher output levels and thus a better signal-to-noise ratio.	
	bit[13] enable DC/DC 2 (reset=1) bit[12] enable DC/DC 1 (reset=1)	
	Both DC/DC converters are switched on by default.	
	bit[11] enable and reset audio codec bit[10] enable and reset DSP core	
	For normal operation (MPEG-decoding and D/A conversion), both, the DSP core and the audio codec have to be enabled after the power-up procedure. The DSP can be left off if an audio signal is routed from the analog inputs to the analog outputs (set bit[15] in codec register 00 0F _{hex}). The audio codec can be left off if the DSP uses digital inputs and outputs only.	
	bit[9] reset codec bit[8] reset DSP core	
	bit[7] disable task 7 of DSP core bit[6] disable task 6 of DSP core bit[5] disable task 5 of DSP core bit[4] disable task 4 of DSP core	
	bit[3] set task 3 of DSP core bit[2] set task 2 of DSP core bit[1] set task 1 of DSP core bit[0] set task 0 of DSP core	
	bit[7] 1) enable XTAL input clock divider (extended crystal range up to 28 MHz) bit[6:0] 1) reserved, must be set to zero	
6B ¹⁾	bit[15:8] reserved, must be set to zero	DSP_TASK
	bit[7] disable task 7 of DSP core bit[6] disable task 6 of DSP core bit[5] disable task 5 of DSP core bit[4] disable task 4 of DSP core	
	bit[3] set task 3 of DSP core bit[2] set task 2 of DSP core bit[1] set task 1 of DSP core bit[0] set task 0 of DSP core	
	Unless downloaded optional software is used, the bits 70 must be set to zero.	
1) avail	ble in the next version	

Table 3–3: Direct Configuration Registers

I ² C Sub- address (hex)	Function		Name					
76	DCCF Reg	DCCF Register (reset = 5050 _{hex})						
	DC/DC Co	nverter 2						
	bit[15]	PUP2: Vo	Itage monitor 2	2 flag (readb	ack)			
	bit[14:11]	Voltage be	etween VSENS	S2 and DCS	G2			
		Code 1111 1110 1101 1100 1011 1000 0111 0110 0101	Nominal output volt. 3.5 V 3.4 V 3.3 V 3.2 V 3.1 V 3.0 V 2.9 V 2.8 V 2.7 V 2.6 V 2.5 V	3.4 V 3.3 V 3.2 V 3.1 V 3.0 V 2.9 V 2.8 V 2.7 V 2.6 V 2.5 V 2.4 V	reset level of PUP2 3.3 V 3.2 V 3.1 V 3.0 V 2.9 V 2.8 V (reset) 2.7 V 2.6 V 2.5 V 2.4 V 2.3 V			
	bit[10]	0100 0011 0010 0001 ¹⁾ 0000 ¹⁾ Mode	2.4 V 2.3 V 2.2 V 2.1 V 2.0 V	2.3 V 2.2 V 2.1 V 2.0 V 1.9 V	2.2 V 2.1 V 2.0 V 1.9 V 1.8 V			
		1 0		ency modula modulation	ation (PFM) (PWM) (reset)			
	bit[9]	reserved,	must be set to	zero				
	bit[8]	Disable sy 1 0		chronized re	ecitifier citifier (reset)			
	The DC/D0 higher than nominal vo							
	1) refer to S	Section 4.6.2	2. on page 61					

Table 3–3: Direct Configuration Registers

I ² C Sub- address (hex)	Function			Name
76	DC/DC C	onverter 1		
(continued)	bit[7]			
	bit[6:3]	Voltage b	etween VSENS1 and DCSG1 (see table above)	
	bit[2]	Mode 1 0	Pulse frequency modulation (PFM) Pulse width modulation (PWM) (reset)	
	bit[1]	reserved,	must be set to zero	
	bit[0]	Disable s	ynchronized rectifier disable synchronized recitifier enable synchronized recitifier (reset)	
	main refe	rence source	e voltage for DC/DC converter 1 is derived from the supplied via pin AVDD1. Therefore, if this DC/DC conut must be connected to the analog supply.	
		an the selecte	s are up-converters only. Thus, if the battery voltage is ed nominal voltage, the output voltage will exceed the	

Table 3–3: Direct Configuration Registers

I ² C Sub- address (hex)	Function					Name
77	DCFR Reg	jister (reset =	= 00 _{hex})			DCFR
	Battery Vo	ltage Monito	or			
	bit[15]	Comparison 1 0	input vo	oltage at p	oin VBAT above defined thresho oin VBAT below defined thresho	
	bit[14]	Number of 0 1	1 cell (r		1.5 V) (reset) 53.0 V)	
	bit[13:10]	Voltage thro	1 cell 1.5 1.45 0.85 0.8	2 ce 3.0 2.9 1.7 1.6	V V V	
	bit[9:8]	Reserved,	•	•	aportion on (reces)	
	The result between tw					
					ry voltage monitor should be nen the measurement is comple	eted.
	DC/DC Co	nverter Freq	uency C	ontrol (P	WM)	
	bit[7:4]	Reserved,	must be s	set to 0		
	bit[3:0]	Frequency	of DC/DC	C converte	er	
		0111 0110 0101 0100 0011 0000 1111 1110 1101 1100 1011 1000	315.1 323.4 332.1 341.3 351.1 361.4 372.4 384.0 396.4 409.6 423.7 438.9 455.1 472.6 491.5 512.0	289.5 297.1 305.1 313.6 322.6 332.0 342.1 352.8 364.2 376.3 389.3 403.2 418.1 434.2 451.6 470.4	297.3 kHz 297.3 kHz 307.2 kHz 317.8 kHz 329.1 kHz 341.3 kHz 354.5 kHz 368.6 kHz 384.0 kHz (reset) 400.7 kHz 418.9 kHz 438.9 kHz 460.8 kHz 485.1 kHz 512.0 kHz 542.1 kHz 576.0 kHz	
	dress 6A _{he} from the cr clock is use	_x is zero), the ystal frequen	clock for cy (nomir	the DC/E nal 18.432	the Control register at I ² C-subatic converters is directly derived MHz). Otherwise, the synthes r to the respective column in	t

3.3. DSP Core

The DSP Core of the MAS 35x9F has two RAM banks denoted D0 and D1. The word size is 20 bits. All RAM addresses can be accessed in a 20-bit or a 16-bit mode via I²C bus. For fast access of internal DSP states, the processor core also has an address space of 256 data registers. All register and RAM addresses are given in hexadecimal notation.

3.3.1. Access Protocol

The access of the DSP Core in the MAS 35x9F uses a special command syntax. The commands are executed by the DSP during its normal operation without any loss or interruption of the incoming data or outgoing audio data stream. These I²C commands allow the controller accessing the internal DSP registers and RAM cells and thus, monitoring internal states and setting the parameters for the DSP firmware. This access also provides a download option for alternative software modules.

The MAS 35x9F firmware scans the I²C interface periodically and checks for pending or new commands. However, due to some time critical firmware parts, a certain latency time for the response has to be expected. The theoretical worst case response time does not exceed 4 ms. However, the typical response time is less than 0.5 ms.

Table 3–4 gives an overview over the different commands which the DSP Core receives via the I²C data register. The "Code" is always the first data nibble transmitted after the "data_write" subaddress byte. A second auxiliary code nibble is used for the short memory (16-bit) access commands.

Due to the 16-bit width of the I²C data register, all actions transmit telegrams with multiples of 16 data bits

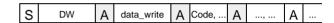
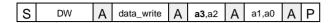



Fig. 3–2: General core access protocol

Table 3-4: Basic controller command codes

Code (hex)	Command	Function
03	Run	Start execution of an internal program. <i>Run</i> with start address 0 means freeze the operating system.
5	Read Ancillary Data	The controller reads a block of MPEG Ancillary Data from the MAS 35x9F
6	Fast Program Download	The controller downloads custom software via the PIO interface
Α	Read from Register	The controller reads an internal register of the MAS 35x9F
В	Write to Register	The controller writes an internal register of the MAS 35x9F
С	Read D0 Memory	The controller reads a block of the DSP memory
D	Read D1 Memory	The controller reads a block of the DSP memory
E	Write D0 Memory	The controller writes a block of the DSP memory
F	Write D1 Memory	The controller writes a block of the DSP memory

■ 3.3.1.1. Run and Freeze

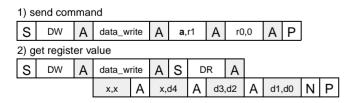
The *Run* command causes the start of a program part at address $\mathbf{a} = (a3,a2,a1,a0)$. Since nibble a3 is also the command code (see Table 3–4), it is restricted to values between 0 and 3.

If the start address is $1000_{hex} \le a < 3FFF_{hex}$ and the respective RAM area has been configured as program RAM (see Table 3–5 on page 29), the MAS 35x9F continues execution with a custom program already downloaded to this area.

Example 1: Start program execution at address 345_{hex} :

<DW 68 03 45>

Example 2: Start execution of a downloaded code at address 3000_{hex} :


<DW 68 30 00>

Freeze is a special run command with start address 0. It suspends all normal program execution. The operating system will enter an idle loop so that all registers and memory cells can be watched. This state is useful for operations like downloading code or contents of memory cells because the internal program cannot overwrite these values. This freezing will be required if alternative software is downloaded into the internal RAM of the MAS 35x9F.

Freeze has the following I²C protocol:

<DW 68 00 00>

3.3.1.2. Read Register (Code Ahex)

Some registers ($\mathbf{r} = r1,r0$ in the figure above) are direct control inputs for various hardware blocks, others control the internal program flow. In contrast to memory cells, registers cannot be accessed as a block but must always be addressed individually.

Example:

Read the content of the PIO data register (C8_{hex}):

<DW 68 ac 80> define register <DW 69 <DR xx xd dd dd> and read

3.3.1.3. Write Register (Code Bhex)

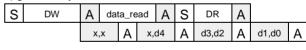
S	DW	Α	data_write	Α	b ,r1	Α	r0,d4	Α	
					d3,d2	Α	d1,d0	Α	Ρ

The controller writes the 20-bit value ($\mathbf{d} = d4, d3, d2, d1, d0$) into the MAS 35x9F register ($\mathbf{r} = r1, r0$).

Example: Writing the value 81234_{hex} into the register with the number AA_{hex} :

<DW 68 ba a8 12 34>

In Table 3–5 on page 29 the registers of interest with respect to the firmware are described in detail.


3.3.1.4. Read D0 Memory (Code Chex)

The MAS 35x9F has 2 memory areas of 2048 words called D0 and D1 memory. Both memory areas have different read and write commands. All D0/D1 memory addresses are given in hexadecimal notation.

1) send command

S	DW	Α	data_write	Α	c ,0	Α	0,0	Α	
					n3,n2	Α	n1,n0	Α	
					a3,a2	Α	a1,a0	Α	Р

2) get memory value

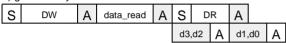
... repeat for n data values ...

X,X	А	х,а4	Α	03,02	А	a1,a0	Z	۲

The *Read D0 Memory* command gives the controller access to all 20 bits of D0 memory cells of the MAS 35x9F. The telegram to read 3 words starting at location D0:100 is

<DW 68 c0 00 00 03 01 00> <DW 69 <DR xx xd dd dd xx xd dd dd xx xd dd dd>

MAS 35x9F ADVANCE INFORMATION


3.3.1.5. Short Read D0 Memory (Code C4_{hex})

Because most cells in the user interface are only 16 bits wide, it is faster and more convenient to access the memory locations with a special 16 bit mode for reading:

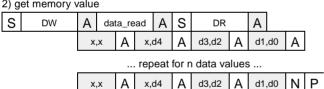
1) send command

S	DW	Α	data_write	Α	с,4	Α	0,0	Α	
					n3,n2	Α	n1,n0	Α	
					a3,a2	A	a1,a0	A	Р

2) get memory value

... repeat for n data values ..

d3,d2 d1,d0

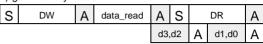

This command is similar to the normal 20 bit read command and uses the same command code Chex, however it is followed by a 4_{hex} rather than a 0_{hex} .

3.3.1.6. Read D1 Memory (Code Dhex)

1) send command

, -		-							
S	DW	Α	data_write	Α	d ,0	Α	0,0	Α	
					n3,n2	Α	n1,n0	Α	
					a3,a2	Α	a1,a0	Α	Р

2) get memory value


The Read D1 Memory command is provided to get information from D1 memory cells of the MAS 35x9F.

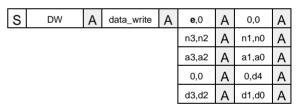
3.3.1.7. Short Read D1 Memory (Code D4_{hex})

1) send command

S	DW	Α	data_write	Α	d,4	Α	0,0	Α	
					n3,n2	Α	n1,n0	Α	
					a3,a2	Α	a1,a0	Α	Р

2) get memory value

... repeat for n data values


d3,d2 Α d1,d0

The Short Read D1 Memory command works similar to the Read D1 Memory command but with the code D_{hex} followed by a 4_{hex} .

Example: Read 16 bits of D1:123 has the following I²C protocol:

<DW 68 d4 00 read 16 bits from D1 1 word to be read 00 01 01 23 start address start reading <DW 69 DR dd dd>

3.3.1.8. Write D0 Memory (Code E_{hex})

... repeat for n data values ...

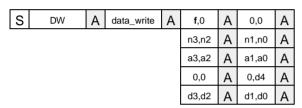
0,0	Α	0,d4	Α	
d3,d2	Α	d1,d0	Α	Р

With the Write D0 Memory command n 20-bit memory cells in D0 can be initialized with new data.

Example: Write 80234_{hex} to D0:456 has the following I²C protocol:

<dw 00<="" 68="" e0="" th=""><th>write D1 memory</th></dw>	write D1 memory
00 01	1 word to write
04 56	start address
00 08	value = 80234 _{hex}
02 34>	

3.3.1.9. Short Write D0 Memory (Code E4_{hex})

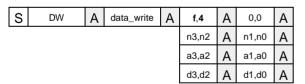

S DW data_write Α **e**,4 Α 0,0 Α n3,n2 Α n1,n0 Α a3,a2 a1,a0 d1,d0 d3,d2

... repeat for n data values ...

d3.d2	Δ	d1.d0	Δ	Р
,	٠,		′	•

For faster access only the lower 16 bits of each memory cell are accessed. The 4 MSBs of the cell are cleared.

3.3.1.10. Write D1 Memory (Code Fhex)



... repeat for n data values ...

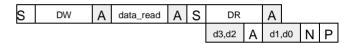
0,0	Α	0,d4	Α	
n3,n2	Α	d1,d0	Α	Р

For further details, see the Write D0 Memory command.

3.3.1.11. Short Write D1 Memory (Code F4hex)

... repeat for n data values ...
d3,d2 A d1,d0 A P

Only the 16 lower bits of each memory cell are written, the upper 4 bits are cleared.


3.3.1.12. Clear SYNC Signal (Code 5_{hex})

S DW A data_write A 5,0 A 0,0 A P

After the successful decoding of an MPEG frame the signal at pin SYNC rises and thus generates an interrupt event for the microcontroller. Issuing this command lets the signal at pin SYNC return to '0'.

3.3.1.13. Default Read

The *Default Read* command is the fastest way to get information from the MAS 35x9F. Executing the *Default Read* in a polling loop can be used to detect a special state during decoding.

The *Default Read* command immediately returns the lower 16 bit content of a specific RAM location as defined by the pointer D0:ffb. The pointer must be loaded before the first *Default Read* action occurs. If the MSB of the pointer is set, the pointer refers to a memory location in D1 rather than to one in D0.

Example: For watching D1:123 the pointer D0:ffb must be loaded with 8123_{hex}:

<dw 68<="" th=""><th>e0</th><th>00</th><th>write to D0 memory</th></dw>	e0	00	write to D0 memory
0.0	01		1 word to write
0 f	fb		start address ffb
0.0	08		value = 8
01	. 23:	>	0123 _{hex}

Now *Default Read* commands can be issued as often as desired:

dd dd> 16 bit content of the

address as defined by the pointer

<DW 69 <DR dd dd> ... and do it again

3.3.1.14. Fast Program Download

S	DW	Α	data_read					
				a3,a2	Α	a1,a0	Α	Р

The Fast Program Download command introduces a data transfer via the parallel port. $\mathbf{n} = \text{n2,n1,n0}$ denotes the number of 20-bit data words to be transferred, $\mathbf{a} = \text{a3,a2,a1,a0}$ gives the start address. The data at the PIO port must be padded with three 0-nibbles to get multiples of 16 bits.

The download must be initiated in the following sequence:

- Issue Freeze command
- Stop all DMA transfers
- Issue Fast Program Download command
- Download code via PIO interface
- Switch appropriate memory area to act as program RAM (register ED_{hex})
- Issue Run command to start program execution at entry point of downloaded code

Example for *Fast Program Download* command: Download 4 words starting at D0:1400:

(stop all data transfers)

<DW 68 00 00> Freeze

<DW 68 60 04 initiate download of 4 words 10 00> start at address D0:1000 Now transfer 8-bit words via the parallel PIO port:

0,0 0,d4 d3,d2 d1,d0 0,0 0,d4 d3,d2 d1,d0 0,0 0,d4 d3,d2 d1,d0 0,0 0,d4 d3,d2 d1,d0

<DW 68 be d0 00 03>reconfigure memory from D0:1000 to D0:17ff

<DW 68 10 00> start program execution at address D0:1000

3.3.1.15. Serial Program Download

Program downloads may also be performed via the I²C interface by using the Write D0/1 Memory commands. A similar command sequence as in the Fast Program Download (stop transfers, *Freeze...*) applies.

3.3.2. List of DSP Registers

Table 3–5 lists the registers used in the standard Layer 2/3 and AAC firmware (MPEG) and for the download option (Download).

Note: Registers not given in the tables must not be written.

Table 3-5: DSP Register Table

	Address (hex)	R/W	Function	Mode	Default (hex)	Name
1	6B	R/W	Affected RAM area bit[19] D0:800 D0:BFF bit[18] D0:C00 D0:FFF bit[17] D1:800 D1:BFF bit[16] D1:C00 D1:FFF This register is used to switch four RAM areas to program usage and thus enabling the DSP counter to access downloaded program code these locations. For normal operation (firmwa this register must be kept to zero. For details of program code download please Section 3.3.1.14.	's program stored at ire in ROM)	0000	PSelect_Shadow

Table 3-5: DSP Register Table

Address (hex)	R/W	Function	Mode	Default (hex)	Name
aa	W	Soft Mute	MPEG	0000	SoftMute
		%0 (reset) mute off %1 mute on			
		Note : The location of the SoftMute registrohanged.	ter is to be		

3.3.3. List of DSP Memory Cells

Among the user interface control memory cells there are some which have a global meaning and some which control application specific parts of the DSP core. In the tables below this is reflected by the keywords All, MPEG, and G.729

3.3.3.1. Application Select and Running

The AppSelect cell is a global user interface configuration cell, which has to be written in order to start a specific application.

The AppRunning cell is a global user interface status cell, which indicates, which application loop is actually running

The meaning of the bits in both cells is given in Table 3–6.

3.3.3.2. Application Specific Control

The configuration of the MPEG Layer 2/3, AAC decoding and the G.729 codec firmware is done via the control memory cells described in Table 3–7. The changes applied to any of the control memory cells have to be validated by setting bit[0] of memory cell Main I/O Control. This bit will be reset automatically after the changes have been taken over by the DSP.

The status memory cells are used to read the decoder status and to get additional MPEG bitstream information.

Note: Memory cells not given in the tables must not be written

I

■ Table 3–6: Application Control and Status

Memory Address (hex)	Function	Name	
D0:34b	Application Selection	AppSelect	
	AppSelect is used for selecting an applic appropriate bit to one. It is principally allo e.g. setting AppSelect to 0x1c will select detection feature will automatically detect Setting bit[0] or bit[1] will make the DSP loop respectively.		
	To add/remove MPEG layers while run Layer 2, Layer 3 (0x0c) to Layer 2, La selection has to be reset before writing the		
	bit[5] G.729 Codec bit[4] MPEG AAC Decode bit[3] MPEG Layer 3 Deco bit[2] MPEG Layer 2 Deco bit[1] Top Level bit[0] Operating System	oder	
D0:34c	Application Running	All	AppRunning
	The AppRunning cell is a global user inte application loop is actually running. Prior registers or memory cells (except AppSe the appropriate bit(s) in the AppRunning		
	bit[5] G.729 Codec bit[4] MPEG AAC Decode bit[3] MPEG Layer 3 Deco bit[2] MPEG Layer 2 Deco bit[1] Top Level bit[0] Operating System	oder	

Table 3-7: D0 Control Memory Cells

Memory Address (hex)	Function				Name
D0:346	Main I/O C	IOControlMain			
	IOControlM interface and mode the control input interface PI[19:12] a				
	bit[15]				
	bit[14]	Invert serial 0 (reset) 1	output clock (SOC) do not invert SOC invert SOC		
	bit[13:12]	Reserved, r	must be set to zero		
	bit[11]	Serial data 0 (reset) 1	output delay no additional delay (reset) additional delay of data related to word s	strobe	
	bit[10]	Reserved, r	must be set to zero		
	bit[9:8]	Input Selec 00 (reset) 01 10 11			
	In the stand				
	bit[7:6]				
	bit[5]	SDO Word 0 1 (reset)	Strobe Invert do not invert invert outgoing word strobe signal		
	bit[4]	Bits per Sai 0 (reset) 1	mple at SDO 32 bits/sample 16 bits/sample		
	bit[3]	Reserved, r	must be set to zero		
	bit[2]	Serial data 0 1 (reset)	input interface B clock invert (pin SIBC) not inverted (data latched at rising clock incoming clock signal is inverted (data la falling clock edge)		
		0 (reset) 1	DEMAND MODE (PLL off, MAS 35x9F i master) BROADCAST MODE (PLL on, clock of locks on data stream)		
	bit[0]	Validate 0 (reset) 1	changes in control memory cell will be iq changes in control memory will become		
	Bit[0] is res should set with the de				

Table 3-7: D0 Control Memory Cells

	Memory Address (hex)	Function				Name	
	D0:347	Interface S	Status Contro	ol (reset = 04 _{hex})	IPEG	InterfaceControl	
		the clock of		o enable/disable the data I/O interfaces. In add ata interface interfaces, S/PDIF and SDO, can le.			
I		bit[6]	S/PDIF inpo 0 (reset) 1	ut selection (not yet supported) select S/PDIF input 1 select S/PDIF input 2			
		bit[5]	bit[5] Enable/disable S/PDIF output (will be supported in the next version) 0 (reset) enable S/PDIF output 1 S/PDIF output off (tristate)				
		bit[4]	Reserved, ı	must be set to zero			
		bit[3]	Enable/disa 0 1 (reset)	able serial data output SDO SDO on SDO off			
		bit[2]	Output cloc 0 1 (reset)	k characteristic (SDO and S/PDIF outputs) low impedance high impedance			
		bit [1:0]	reserved, m	nust be set to zero			
				DIF and I^2S , and the D/A converters may use dent of each other.	the		
		Changes a D0:346.	Changes at this memory address must be validated by setting bit [0] of D0:346.				
	D0:348	Oscillator	Frequency (reset = 18432 _{dec})	All	OfreqControl	
		bit[19:0] oscillator frequency in kHz					
				rect internal operating frequency of the DSP, the to be deposited into this memory cell.	ne nom-		
		Changes a	t this memory	address must be validated by setting bit 0 of	D0:346.		

Table 3-7: D0 Control Memory Cells

Memory Address (hex)	Function				Name
D0:349	Output Cl	ock Configu	ration (pin CLKO) (reset = 80000 _{hex})	AII	OutClkConfig
	bit[19]	CLKO conf 0 1 (reset)	iguration output clock signal at CLKO CLKO is tristate		
	The CLKO	output pin of	the MAS 35x9F can be disabled via bit [19].		
	bit[18]	Reserved,	must be set to zero		
	bit[17] Additional division by 2 if scaler is on (bit[8] cleared) 0 (reset) oversampling factor 512/768 1 oversampling factor 256/384				
	bit[16:9]	Reserved,			
	bit[8]	Output cloc 0 (reset) 1	ck scaler set output clock according to audio sample r (see Table 2–1) output clock fixed at 24.576 or 22.5792 MHz		
	For a list o				
	bit[7:0]	reserved, n	nust be set to zero		
	Changes a D0:346.				

Table 3-7: D0 Control Memory Cells

Memory Address (hex)	Function		Name		
D0:34d	Operation	Mode Selec	tion (reset = 0 _{hex})	G.729	UserControl
	The registe				
	bit[19:7]	Reserved, set to 0			
	bit[6]	Page head 0 1	ers enable disable		
	50 data fra	mes. If the he	s 0, a header frame is transfered before eac eader bit is 1, all the frames are G.729 data 3.3.6. on page 41.		
	bit[5:4]	Decoding s 00 01 10 11	speed 8 kHz (normal) 6 kHz (slow) 12 kHz (fast) not allowed		
	The record decoding the	•			
	bit[3]				
	bit[2]	Pause enco 0 1	oder/decoder normal operation pause		
	If the pause ished and t bit is cleare				
	bit[1:0]	Mode 00 01 10 11	idle decode not allowed encode		
	To switch to 50 frames a the UserCo each page	ated until s enabled,			
	To switch to decoding was peed it museling PIO interfaction decoded. To transmission has to be seen to decode seen seen to decod				
	the encodir	ng/decoding a	er or decoder, UserControl has to be set to 0 and sending/receiving of frames continues u and the operation mode is set to stop.		

Table 3-7: D0 Control Memory Cells

Memory Address (hex)	Function				Name
D0:34e	and outpu	t wordstrobe inverted	g with the internal ADC a (reset configuration). The work with the integrated <i>i</i>	refore this	SDISDOConfig
	I ² S Audio	Input/Output Interface	$(reset = 60_{hex})$	G.729	
	bit[19:15]	Reserved, set to 0			
	bit[14]	Output clock signal 0 standard 1 inverted s			
	bit[13]	Reserved, set to 0			
	bit[12]				
	bit[11]				
	bit[10:7]	Reserveded, set to 0			
	bit[6]	Input word strobe sign 0 standard 1 inverted	signal		
	bit[5]	Output word strobe sig 0 standard 1 inverted s	signal		
	bit[4]	Wordlength 0 32 bits/sa 1 16 bits/sa			
	This setting	g affects the wordlength	on the SDI and SDO interfa	aces.	
	bit[3]	Input clock signal 0 standard 1 inverted s			
	bit[2:0]	Reserved, set to 0			
	Changes b by writing t	ode is changed			
D0:34f	Interface S	Status Control (reset =	25 _{hex})	G.729	g729_InterfaceCont
		mode. It con- trol), but is ini-	rol		
D0:352	Volume in	put control: left gain	(reset=80000 _{hex})	G.729	in_L
D0:353	Volume in	G.729	in_R		
D0:354	Volume ou	utput control: left $ ightarrow$ lef	t gain (reset=80000 _{hex})	All	out_LL
D0:355	Volume ou	ıtput control: left $ ightarrow$ rig	ht gain (reset=0 _{hex})	All	out_LR

Table 3-7: D0 Control Memory Cells

Memory Address (hex)	Function	Name
D0:356	Volume output control: right \rightarrow left gain(reset=0 _{hex}) All	out_RL
D0:357	Volume control: right \rightarrow right gain (reset=80000 _{hex}) All	out_RR

Table 3–8: D0 Status Memory Cells

Memory Address	Function		Name
D0:FD0	MPEG Fra	me Counter	MPEGFrameCount
	bit[19:0]	number of MPEG frames after synchronization	
	an invalid N	er will be incremented with every new frame that is decoded. With MPEG bit stream at its input (e.g. an invalid header is detected), the F resets the MPEGFrameCount to '0'.	
D0:FD1	MPEG Hea	ader and Status Information	MPEGStatus1
	bit[15]	reserved, must be set to zero	
	bit[14:13]	MPEG ID, Bits 12, 11 of the MPEG header 00	
	bit[12:11]	Bits 14 and 13 of the MPEG header 00 AAC 01 Layer 3 10 Layer 2 11 Layer 1	
	bit[10]	CRC Protection 0 bitstream protected by CRC 1 bitstream not protected by CRC	
	bit[9:2]	Reserved	
	bit[1]	CRC error 0 no CRC error 1 CRC error	
	bit[0]	Invalid frame 0 no invalid frame´ 1 invalid frame	
		on contains bits 1511 of the original MPEG header and other sta- will be set each frame directly after the header has been decoded t stream.	

Table 3-8: D0 Status Memory Cells

Memory Address	Function					Name
D0:FD2	MPEG Hea	der Informat	ion			MPEGStatus2
	bit[15:12]	MPEG Laye	er 2/3 Bitrate			
			MPEG1, L2	MPEG1, L3	MPEG2+2.5, L2/3	
	bit[13:10]	00000010 0011 0100	free 32 48 56 64 80 96 112 128 160 192 224 256 320 384 forbidden reserved 48000 44100	MPEG1, L3 free 32 40 48 56 64 80 96 112 128 160 192 224 256 320 forbidden	free 8 16 24 32 40 48 56 64 80 96 112 128 144 160 forbidden	
		0101 0110	32000 24000			
		0111 1000 1001 1010 1011 11001111	22050 16000 12000 11025 8000 reserved			

MAS 35x9F

Table 3-8: D0 Status Memory Cells

Memory Address	Function					Name
D0:FD2	MPEG Hea	ader Inform	ation, continu	ued		MPEGStatus2
(continued)	bit[11:10]	Sampling	frequencies in	n Hz		
			MPEG1	MPEG2	MPEG2.5	
		00 01 10 11	44100 48000 32000 reserved	22050 24000 16000 reserved	11025 12000 8000 reserved	
	bit[9]	Padding E	Bit			
	bit[8]	reserved				
	bit[7:6]	Mode 00 01 10 11	stereo joint_stered dual chann single char	iel	tereo / m/s stereo)	
	bit[5:4]	Mode exte	ension (applie	s to joint ster	eo only)	
		00 01 10 11	intensity st off on off on	ereo	m/s stereo off off on on	
	bit[3]		Protect Bit	ht protected	copyright protected	
	bit[2]	Copy/Orio	ginal Bit	•	ream is an original	
	bit[1:0]	Emphasis 00 01 10 11	s, indicates the none 50/15 μs reserved CCITT J.17	type of emp	_	
			ains the 16 LS izing to the bit		PEG header. It will be s	et
		Layer3 two			ne sampling frequency Is to an inconsistency i	
D0:FD3	MPEG CR	C Error Co	unter			CRCErrorCount
			reased by each		detected in the MPEG onization.	bis-
D0:FD4			cillary Data	ourrent MDE) from o	NumberOfAncillary Bits
	Ancillary I		ary bits in the o	current MPEC	ııame.	
D0:FD5						AncillaryData

3.3.4. Ancillary Data

The memory fields D0:FD5...D0:ff1 contain the ancillary data. It is organized in 28 words of 16 bit each. The last ancillary bit of a frame is placed at bit 0 in D0:FD5. The position of the first ancillary data bit received can be located via the content of NumberO-fAncillaryBits because

int[(NumberOfAncillaryBits-1)/16] + 1
of memory words are used.

Example:

First get the content of 'NumberOfAncillaryBits'

```
<DW 68 c4 00 00 01 0f d4> <DW 69 <DR dd dd>
```

Assume that the MAS 35x9F has received 19 ancillary data bits. Therefore, it is necessary to read two 16-bit words:

receive the 2 16-bit words

The first bit received from the MPEG source is at position 2 of D0:FD6; the last bit received is at the LSB of D0:fd5.

3.3.5. DSP Volume Control

The digital baseband volume matrix is used for controlling the digital gain as shown in Fig. 3–3. This volume control is effective on both, the digital audio output and the data stream to the D/A converters. The values are in 20-bit 2's complement notation.

Table 3–9 shows the proposed settings for the 4 volume matrix coefficients for stereo, left and right mono. The gain factors are given in fixed point notation $(-1.0 \times 2^{19} = 80000_{hex})$.

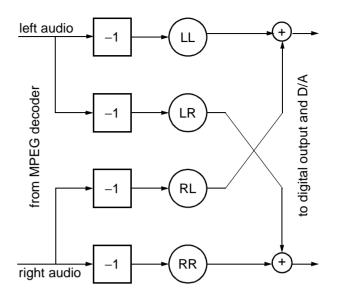


Fig. 3-3: Digital volume matrix

Table 3–9: Settings for the digital volume matrix

Memory	D0:354	D0:355	D0:356	D0:357
Name	LL	LR	RL	RR
Stereo (default)	-1.0	0	0	-1.0
Mono left	-1.0	-1.0	0	0
Mono right	0	0	-1.0	-1.0

If channels are mixed, care must be taken to prevent clipping at high amplitudes. Therefore the sum of the absolute values of coefficients for one output channel should be less than 1.0.

For normal operating conditions it is recommended to use the main volume control of the audio codec instead (register 00 $10_{\rm hex}$ of the audio codec).

Table 3–10: Content of D0:fd5 after reception of 19 ancillary bits.

D0:fd5	MSB	14	13	12	11	10	9	8	7	6	5	4	3	2	1	LSB
Ancillary Data	4th bit	5th bit	6th bit										::	17th bit	18th bit	last bit

Table 3-11: Content of D0:fd6 after reception of 19 ancillary bits.

D0:fd6	MSB	14	13	12	11	10	9	8	7	6	5	4	3	2	1	LSB
Ancillary Data	x	х	x	x	x	x	x	х	x	x	Х	x	х	first bit	2nd bit	3rd bit

3.3.6. Explanation of the G.729 Data Format

The codec is working on a page basis where the encoding and decoding is performed in blocks of 50 G.729 frames, whereas each frame consists of 10 bytes in byteswapped order (see Fig. 3–5 on page 49). Therefore most changes to the UserControl register become effective when processing of the current page is finished. The pages are optionally preceded by 10 byte header frames (see Table 3–12).

Table 3-12: Content of Page Header

Byte	1	2	3	4	5	6	7	8	9	10
Value (hex)	64	6d	72	31	64	61	74	61	F4	01

Switching directly from encoding to decoding mode or vice versa is not allowed. Instead the controller has to send a stop request to the MAS 35x9F (writing 0_{hex} to UserControl) and must keep on sending data in decoding mode or receive data in encoding mode until the current page of 50 frames is finished. After this run out time, the encoding or decoding can be started again.

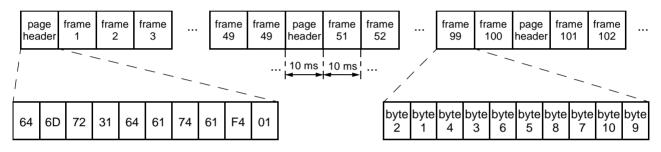


Fig. 3-4: Schematic timing of the data transmission with preceeding header

3.4. Audio Codec Access Protocol

The MAS 35x9F has 16-bit wide registers for the control of the audio codec. These registers are accessed via the I^2C subaddresses codec_write ($6C_{hex}$) and codec_read ($6D_{hex}$).

3.4.1. Write Codec Register

S	DW	Α	codec_write	Α	r3,r2	Α	r1,r0	Α	
					d3,d2	Α	d1,d0	Α	Р

The controller writes the 16-bit value ($\mathbf{d} = d3,d2,d1,d0$) into the MAS 35x9F codec register ($\mathbf{r} = r3,r2,r1,r0$). A list of registers is given in Table 3–13.

Example: Writing the value 1234_{hex} into the codec register with the number 00 1B_{hex}:

<DW 6c 00 1b 12 34>

3.4.2. Read Codec Register

1) s	end commar	nd									
S	DW	Α	codec_write	Α	r3,	,r2	Α	r1,	r0	Α	Р
2) g	et register va	alue								_	
S	DW	Α	codec_read	Α	S		DR		Α		
					d3,	,d2	Α	d1	d0	Ν	Р

Reading the codec registers also needs a set-up for the register address and an additional start condition during the actual read cycle. A list of registers is given in Table 3–14.

3.4.3. Codec Registers

Table 3–13: Codec control registers on I²C subaddress 6c_{hex}

Register Address (hex)	Function			Name
CONVERT	ER CONFIG	URATION		
00 00	Audio Cod	lec Configura	tion	CONV_CONF
	Please refe	er to Section 4	.6.4. on page 74.	
	bit[15:12]	A/D converte	er left amplifier gain = n*1.5-3 [dB]	
	bit[11:8]	A/D converte 1111 1110	er right amplifier gain = n*1.5–3 [dB] +19.5 dB +18.0 dB	
		0011 0010 0001 0000	+1.5 dB 0.0 dB -1.5 dB - 3.0 dB	
	bit[7:4]	Microphone 1111 1110	amplifier gain = n*1.5+21 [dB] +43.5 dB +42.0 dB	
		0001 0000	+22.5 dB +21.0 dB	
	bit[3]	Input selecti 0 1	on for left A/D converter channel line-in microphone	
	bit[2]	Enable left A	A/D converter ¹⁾	
	bit[1]	Enable right	A/D converter ¹⁾	
	bit[0]	Enable D/A	converter ¹⁾	
	also contro at pin AGN	lled with this b DC should hav	nternal DC reference voltage for the D/A converter is it. In order to avoid click noise, the reference voltage we reached a near ground potential before repower- er a short down phase.	
	set during	short power-do	of the A/D converters (bits [2] or [1]) should remain own phases of the D/A. Then the DC reference volt-A converter will not be interrupted.	
INPUT MO	DE SELECT			
80 00	Input Mod	e Setting		ADC_IN_MODE
	bit[15]	Mono switch 0 1	stereo input mode left channel is copied into the right channel	
	bit[14:2]	Reserved, m	nust be set to 0	
	bit[1:0]	Deemphasis 0 1 2	s select deemphasis off deemphasis 50 µs deemphasis 75 µs	

MAS 35x9F

Table 3–13: Codec control registers on I²C subaddress 6c_{hex}

Register Address (hex)	Function	Name
OUTPUT N	MODE SELECT	
00 0F ¹⁾	D/A Converter Source	DAC_IN_SEL
	bit[15] D/A converter source select 0 DSP Core output 1 A/D converter output	
	bit[14:0] reserved, must be set to 0	
	D/A Converter Source Mixer	
00 06 ²⁾	MIX ADC scale	DAC_IN_ADC
00 07 ²⁾	MIX DSP scale	DAC_IN_DSP
	bit[15:8] Linear scaling factor (hex) 0 off 20 50 % (-6 dB gain) 40 100 % (0 dB gain) 7f 200 % (+6 dB gain)	
	In the sum of both mixing inputs exceeds 100 %, clipping may occur in the successive audio processing.	
00 0E	D/A Converter Output Mode	DAC_OUT_MODE
	bit[15] Mono switch 0 stereo through 1 mono matrix applied	
	bit[14] Invert right channel 0 through 1 right channel is inverted	
	bit[1:0] Reserved, must be set to 0	
1) , , .	In order to achieve more output power a single loudspeaker can be connected as a bridge between pins OUTL and OUTR. In this mode bit[15] and bit[14] must be set.	ed

¹⁾ Version A1 only 2) since version A2

Table 3–13: Codec control registers on I²C subaddress 6c_{hex}

Register Address (hex)	Function	Name
BASEBAN	D FEATURES	
00 14	Bass	BASS
	$\begin{array}{lll} \text{bit}[15:8] & \text{Bass range} \\ 60_{\text{hex}} & +12 \text{ dB} \\ 58_{\text{hex}} & +11 \text{ dB} \\ & & & \\ 08_{\text{hex}} & +1 \text{ dB} \\ 00_{\text{hex}} & 0 \text{ dB} \\ & & & \\ F8_{\text{hex}} & -1 \text{ dB} \\ & & \\$	
00 15	Treble bit[15:8] Treble range 60_{hex} +12 dB 58_{hex} +11 dB 08_{hex} +1 dB 00_{hex} 0 dB 00_{hex} 0 dB 00_{hex} 0 dB 00_{hex} 1 dB 00_{h	TREBLE

Table 3–13: Codec control registers on I²C subaddress 6c_{hex}

Register Address (hex)	Function	1		Name	
00 1E	Loudnes	ss		LDNESS	
	bit[15:8]	bit[15:8] Loudness Gain 44 _{hex} +17 dB 40 _{hex} +16 dB			
	bit[7:0] Loudness		+1 dB 0 dB		
		solution of bout 1/4 dE	Loudness Gain is possible: An LSB step results in a gain s.		
	keeping t intended Because	Loudness increases the volume of low- and high-frequency signals, while keeping the amplitude of the 1-kHz reference frequency constant. The intended loudness has to be set according to the actual volume setting. Because loudness introduces gain, it is not recommended to set loudness to a value that, in conjunction with volume, would result in an overall positive gain.			
	The settir	The settings should be: max (bass, treble) + loudness + volume ≤ 0 dB			
	In Super	er frequence Bass mode s shifted fro			

Table 3–13: Codec control registers on I²C subaddress 6c_{hex}

Register Address (hex)	Function			Name
Micronas I	Dynamic Ba	ss (MDB)		
00 22	MDB Effec	t Strength		MDB_STR
	bit[15:8]	00 _{hex} 7F _{hex}	MDB off (default) maximum MDB	
		effect strengt dium MDB ef	th can be adjusted in 1dB steps. A value of 40 _{hex} will ffect.	
00 23	MDB Harn	nonics		MDB_HAR
	bit[15:8]	00 _{hex} 64 _{hex} 7F _{hex}	no harmonics are added (default) 50% fundamentals + 50% harmonics 100% harmonics	
	tal by creat bandpass that are be	ting harmonic filter (MDB_F low its cutoff	sychoacoustic phenomenon of the 'missing fundamencs of the frequencies below the center frequency of the FC). This enables a loudspeaker to display frequencies frequency. The Variable MDB_HAR describes the ratio ds the original signal.	
00 24	MDB Cent	er Frequenc	су	MDB_FC
	bit[15:8]	2 3	20 Hz 30 Hz	
		30	300 Hz	
	pass filter mately ma	(see Fig. 3–5 tch the cutoff	tency defines the center frequency of the MDB band- on page 49). The center frequency should approxi- f frequency of the loudspeakers. For high end uency is around 50 Hz, for low end speakers around	
00 21	MDB Shap	ре		MDB_SHAPE
	bit[15:8]	530	corner frequency in 10-Hz steps (range: 50300 Hz)	
	With a second lowpass filter the steepness of the falling slope of the MDB bandpass can be increased (see Fig. 3–5 on page 49). Choosing the corner frequency of this filter close to the center frequency of the bandpass filter (MDB_FC) results in a narrow MDB frequency range. The smaller this range, the harder the bass sounds. The recommended value is around $1.5 \times MDB_FC$			
	MDB Switch		MDB_SWITCH	
	bit[7:2]		reserved, must be set to zero	
	bit[1]	0 1	MDB switch MDB off MDB on	
	bit [0]		reserved,must be set to zero	

MAS 35x9F

Table 3–13: Codec control registers on I²C subaddress 6c_{hex}

Register Address (hex)	Function	Name
VOLUME		
00 12	Automatic Volume Correction (AVC) Loudspeaker Channel	AVC
	bit[15:12] 0 _{hex} AVC off (and reset internal variables) 8 _{hex} AVC on	
	bit[11:8] 8 _{hex} 8 s decay time 4 _{hex} 4 s decay time 2 _{hex} 2 s decay time 1 _{hex} 20 ms decay time (intended for quick adaptation to the average volume level after track or source change)	
	Note: To reset the internal variables, the AVC should be switched off and then on again during any track or source change. For standard applications, the recommended decay time is 4 s.	
00 11	Balance	BALANCE
	bit[15:8] Balance range 7F _{hex} left –127 dB, right 0 dB 7E _{hex} left –126 dB, right 0 dB 	
	01 _{hex} left –1 dB, right 0 dB 00 _{hex} left 0 dB, right 0 dB FF _{hex} left 0 dB, right –1 dB 	
	81 _{hex} left 0 dB, right –127 dB 80 _{hex} left 0 dB, right –128 dB	
	Positive balance settings reduce the left channel without affecting the right channel; negative settings reduce the right channel leaving the left channel unaffected.	
00 10	Volume Control	VOLUME
	bit[15:8] Volume table with 1 dB step size 7F _{hex} +12 dB (maximum volume) 7E _{hex} +11 dB	
	74 _{hex} +1 dB 73 _{hex} 0 dB 72 _{hex} -1 dB	
	02 _{hex} -113 dB 01 _{hex} -114 dB 00 _{hex} mute (reset)	
	bit[7:0] Not used, must be set to 0	
	This main volume control is applied to the analog outputs only. It is split between a digital and an analog function. In order to avoid noise due to large changes of the setting, the actual setting is internally low-pass filtered.	
	With large scale input signals, positive volume settings may lead to signal clip ping.	-

Table 3–14: Codec status registers on I²C subaddress 6d_{hex}

Register Address (hex)	Function		Name
INPUT QU	ASI-PEAK		
00 0A	A/D Converter Qua	si-Peak Detector Readout Left	QPEAK_L
	bit[14:0] 0000 2000 4000 7FFF	positive 15-bit value, linear scale 0 % 25 % (–12 dBFS) 50 % (–6 dBFS) 100 % (0 dBFS)	
00 0B	A/D Converter Qua	si-Peak Detector Readout Right	QPEAK_R
	bit[14:0] 0000 2000 4000 7FFF	positive 15-bit value, linear scale 0 % 25 % (–12 dBFS) 50 % (–6 dBFS) 100 % (0 dBFS)	
OUTPUT (QUASI-PEAK		
00 0C	Audio Processing	Input Quasi-Peak Detector Readout Left	DQPEAK_L
	bit[140]	positive 15-bit value, linear scale	
00 0D	Audio Processing bit[140]	Input Quasi-Peak Detector Readout Right positive 15-bit value, linear scale	DQPEAK_R

3.4.4. Basic MDB Configuration

With the parameters described in Table 3–13, the Micronas Dynamic Bass system (MDB) can be customized to create different bass effects as well as to fit the MDB to various loudspeaker characteristics. The easiest way to find a good set of parameter is by selecting one of the settings below, listening to music with strong bass content and adjusting the MDB parameters:

- MDB_STR: Increase/decrease the strength of the MDB effect
- MDB_HAR: Increase/decrease the content of low frequency harmonics
- MDB_FC: Shift the MDB effect to lower/higher frequencies
- MDB_SHAPE: Widen/narrow MDB frequency range

(which results in a softer/harder bass sound), turn on/off the MDB

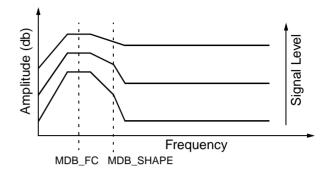


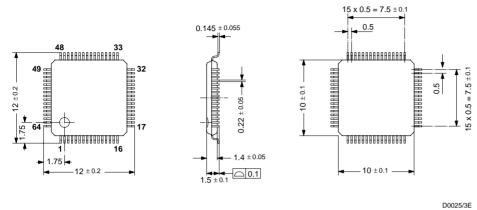
Fig. 3–5: Micronas Dynamic Bass (MDB): Bass boost in relation to input signal leve

Table 3-15: suggested MDB settings

Function	MDB_STR (22 _{hex})	MDB_HAR (23 _{hex})	MDB_FC (24 _{hex})	MDB_SHAPE (21 _{hex})
MDB off	xxxx _{hex}	xxxx _{hex}	xxxx _{hex}	xx00 _{hex}
Low end headphones, medium effect	5000 _{hex}	3000 _{hex}	0600 _{hex}	0902 _{hex}
Low end headphones, strong effect	tbd	tbd	tbd	tbd
High end headphones, medium effect	tbd	tbd	tbd	tbd
High end headphones, strong effect	tbd	tbd	tbd	tbd

4. Specifications

4.1. Outline Dimensions



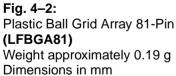
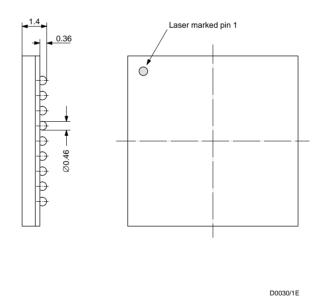



Fig. 4–1: 64-Pin Plastic Low-Profile Quad Flat Pack (PLQFP64) Weight approximately 0.35 g Dimensions in mm

4.2. Pin Connections and Short Descriptions

NC not connected, leave vacant

LV If not used, leave vacant

X obligatory, pin must be connected as described in application information

(see Fig. 4–32 on page 80)

VDD connect to positive supply VSS connect to ground

Pin No. PLQFP 64	Pin No. LFBG A 81	Pin Name	Туре	Default Connection (if not used)	Short Description
1	H2	AGNDC		Х	Analog reference voltage
2	J2	MICIN	IN	LV	Input for internal microphone amplifier
3	J3	МІСВІ	IN	LV	Bias for internal microphone
4	НЗ	INL	IN	LV	Left A/D input
5	H4	INR	IN	LV	Right A/D input
6	G4	TE	IN	Х	Test enable
7	J4	ХТІ	IN	Х	Crystal oscillator (ext. clock) input
8	J5	хто	OUT	LV	Crystal oscillator output
9	G5	POR	IN	Х	Power on reset, active low
10	H5	VSS	SUPPLY	Х	DSP supply ground
11	J6	XVSS	SUPPLY	Х	Digital output supply ground
12	J7	VDD	SUPPLY	Х	DSP supply
13	H6	XVDD	SUPPLY	Х	Digital output supply
14	H7	I2CVDD	SUPPLY	Х	I ² C supply
15	G6	DVS	SUPPLY	Х	I ² C device address selector
16	J8	VSENS1	IN/OUT	VDD	Sense input and power output of DC/DC 1 converter
17	J9	DCSO1	SUPPLY	LV	DC/DC 1 switch output
18	H8	DCSG1	SUPPLY	VSS	DC/DC 1 switch ground
19	H9	DCSG2	SUPPLY	VSS	DC/DC 2 switch ground
20	G8	DCSO2	SUPPLY	LV	DC/DC 2 switch output
21	G9	VSENS2	IN/OUT	VDD	Sense input and power output of DC/DC 2 converter
22	F8	DCEN	IN	VSS	DC/DC enable (both converters)
23	F9	CLKO	OUT	LV	Clock output
24	E8	I2CC	IN/OUT	Х	I ² C clock
25	E9	I2CD	IN/OUT	Х	I ² C data

Pin No. PLQFP 64	Pin No. LFBG A 81	Pin Name	Туре	Default Connection (if not used)	Short Description
26	E7	SYNC	OUT	LV	Sync output
27	D9	VBAT	IN	LV	Battery voltage monitor input
28	D8	PUP	OUT	LV	DC Converter Power-Up Signal
29	C9	EOD	OUT	LV	PIO end of DMA, active low
30	C8	PRTR	OUT	LV	PIO ready to read, active low
31	B9	PRTW	OUT	LV	PIO ready to write, active low
32	B8	PR	IN	VDD	PIO DMA request, active high
33	A9	PCS	IN	VSS	PIO chip select, active low
34	A8	PI19	IN/OUT	LV	PIO data bit 7 (MSB)
35	B7	PI18	IN/OUT	LV	PIO data bit 6
36	A7	PI17	IN/OUT	LV	PIO data bit 5
37	B6	PI16	IN/OUT	LV	PIO data bit 4
38	A6	PI15	IN/OUT	LV	PIO data bit 3
39	C6	PI14	IN/OUT	LV	PIO data bit 2
40	A5	PI13	IN/OUT	LV	PIO data bit 1
41	B5	PI12	IN/OUT	LV	PIO data bit 0 (LSB)
42	C5	SOD	OUT	LV	Serial output data
43	A4	SOI	OUT	LV	Serial output frame identification
44	B4	SOC	OUT	LV	Serial output clock
45	В3	SID	IN	VSS	Serial input data, interface A
46	A3	SII	IN	VSS	Serial input frame identification, interface A
47	C4	SIC	IN	VSS	Serial input clock, interface A
48	E3	SPDO	OUT	LV	S/PDIF output interface
49	A1	SIBD	IN	VSS	Serial input data, interface B
50	A2	SIBC	IN	VSS	Serial input clock, interface B
51	B2	SIBI	IN	VSS	Serial input frame identification, interface B
52	B1	SPDI2	IN	LV	Active differential S/PDIF input 2
53	C2	SPDI1	IN	LV	Active differential S/PDIF input 1
54	D2	SPDIR	IN	LV	Reference differential S/PDIF input 1 and 2

Pin No. PLQFP 64	Pin No. LFBG A 81	Pin Name	Туре	Default Connection (if not used)	Short Description
55	C1	FILTL	IN	Х	Feedback input for left amplifier
56	E2	AVDD0	SUPPLY	Х	Analog supply for output amplifiers
57	D1	OUTL	OUT	LV	Left analog output
58	E1	OUTR	OUT	LV	Right analog output
59	F2	AVSS0	SUPPLY	Х	Analog ground for output amplifiers
60	F1	FILTR	IN	Х	Feedback for right output amplifier
61	G2	AVSS1	SUPPLY	Х	Analog ground
62	G1	VREF		Х	Analog reference ground
63	H1	PVDD	SUPPLY	Х	Internal power supply
64	J1	AVDD1	SUPPLY	Х	Analog Supply
		SUB		VSS	Substrate connection

In the 81-pin LFBGA housing, the pins C3, C7, D3, D4, D5, D6, D7, E4, E5, E6, F3, F4, F5, F6, F7, G3 and G7 are common substrate contacts.

4.3. Pin Descriptions

4.3.1. Power Supply Pins

The use of all power supply pins is mandatory to achieve correct function of the MAS 35x9F.

VDD, VSS SUPPLY

Digital supply pins.

XVDD, XVSS SUPPLY

Supply for digital output pins.

I2CVDD SUPPLY Supply for I²C interface circuitry. This net uses VSS or

XVSS as the ground return line.

PVDD SUPPLY

Auxiliary pin for analog circuitry. This pin has to be connected via a 3-nF capacitor to AVDD1. Extra care should be taken to achieve a low inductance PCB line.

AVDD0/AVSS0 SUPPLY

Supply for analog output amplifier.

AVDD1/AVSS1 SUPPLY

Supply for internal analog circuits (A/D, D/A converters, clock, PLL, S/PDIF input).

AVDD0/AVSS0 and AVDD1/AVSS1 should receive the same supply voltages.

4.3.2. Analog Reference Pins

AGNDC

Internal analog reference voltage. This pin serves as the internal ground connection for the analog circuitry.

VREF

Analog reference ground. All analog inputs and outputs should drive their return currents using separate traces to a ground starpoint close to this pin. Connect to AVSS1. This reference pin should be as noise free as possible.

4.3.3. DC/DC Converters and Battery Voltage Supervision

DCSG1/DCSG2 SUPPLY

DC/DC converters switch ground. Connect using separate wide trace to negative pole of battery cell. Connect also to AVSS0/1 and VSS/XVSS.

DCSO1/DCSO2 SUPPLY

DC/DC converter switch connection. If the respective DC/DC converter is not used, this pin must be left vacant.

VSENS1/VSENS2

INI

Sense input and power output of DC/DC converters. If the respective DC/DC converter is not used, this pin should be connected to a supply.

DCEN

IN

Enable signal for both DC/DC converters. If none of the DC/DC converters is used, this pin must be connected to VSS.

PUP OUT

Power-up. This signal is set when the required voltages are available at both DC/DC converter output pins VSENS1 and VSENS2. The signal is cleared when both voltages have dropped below the reset level in the DCCF Register.

VBAT IN

Analog input for battery voltage supervision.

4.3.4. Oscillator Pins and Clocking

XTI IN XTO OUT

The XTI pin is connected to the input of the internal crystal oscillator, the XTO pin to its output. Each pin should be directly connected to the crystal and to a ground-connected capacitor (see application diagram, Fig. 4–32 on page 80).

CLKO OUT

The CLKO can drive an output clock line.

4.3.5. Control Lines

I2CC SCL IN/OUT I2CD SDA IN/OUT

Standard I²C control lines.

DVS IN

I²C device address selector. Connect this pin either to VDD (I²C device address: 3E/3F_{hex}) or VSS (I²C device address: 3C/3D_{hex}) to select a proper I²C device address (see also Table 3–1 on page 18).

4.3.6. Parallel Interface Lines

PI12..PI19 IN/OUT

The PIO input pins PI12..PI19 are used as 8-bit I/O interface to a microcontroller in order to transfer compressed and uncompressed data. PI12 is the LSB, PI19 the MSB.

4.3.6.1. PIO Handshake Lines

PCS IN

The PIO chip select \overline{PCS} must be set to '0' to activate the PIO in operation mode.

PR

IN

Pin PR must be set to '1' to validate data output from MAS 35x9F PIO pins.

PRTR OUT

Ready to read. This signal indicates that the MAS 35x9F is able to receive data in PIO input mode.

PRTW OUT

Ready to write. This pin indicates that MAS 35x9F has data available for PIO output mode.

EOD OUT

EOD indicates the end of an DMA cycle in the IC's PIO input mode. In 'serial' input mode it is used as Demand signal, that indicates that new input data are required.

4.3.7. Serial Input Interface (SDI)

SID DATA IN
SII WORD STROBE IN
SIC CLOCK IN

I²S compatible serial interface A for digital audio data. In the standard firmware this interface is not used.

4.3.8. Serial Input Interface B (SDIB)

SIBD DATA IN SIBI WORD STROBE IN SIBC CLOCK IN

The serial interface B is primarily used as bitstream input interface. The SIBI line must be connected to VSS in the standard application.

4.3.9. Serial Output Interface (SDO)

SOD DATA OUT
SOI WORD STROBE OUT
SOC CLOCK IN/OUT

Data, Frame Indication, and Clock line of the serial output interface. The SOI is reconfigurable and can be adapted to several I²S compliant modes.

4.3.10. S/PDIF Input Interface

SPDI1 IN SPDI2 IN SPDIR IN

SPDIF1 and SPDIF2 are alternative input pins for S/PDIF sources according to the IEC 958 consumer specification. A switch at D0:ff6 selects one of these pins at a time. The SPDIR pin is a common reference for both input lines (see Fig. 4–33 on page 81).

Micronas

54

4.3.11. S/PDIF Output Interface

SPDO OUT

The SPDO pin provides an digital output with standard CMOS level that is compliant to the IEC 958 consumer specification.

4.3.12. Analog Input Interfaces

In the standard MPEG-decoding DSP firmware the analog inputs are not used. However, they can be selected as a source for the D/A converters (set bit [15] in audio codec register $00~0F_{hex}$).

MICIN IN MICBI IN

The MICIN input may be directly used as electret microphone input, which should be connected as described in application information. The MICBI signal provides the supply voltage for these microphones.

INL IN IN

INL and INR are analog line-in input lines. They are connected to the embedded stereo A/D converter of the MAS 35x9F. The sources should be AC coupled. The reference ground for these analog input pins is the VREF pin.

4.3.13. Analog Output Interfaces

OUTL OUT OUT

OUTL and OUTR are left and right analog outputs, that may be directly connected to the headphones as described in the application information (see Fig. 4–33 on page 81).

FILTL IN FILTR IN

Connection to input terminal of output amplifier. Can be used to connect a capacitance from OUTL respectively OUTR to FILTL respectively FILTR in parallel to feedback resistor and thus implement a low pass filter to reduce the out-of-band noise of the DAC.

4.3.14. Miscellaneous

SYNC OUT

The SYNC signal indicates the detection of a frame start in the input data of MAS 35x9F. Usually this signal generates an interrupt in the controller.

POR IN

The Power-On Reset pin is used to reset the whole MAS 35x9F, except for the DC/DC converter circuitry. POR is an active-low signal.

in in

The TE pin is for production test only and must be connected with VSS in all applications.

SUB (LFBGA-81 ONLY)

Chip substrate connection. Must be connected to VSS in all applications.

4.4. Pin Configurations

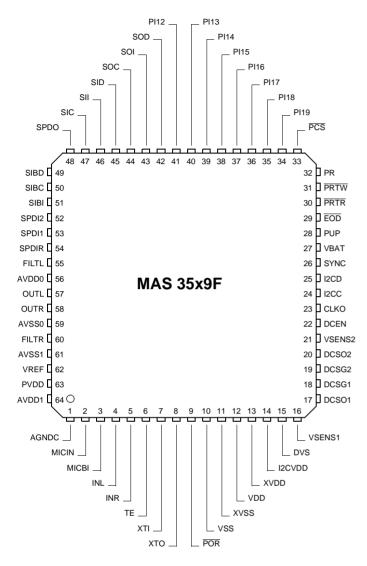


Fig. 4-3: 64-pin PLQFP package

MAS 35x9F

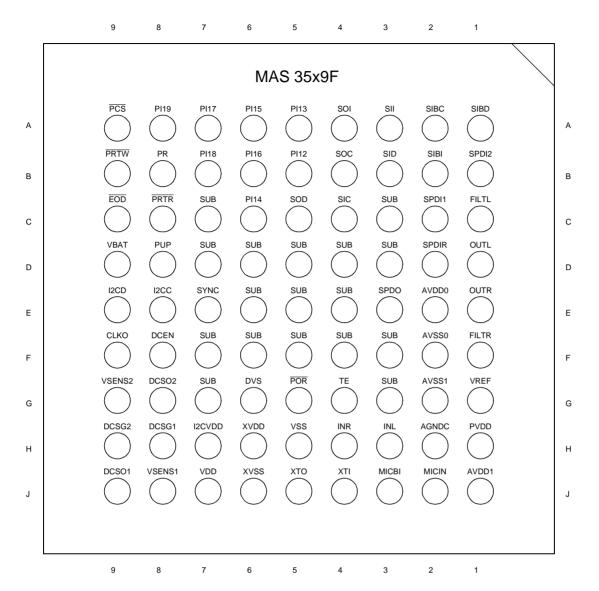


Fig. 4-4: 81-pin LFBGA package

MAS 35x9F

4.5. Internal Pin Circuits

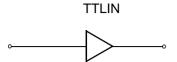


Fig. 4–5: Input pins PCS, PR

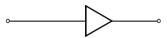


Fig. 4-6: Input pin TE, DVS, POR

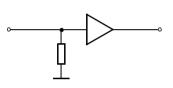
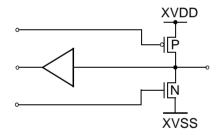



Fig. 4-7: Input pin DCEN

Fig. 4–8: Input/output pins SOC, SOI, SOD, PI12...PI19, SPDO

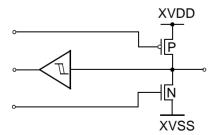


Fig. 4-9: Input pins SI(B)C, SI(B)I, SI(B)D

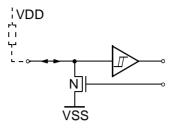


Fig. 4-10: Input/output pins I2CC, I2CD

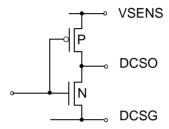


Fig. 4–11: Input/output pins DCSO1/2, DCSG1/2, VSENS1/2

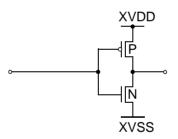


Fig. 4–12: Output pins $\overline{\text{PRTW}}, \overline{\text{EOD}}, \overline{\text{PRTR}}, \text{CLKO}, \text{SYNC, PUP}$

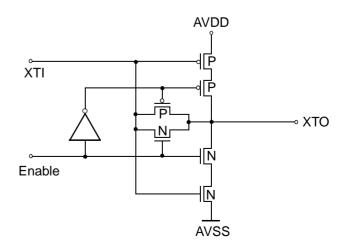


Fig. 4-13: Clock oscillator XTI, XTO

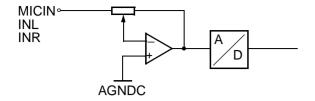


Fig. 4-14: Analog input pins MICIN, INL, INR

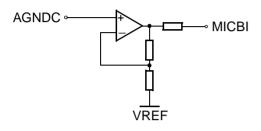
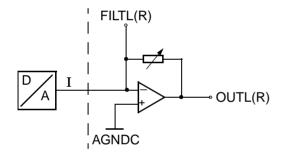
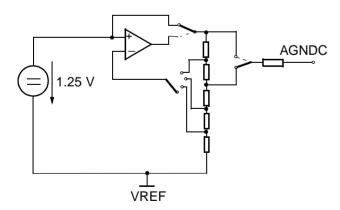




Fig. 4-15: Microphone bias pin (MICBI)

Fig. 4–16: Analog outputs OUTL(R) and connections for filter capacitors FILTL(R)

Fig. 4–17: Analog ground generation with pin to connect external capacitor



Fig. 4-18: S/PDIF inputs

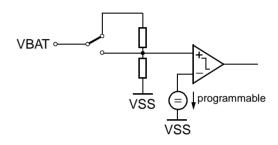


Fig. 4–19: Battery voltage monitor VBAT

MAS 35x9F

4.6. Electrical Characteristics

4.6.1. Absolute Maximum Ratings

Symbol	Parameter	Pin Name	Min.	Max.	Unit
T _A	Ambient operating temperature		-40	85	°C
T _S	Storage Temperature		-40	125	°C
P _{TOT}	Power dissipation	VDD, XVDD, AVDD0/1, I2CVDD		650	mW
V _{SUPA}	Analog supply voltages ¹⁾	AVDD0/1	-0.3	6	V
V _{SUP}	Digital supply voltage	VDD, XVDD, I2CVDD	-0.3	6	V
V _{Idig}	Input voltage, all digital inputs		-0.3	V _{SUP} +0.3	V
I _{Idig}	Input current, all digital inputs		-20	+20	mA
V _{lana}	Input voltage, all analog inputs		-0.3	V _{SUP} + 0.3	V
I _{lana}	Input current, all analog inputs		-5	+5	mA
I _{Oaudio}	Output current, audio output ²⁾	OUTL/R	-0.2	0.2	Α
I _{Odig}	Output current, all digital outputs ³⁾		-50	+50	mA
I _{Odcdc1}	Output current DCDC converter 1	DCSO1		1.5	А
I _{Odcdc2}	Output current DCDC converter 2	DCSO2		1.5	А

¹⁾ Both AVDD0 and AVDD1 have to be connected together!

Stresses beyond those listed in the "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only. Functional operation of the device at these or any other conditions beyond those indicated in the "Recommended Operating Conditions/Characteristics" of this specification is not implied. Exposure to absolute maximum ratings conditions for extended periods may affect device reliability.

²⁾ These pins are not short-circuit proof!

³⁾ Total chip power dissipation must not exceed absolute maximum rating

4.6.2. Recommended Operating Conditions

Symbol	Parameter	Pin Name	Min.	Тур.	Max.	Unit
Temperature	e Range 1 and Supply Voltages					
T _{A1}	Ambient temperature range 1		-40		85	°C
V _{SUPD}	Digital supply voltage	VDD, XVDD	2.2	2.5	3.6	V
V _{SUPI2C}	I ² C bus supply voltage	I2CVDD	V _{SUPD} at VDD	2.5	3.6	V
V _{SUPA}	Analog audio supply voltage	AVDD0/1		tbd		V
V _{SUPA}	Analog audio supply voltage in relation to the digital supply voltage	AVDD0/1		tbd		
Temperature	e Range 2 and Supply Voltages					
T _{A2}	Ambient temperature range 2		0		85	°C
V _{SUPD}	Digital supply voltage	VDD, XVDD	2.2	2.5	3.6	V
V _{SUPI2C}	I ² C bus supply voltage	I2CVDD	V _{SUPD} at VDD	2.5	3.6	V
V _{SUPA}	Analog audio supply voltage	AVDD0/1	2.2	2.7	3.6	V
V _{SUPA}	Analog audio supply voltage in relation to the digital supply voltage	AVDD0/1	0.62 of V _{SUPD}		1.6 of V _{SUPD}	

Table 4–1: Reference Frequency Generation and Crystal Recommendation

	Symbol	Parameter	Pin Name	Min.	Тур.	Max.	Unit	
	External Clock Input Recommendations							
	f _{CLK}	Clock frequency	XTI, XTO	13.00	18.432	20.00	MHz	
	V _{DCCLK}	DC voltage at oscillator pins			0.5 × V _{SUPA}		V	
	V _{ACLK}	Clock amplitude 1)		0.5		V _{SUPA} -0.5	V_{pp}	
I		Transconductance 1)		3.3			mA/V	
	1) Detailed info	ormation(diagrams) are still under in	vestigation					

Table 4–1: Reference Frequency Generation and Crystal Recommendation

Symbol	Parameter	Pin Name	Min.	Тур.	Max.	Unit				
Crystal Recommendation										
f _P	Load resonance frequency at C _I = 20 pF	XTI, XTO		18.432		MHz				
Δf/f _S	Accuracy of frequency adjust- ment		-50		50	ppm				
Δf/f _S	Frequency variation vs. temperature		-50		50	ppm				
R _{EQ}	Equivalent series resistance			12	30	Ω				
C ₀	Shunt (parallel) capacitance			3	5	pF				

Table 4-2: Input Levels

Symbol	Parameter	Pin Name	Min.	Тур.	Max.	Unit
Ι _L	Input low voltage at V _{SUPI2C} = 2.2 V	12CC, 12CD			0.3	V
lΉ	Input high voltage at V _{SUPI2C} = 2.2 V		1.4			V
ايا	Input low voltage at V _{SUPD} = 2.2 V	POR, DCEN			0.2	V
I _{IH}	Input high voltage at V _{SUPD} = 2.2 V		0.9			V
I _{ILD}	Input low voltage	PI <i>,</i>			0.3	V
I _{IHD}	Input high voltage	SI(B)I, SI(B)C, <u>SI(B)</u> D, PR, PCS, TE, DVS	V _{SUP} -0.5			V

Table 4–3: Analog Input and Output Recommendations

Symbol	Parameter	Pin Name	Min.	Тур.	Max.	Unit			
Analog Refer	Analog Reference								
C _{AGNDC1}	Analog filter capacitor	AGNDC	1.0	3.3		μF			
C _{AGNDC2}	Ceramic capacitor in parallel			10		nF			
C _{PVDD}	Capacitor for analog circuitry	PVDD	3			nF			

Table 4–3: Analog Input and Output Recommendations

Symbol	Parameter	Pin Name	Min.	Тур.	Max.	Unit					
Analog Audio	Analog Audio Inputs										
C _{inAD}	DC-decoupling capacitor at A/D-converter inputs	INL/R		390		nF					
C _{inMI} DC-decoupling capacitor at microphone-input MICIN		MICIN		100		nF					
Analog Audio	Analog Audio Filter Outputs										
C _{FILT}	Filter capacitor for headphone amplifier high-Q type, NP0 or C0G material	FILTL/R OUTL/R	-20 %	470	+20 %	pF					
Analog Audio	Analog Audio Output										
Z _{AOL_HP}	Analog output load with stereo	OUTL/R	16			Ω					
headphones				100		pF					

Table 4–3: Analog Input and Output Recommendations

Symbol	Parameter	Pin Name	Min.	Тур.	Max.	Unit				
DC/DC-Converter External Circuitry (please refer to application example)										
C ₁	VSENS blocking (<100 mΩ ESR)	VSENS1/2		330		μF				
V _{TH}	Schottky diode threshold voltage	DCSO1/2 VSENS1/2			0.35	V				
L	Ferrite ring core coil inductance	DCSO1/2		22		μΗ				
S/PDIF Interface Analog Input										
C _{SPI}	S/PDIF coupling capacitor	SPDI1/2 SPDIR		100		nF				

4.6.3. Digital Characteristics

 $\blacksquare \ \ \text{at T}_{A} = T_{A2}, \ V_{SUPD}, \ V_{SUPA} = 2.2 \ ... \ 3.6 \ V, \ f_{Crystal} = 18.432 \ \text{MHz}, \ \text{Typ. values for T}_{A} = 25 \ ^{\circ}\text{C}$

Symbol	Parameter	Pin Name	Min.	Тур.	Max.	Unit	Test Conditions
Digital Sເ	ipply Voltage						
I _{SUPD}	Current consumption	VDD, XVDD, I2CVDD -		35		mA	2.2 V, sampling frequency ≥ 32 kHz
I _{SUPD}	Current consumption			18		mA	2.2 V, sampling frequency ≤ 24 kHz
I _{SUPD}	Current consumption			10		mA	2.2 V, sampling frequency ≤ 12 kHz
Digital O	utputs and Inputs						
O _{DigL}	Output low voltage	PI <i>,</i>			0.3	V	I _{load} = 2 mA
O _{DigH}	Output low voltage	SOI, SOC, SOD, EOD, PRTR, PRTW, CLKO, SYNC, PUP, SPDO	V _{SUPD} -0.3			V	I _{load} = -2 mA
Z _{Digl}	Input impedance	ALL DIGITAL			7	pF	
I _{DLeak}	Digital input leakage cur- rent	INPUTS	-1		1	μΑ	0 V < V _{pin} < V _{SUPD}
I _{STANDBY}	Total current at stand-by				10	μΑ	DSP off, Codec off, DC/DC off, AD and DAC off, no I ² C access

Micronas Micronas

4.6.3.1. I²C Characteristics

at $T_A=25$ °C, $V_{SUPI2C}=2.2...3.6 V$

Symbol	Parameter	Pin Name	Min.	Тур.	Max.	Unit	Test Conditions
I ² C Input S	Specifications				•		
f _{I2C}	Upper limit I ² C bus frequency operation	I2CC	400			kHz	
t _{I2C1}	I ² C START condition setup time	I2CC, I2CD	300			ns	
t _{I2C2}	I ² C STOP condition setup time	I2CC, I2CD	300			ns	
t _{I2C3}	I ² C clock low pulse time	I2CC	1250			ns	
t _{I2C4}	I ² C clock high pulse time	I2CC	1250			ns	
t _{I2C5}	I ² C data setup time before rising edge of clock	I2CC	80			ns	
t _{I2C6}	I ² C data hold time after falling edge of clock	I2CC	80			ns	
V _{I2COL}	I ² C output low voltage	I2CC, I2CD			0.4	V	I _{load} = 3 mA
I _{I2COH}	I ² C output high leakage current	I2CC, I2CD			1	μΑ	
t _{I2COL1}	I ² C data output hold time after falling edge of clock	I2CC, I2CD	20			ns	
t _{I2COL2}	I ² C data output setup time before rising edge of clock	I2CC, I2CD	250			ns	f _{I2C} = 400 kHz
V _{I2CIL}	I ² C input low voltage	12CC; 12CD			0.3	V	
V _{I2CIH}	I ² C input high voltage	I2CC, I2CD	0.6			V _{SUPI2C}	

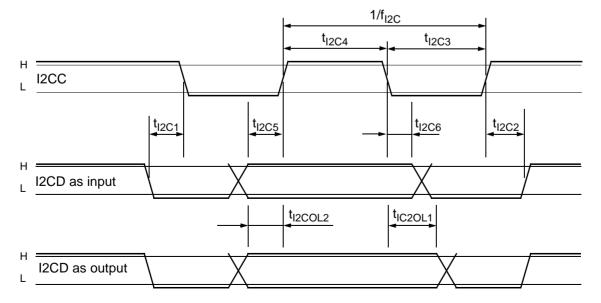


Fig. 4–20: I²C timing diagram

4.6.3.2. Serial (I²S) Input Interface Characteristics (SDI, SDIB)

at $T_A = T_{A2}$, V_{SUPD} , $V_{SUPA} = 2.2 \dots 3.6 \text{ V}$, $f_{Crystal} = 18.432 \text{ MHz}$, Typ. values for $T_A = 25 \, ^{\circ}\text{C}$

Symbol	Parameter	Pin Name	Min.	Тур.	Max.	Unit	Test Conditions
t _{SICLK}	I ² S clock input clock period	SI(B)C	f _C			ns	demand mode (see Table 4-4)
t _{SIDS}	I ² S data setup time before falling edge of clock	SI(B)C, SI(B)D	50		t _{SICLK} -100	ns	
t _{SIDH}	I ² S data hold time	SI(B)D	50			ns	
t _{SIIS}	I ² S ident setup time before falling edge of clock	SI(B)C, SI(B)I	50		t _{SICLK} -100	ns	
t _{SIIH}	I ² S ident hold time	SI(B)I	50			ns	
t _{bw}	Burst wait time	SI(B)C, SI(B)D	480				

Table 4-4: Maximum demand clock frequency

f _{Sample} (kHz)	f _C (MHz)
48, 32	6.144
44.1	5.6448
24, 16	3.072
22.05	2.8224
12, 8	1.536
11.025	1.4112

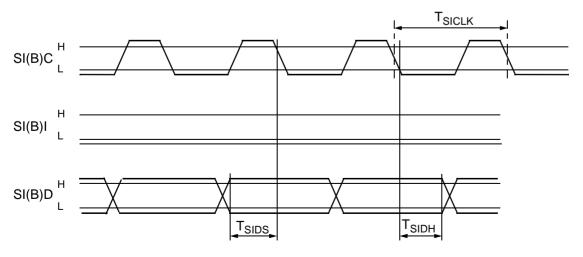


Fig. 4–21: Continuous data stream at serial input A or B. In this mode, the word strobe SI(B)I is not used and the data are read at the falling edge of the clock (bit 2 in D0:346 is set).

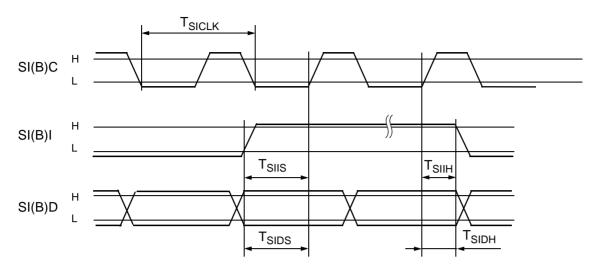


Fig. 4–22: Serial input of I²S signal

4.6.3.3. Serial Output Interface Characteristics (SDO)

at $T_A = T_{A2}$, V_{SUPD} , $V_{SUPA} = 2.2 \dots 3.6 \text{ V}$, $f_{Crystal} = 18.432 \text{ MHz}$, Typ. values for $T_A = 25 \, ^{\circ}\text{C}$

Symbol	Parameter	Pin Name	Min.	Тур.	Max.	Unit	Test Conditions
t _{SOCLK}	I ² S clock output frequency	soc		325		ns	f _S =48 kHz Stereo 32 bits per sample
t _{SOISS}	I ² S word strobe delay time after falling edge of clock	SOC, SOI	0		t _{SOCLK}	ns	$C_{load} = t.b.d.$ $R_{load} = t.b.d.$
t _{SOODC}	I ² S data delay time after falling edge of clock	SOC, SOD	0		t _{SOCLK} /4	ns	$C_{load} = t.b.d.$ $R_{load} = t.b.d.$

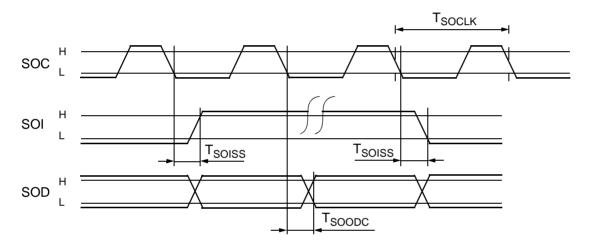
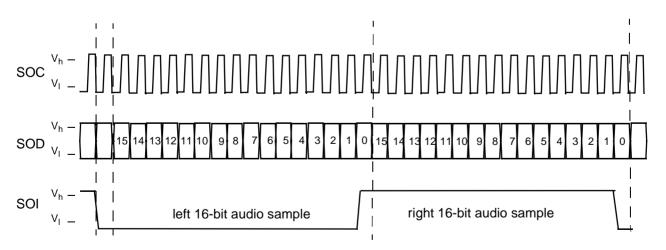
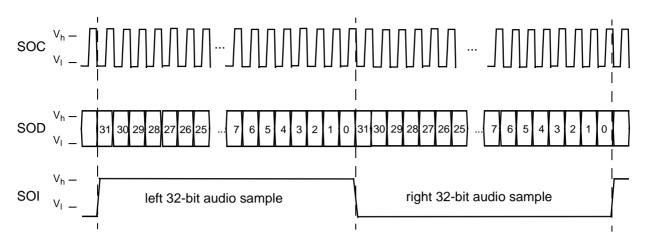




Fig. 4–23: Serial output interface timing.

Fig. 4–24: Sample timing of the SDO interface in 16 bit/sample mode. D0:346 settings are: Bit 14 = 0 (SOC not inverted), bit 11 = 1 (SOI delay), bit 5 = 0 (word strobe not inverted), bit 4 = 1 (16 bits/sample).

Fig. 4–25: Sample timing of the SDO interface in 32 bit/sample mode. D0:346 settings are: Bit 14 = 0 (SOC not inverted), bit 11 = 0 (no SOI delay), bit 5 = 1 (word strobe inverted), bit 4 = 0 (32 bits/sample).

4.6.3.4. S/PDIF Input Characteristics

at $T_A = T_{A2}$, V_{SUPD} , $V_{SUPA} = 2.2 \dots 3.6 \text{ V}$, $f_{Crystal} = 18.432 \text{ MHz}$, Typ. values for $T_A = 25 \,^{\circ}\text{C}$.

Symbol	Parameter	Pin Name	Min.	Тур.	Max.	Unit	Test Conditions
V _S	Signal amplitude	SPDI1, SPDI2, SPDIR	200	500	1000	mV_{pp}	
f _{s1}	Bi-phase frequency	SPDI1, SPDI2, SPDIR		2.048		MHz	±1000 ppm, f _s = 48 kHz
f _{s2}	Bi-phase frequency	SPDI1, SPDI2, SPDIR		2.822		MHz	±1000 ppm, f _S = 44.1 kHz
f _{s3}	Bi-phase frequency	SPDI1, SPDI2, SPDIR		3.072		MHz	± 1000 ppm, f _s = 32 kHz
t _P	Bi-phase period	SPDI1, SPDI2, SPDIR		326		ns	at f _s = 48 kHz, (highest sampling rate)
t _R	Rise time	SPDI1, SPDI2, SPDIR	0		65	ns	at f _s = 48 kHz, (highest sampling rate)
t _F	Fall time	SPDI1, SPDI2, SPDIR	0		65	ns	at f _s = 48 kHz, (highest sampling rate)
	Duty cycle	SPDI	40	50	60	%	at bit value=1 and f _s = 48 kHz
t _{H1,L1}		SPDI	81		163	ns	minimum/maximum pulse duration with a level above 90 % or below 10 % and at f _s = 48 kHz
t _{H0,L0}		SPDI	163		244	ns	minimum/maximum pulse duration with a level above 90 % or below 10 % and at f _s = 48 kHz

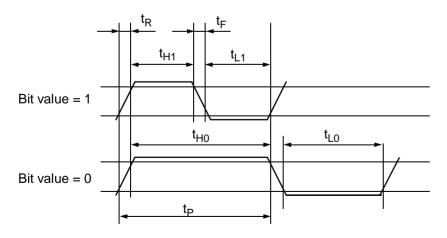


Fig. 4-26: Timing of the S/PDIF input

4.6.3.5. S/PDIF Output Characteristics

 $\blacksquare \ \ \text{at T}_{A} = \mathsf{T}_{A2}, \ \mathsf{V}_{SUPD}, \ \mathsf{V}_{SUPA} = 2.2 \ ... \ 3.6 \ \mathsf{V}, \ \mathsf{f}_{Crystal} = 18.432 \ \mathsf{MHz}, \ \mathsf{Typ.} \ \mathsf{values} \ \mathsf{for} \ \mathsf{T}_{A} = 25 \ {}^{\circ}\mathsf{C}.$

Symbol	Parameter	Pin Name	Min.	Тур.	Max.	Unit	Test Conditions
f _{s1}	Bi-phase frequency	SPDO		3.072		MHz	f _s = 48 kHz
f _{s2}	Bi-phase frequency	SPDO		2.822		MHz	f _s = 44.1 kHz
f _{s3}	Bi-phase frequency	SPDO		2.048		MHz	f _s = 32 kHz
t _P	Bi-phase period	SPDO		326		ns	at f _s = 48 kHz, (highest sampling rate)
t _R	Rise time	SPDO	0		2	ns	C _{load} = 10 pF R _{load} = t.b.d.
t _F	Fall time	SPDO	0		2	ns	C _{load} = 10 pF R _{load} = t.b.d.
	Duty cycle	SPDO		50		%	
t _{H1,L1}		SPDO		163		ns	minimum/maximum pulse duration with a level above 90 % or below 10 % and at f _s = 48 kHz
t _{H0,L0}		SPDO		326		ns	minimum/maximum pulse duration with a level above 90 % or below 10 % and at f _s = 48 kHz
V _S	Signal amplitude	SPDO		V _{SUPD}			

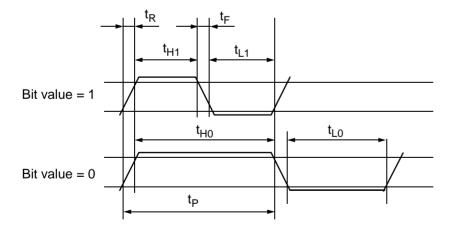


Fig. 4-27: Timing of the S/PDIF output

4.6.3.6. PIO As Parallel Input Interface: Demand Mode

The data transfer can be started after the $\overline{\text{EOD}}$ pin of the MAS 35x9F is set to "high". After verifying this, the controller signalizes the sending of data by activating the PR line. The MAS 35x9F responds by setting the RTR line to the "low" level. The MAS 35x9F reads the data PI[19:12] at t_{pd} after rising edge of the PR signal. The next data word write operation will be initialized again by setting the PR line via the controller. Please refer to Figure 4–28 for the exact timing

The procedure above will be repeated until the MAS 35x9F sets the $\overline{\text{EOD}}$ signal to "0" which indicates that the transfer of one data block has been executed. Subsequently, the controller should set PR to "0", wait until $\overline{\text{EOD}}$ rises again and then repeat the procedure to send the next block of data. The DMA buffer is 15 bytes long.

	Symbol	Pin Name	Min.	Max.	Unit
	t _{st}	PR, \overline{EOD}	0.010	2000	μs
	t _r	PR, \overline{RTR}	40	160	ns
	t _{pd}	PR, PI[19:12]	120	480	ns
	t _{set}	PI[19:12]	160 no limit		ns
	t _h	PI[19:12]	160	no limit	ns
	t _{rtrq}	RTR	200	30000	ns
I	t _{pr}	PR	480	no limit	ns
I	t _{rpr}	PR, \overline{RTR}	160	no limit	ns
	t _{eod}	PR, \overline{EOD}	40	160	ns
I	t _{eodq}	EOD	2.5	500	μs

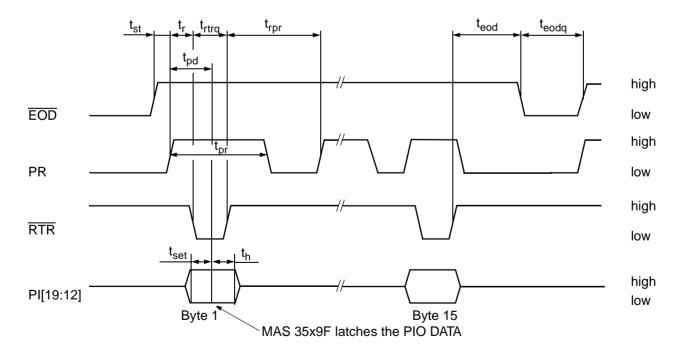


Fig. 4-28: Handshake protocol for writing MPEG data to the PIO-DMA

4.6.3.7. PIO as Parallel Output Interface

Some downloadable software may use the PIO interface (lines PI19...PI12) as output. The data transfer rate and conditions are defines by the software function.

Handshaking for PIO output mode is accomplished through the RTW, PCS, and PI12..PI19 signal lines (see Fig. 4–29). The PR line has to be set to high level.

RTW will go low as soon as a byte is available in the output buffer and will stay low until a byte has been read. Reading of a byte is performed with a PCS pulse. Data is latched out from the MAS on the falling edge of PCS and removed from the bus on the rising edge of PCS.

Table 4-5: PIO output mode timing

Symbol	Pin	Min.	Max.	Unit
t _O	RTW, PCS	0.010	1800	μs
t ₁	PCS	0.330		μs
t ₂	PCS, RTW	0.010		μs
t ₃	RTW	0.330	10000	μs
t ₄	PI	0.330		μs
t ₅	PI	0.081		μs

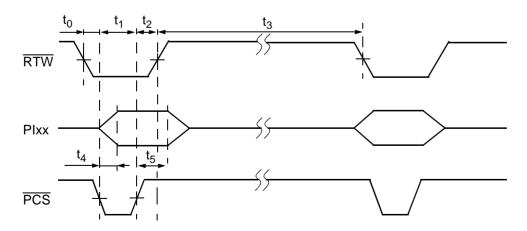


Fig. 4-29: Output Timing

4.6.4. Analog Characteristics

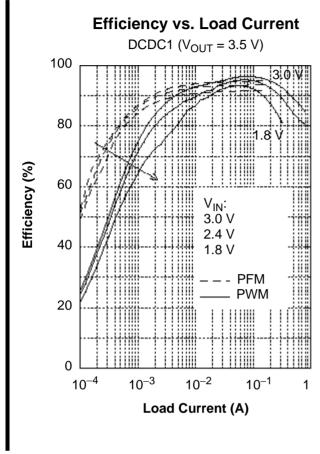
at $T_A = T_{A2}$, $V_{SUPD} = 2.2...3.6$ V, $V_{SUPA} = 2.2...3.6$ V, $f_{Crystal} = 13...20$ MHz, typical values at $T_A = 25$ °C and $f_{CRYSTAL} = 18.432$ MHz

Symbol	Parameter	Pin Name	Min.	Тур.	Max.	Unit	Test Con	ditions
Analog Su	pply	<u> </u>	•	•			•	
I _{AVDD}	Current consumption analog audio	AVDD0/1		5		mA	V _{SUPA} = 2.2 V, Mute	
loosc	Current consumption crystal oscillator	AVDD0/1		200		μА	Codec = off DSP = off DC/DC = on	
Analog Au	dio							
V _{AI}	Analog line input clipping level (at minimum analog	INL/R				V _{pp}	V _{SUPA}	Bits 15, 14 in Reg. 6A _{hex}
	input gain,i.e. –3 dB)			2.2			>2.2 V	00
				2.6			>2.4 V	01
				3.2			>3.0 V	10
V _{MI}	Microphone input clipping level (at minimum analog input gain, i.e. +21 dB)	MICIN				mV _{PP}	V _{SUPA}	Bits 15,14 in Reg. 6A _{hex}
				141			>2.0 V	00
				167			>2.4 V	01
				282			>3.0 V	10
V _{AO1}	Analog Output Voltage AC	OUTL/R					R _L ≥1 kΩ Input=0 c	IBFS digital
							V _{SUPA}	Bits 15, 14 in Reg 6A _{hex}
	at 0 dB output gain			1.56		V _{pp}	>2.2 V	00
				1.84			>2.4 V	01
				2.26			>3.0 V	10
	at +3 dB output gain			2.20			>2.2 V	00
				2.60			>2.6 V	01
				3.20			>3.2 V	10

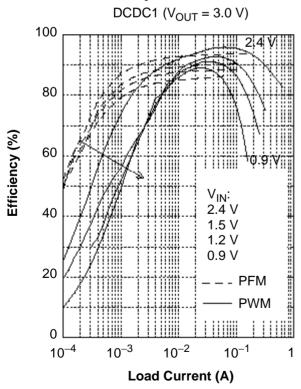
Symbol	Parameter	Pin Name	Min.	Тур.	Max.	Unit	Test Conditions
V _{AO2}		OUTL/R					R _L is 16 Ω Headphone and 22 Ω seriesresistor Input=0 dBFS digital (see Fig. 4–33 on page 81) V _{SUPA} Bits 15, 14 in Reg 6A _{hex}
	at 0 dB output gain	-		1.56		V _{pp}	>2.2 V 00
				1.84			>2.4 V 01
				2.26			>3.0 V 10
	at +3 dB output gain	1		2.00		V _{pp}	>2.2 V 00
				2.40			>2.6 V 01
				3.00			>3.2 V 10
R _{inAl}	Analog line input resistance	INL/R		92		kΩ	at minimum analog input gain, i.e. –3 dB
				20			at maximum analog input gain, i.e. +19.5 dB
				67			not selected
R _{inMI}	Microphone input resistance	MICIN		94		kΩ	at minimum analog input gain, i.e. –21 dB
				8			at maximum analog input gain, i.e. +43.5 dB
				94			not selected
R _{inAO}	Analog output resistance	OUTL/R			6	Ω	analog gain=+3 dB, Input=0 dBFS digital
SNR _{AI}	Signal-to-noise ratio of line input	INL/R		61		dB	BW = 20 Hz20 kHz, analog gain=0 dB, input 1 kHz at V_{AI} -20 dB
SNR _{MI}	Signal-to-noise ratio of microphone input	MICIN		61		dB	BW = 20 Hz20 kHz, analog gain=+21 dB, input 1 kHz at V _{MI} -20 dB
THD _{AI}	Total harmonic distortion of analog inputs	INL/R MICIN			0.02	%	BW = 20 Hz20 kHz, analog gain = 0 dB, input 1 kHz at $-3 \text{ dBFS=V}_{A }-6 \text{ dB}$ resp. $V_{M }-6 \text{ dB}$
XTALK _{AI}	Crosstalk attenuation left/right channel (analog inputs)	INL/R MICIN		80		dB	f = 1 kHz, sine wave, analog gain = 0 dB, input = -3 dBFS
PSRR _{AI}	Power supply rejection ratio	AVDD0/1, INL/R MICIN		50		dB	1 kHz sine at 100 mV _{rms}
	for analog audio inputs			20		dB	≤100 kHz sine at 100 mV _{rms}

Symbol	Parameter	Pin Name	Min.	Тур.	Max.	Unit	Test Conditions
Audio outp	ut						
SNR _{AO}	Signal-to-noise ratio of analog output	OUTL/R				dB	R _L ≥16 Ω (external 22 Ω series resistor required) BW=20 Hz20kHz unweighted, analog gain=0 dB
				90 96		dB	input=-20 dBFS input=-40 dBFS
THD _{AO}	Total harmonic distortion (headphone)	OUTL/R					
	for $R_L \ge 16\Omega$ plus 22Ω series resistor (see Fig. 4–33 on page 81) for $R_L \ge 1 k\Omega$				0.05	%	
Lev _{MuteAO}	Mute level	OUTL/R		-110		dBV	BW=20 Hz22kHz unweighted, no digital input signal, analog gain=mute
XTALK _{AO}	Crosstalk attenuation left/right channel (headphone)	OUTLR		80		dB	f=1 kHz, sine wave, OUTL/R: R _L ≥16 Ω (22 Ω series resistor required) (see Fig. 4–33 on page 81) analog gain=0 dB input=-3 dBFS
PSRR _{AO}	Power supply rejection ratio	AVDD0/1		50		dB	1 kHz sine at 100 mV _{rms}
	for analog audio outputs	OUTL/R		20		dB	≤100 kHz sine at 100mV _{rms}
V _{AGNDC}	Analog Reference Voltage	AGNDC				V	$R_L >> 10 M\Omega$, referred to VREF
							V _{SUPA} Bits 15, 14 in in Reg. 6A _{hex}
				1.1			>2.2 V 00
				1.3			>2.4 V 01
				1.6			>3.0 V 10
V _{MICBI}	Bias voltage for microphone	MICBI					V _{SUPA} Bits 15, 14 in in Reg. 6A _{hex}
				1.8			>2.2 V 00
				2.13			>2.4 V 01
				2.62			>3.0 V 10

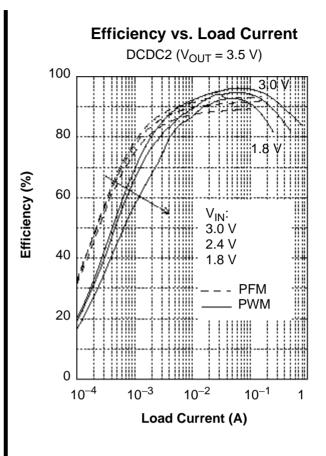
MAS 35x9F

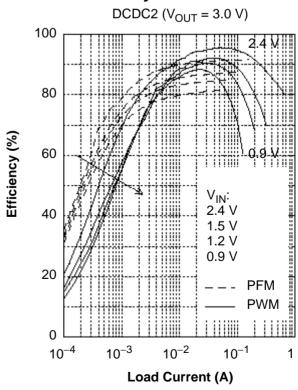

4.6.5. DC/DC Converter Characteristics

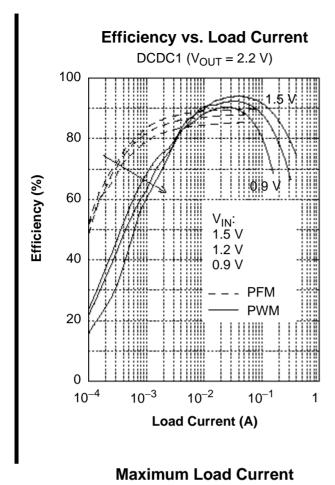
 \blacksquare at T_A = T_{A2}, V_{in} = 1.2 V (unless otherwise noted), V_{outn} = 3.0 V, f_{clk} = 18.432 MHz, f_{sw} = 384 kHz, Typ. values for T_A = 25 °C

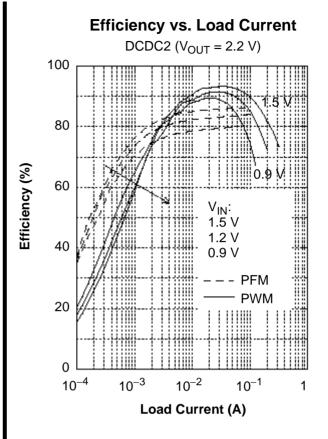

Symbol	Parameter	Pin Name	Min.	Тур.	Max.	Unit	Test Conditions
V _{IN}	Minimum start-up input voltage	*		0.9		V	I _{LOAD} ≤ 1 mA, DCCF = 5050 _{hex} (reset)
V _{IN}	Minimum operating input voltage (*see Fig. 4–33 on page 81)						
	DC1* DC2*			0.7 0.8		V	I _{LOAD} = 50 mA, DCCF = 5050 _{hex} (reset)
	DC1* DC2*			1.0 1.1		V	I _{LOAD} = 200 mA, DCCF = 5050 _{hex} (reset)
V _{OUT}	Programmable output voltage range	VSENSn	2.0		3.5	V	Voltage settings in DCCF register (I ² C subaddress 76 _{hex})
V _{OTOL}	Output voltage tolerance	VSENSn	2.9		3.1	V	I_{LOAD} = 20 mA T_A = 25 °C
I _{LOAD1}	Output current 1 battery cell	VSENSn			200	mA	V _{IN} = 0.91.5 V C _{OUT} = 330 μF
I _{LOAD2}	Output current 2 battery cells				600	mA	V _{IN} = 1.83.0 V C _{OUT} = 330 μF
dV _{OUT} / dV _{IN} /V _{OUT}	Line regulation	VSENSn		0.8		%/V	I _{LOAD} = 50 mA V _{IN} = 1.2 V
dV _{OUT} /	Load regulation						
V _{OUT}	DC1	VSENS1		-1.7		%	$I_{LOAD} = 20200 \text{ mA},$
	DC2	VSENS2		-1.8			
h _{max}	Maximum efficiency	_			95	%	V _{IN} = 2.4 V, V _{OUT} = 3.5 V
f _{switch}	Switching frequency	DCSOn	297	384	t.b.d.	kHz	(see Table 2–1 on page 11)
f _{startup}	Switching frequency during start-up	DCSOn		250		kHz	VSENSEn < 1.9 V
I _{supPFM1}	Supply current in PFM mode	VSENS1		75		μΑ	1)
I _{supPFM2}		VSENS2		135			
I _{supPWM1}	Supply current in PWM mode	VSENS1		265		μA	VSENSn
I _{supPWM2}	- 	VSENS2		325			2)
I _{Inmax}	NMOS switch current limit (low side switch)	DSCOn, DCSGn		1		А	
I _{lptoff}	PMOS switch turnoff current (rectifier switch)	DCSOn, VSENSn		70		mA	
I _{LEAK}	leakage current	DCSOn, DCSGn		0.1	tbd	μА	$T_j = 25$ °C, converter off, $I_{LOAD} = 0 \mu A$

¹⁾ Current into VSENSn. VIN > VOUT+ Δ V; (Δ V \approx 0.4 V); no DC/DC-Converter regulation switching action present ²⁾ Add. current of oscillator at PIN AVDD0/1, (see Section 4.6.4. on page 74)


4.6.6. Typical Performance Characteristics


Efficiency vs. Load Current




Fig. 4-30: Efficiency vs. Load Current

Efficiency vs. Load Current

vs. Input Voltage 8.0 DCDC1 V_{out}: 2.2 V Maximum Load Current (A) 0.6 3.0 V 3.5 V - PFM 0.4 0.2 0 0.0 1.0 2.0 3.0

Fig. 4-31: Maximum Load Current vs. Input Voltage

Note: Efficiency is measured as $V_{SENSn} \times I_{LOAD} / (V_{in} \times I_{in})$. I_{AVDD} is not included (Oscillator current)

Input Voltage (V)

4.7. Typical Application in a Portable Player

- MMC/SDI-Card or SMC/CF2+ used as storage media
- Dashed lines show optional (external) devices

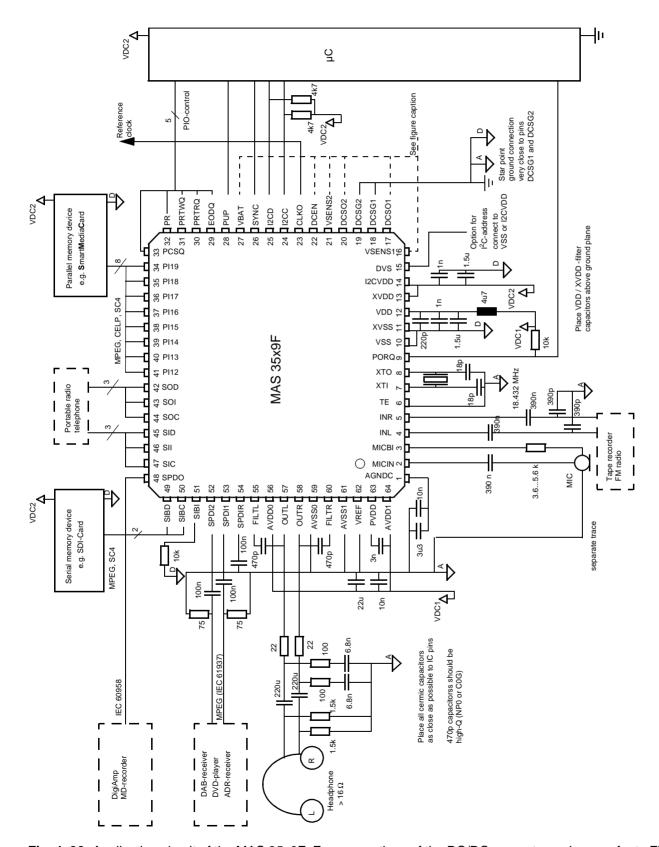
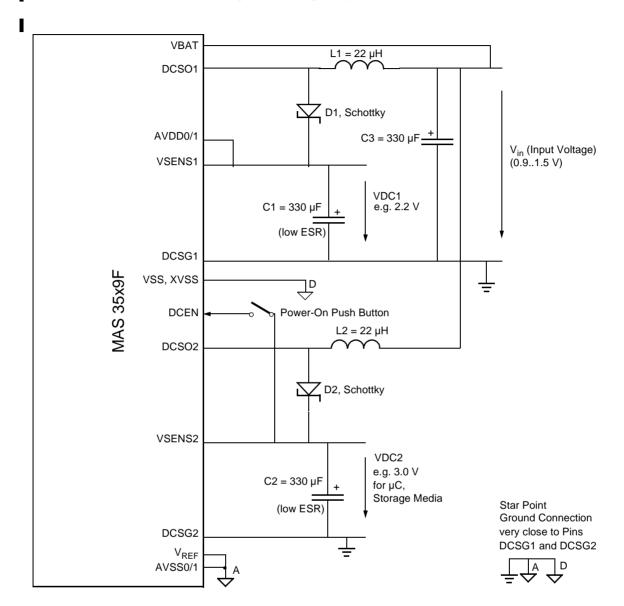



Fig. 4–32: Application circuit of the MAS 35x9F. For connections of the DC/DC converters, please refer to Fig. 4–33.

4.8. Recommended DC/DC Converter Application Circuit

Fig. 4–33: External circuitry for the DC/DC converters

MAS 35x9F

5. Data Sheet History

- 1. Advance Information: "MAS 3509F, MPEG Layer 2/3, AAC Audio Decoder, G.729 Annex A Codec", August 04, 2000, 6251-505-1AI. First release of the advance information.
- 2. Advance Information: "MAS 35x9F, MPEG Layer 2/3, AAC Audio Decoder, G.729 Annex A Codec", October 31, 20000, 6251-505-2AI. Second release of the advance information.

 Major changes:

This data sheet applies to MAS 3509F version A2.

Micronas GmbH
Hans-Bunte-Strasse 19
D-79108 Freiburg (Germany)
P.O. Box 840
D-79008 Freiburg (Germany)
Tel. +49-761-517-0
Fax +49-761-517-2174
E-mail: docservice@micronas.com
Internet: www.micronas.com

Printed in Germany Order No. 6251-505-2AI All information and data contained in this data sheet are without any commitment, are not to be considered as an offer for conclusion of a contract, nor shall they be construed as to create any liability. Any new issue of this data sheet invalidates previous issues. Product availability and delivery are exclusively subject to our respective order confirmation form; the same applies to orders based on development samples delivered. By this publication, Micronas GmbH does not assume responsibility for patent infringements or other rights of third parties which may result from its use.

Further, Micronas GmbH reserves the right to revise this publication and to make changes to its content, at any time, without obligation to notify any person or entity of such revisions or changes.

No part of this publication may be reproduced, photocopied, stored on a retrieval system, or transmitted without the express written consent of Micronas GmbH.