Hex Inverter

 the logic INVERT function. range
Advanced Low Power Schottky TTL

This device contains six independent gates, each of which performs

- Operating Voltage Range: 4.5 V to 5.5 V
- Guarantee DC and AC specification over full temperature and $V_{C C}$
- Switching response specified into $500 \Omega / 50 \mathrm{pF}$
- Output Current: High Level: - 0.4 mA

Low Level : 8 mA

LOGIC DIAGRAM

PIN ASSIGNMENT

FUNCTION TABLE

Inputs	Output
\mathbf{A}	\mathbf{Y}
L	H
H	L

PIN $14=V_{\text {CC }}$ PIN $7=$ GND

MAXIMUM RATINGS*

Symbol	Parameter	Value	Unit
V_{CC}	Supply Voltage	7.0	V
$\mathrm{~V}_{\text {IN }}$	Input Voltage	7.0	V
$\mathrm{~V}_{\text {OUT }}$	Output Voltage	5.5	V
Tstg	Storage Temperature Range	-65 to +150	${ }^{\circ} \mathrm{C}$

*Maximum Ratings are those values beyond which damage to the device may occur.
Functional operation should be restricted to the Recommended Operating Conditions.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min	Max	Unit
V_{CC}	Supply Voltage	4.5	5.5	V
$\mathrm{~V}_{\mathrm{IH}}$	High Level Input Voltage	2.0		V
$\mathrm{~V}_{\mathrm{IL}}$	Low Level Input Voltage		0.8	V
I_{OH}	High Level Output Current		-0.4	mA
I_{OL}	Low Level Output Current		8.0	mA
$\mathrm{~T}_{\mathrm{A}}$	Ambient Temperature Range	-10	+70	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS over full operating conditions

Symbol	Parameter	Test Conditions		Guaranteed Limit		Unit
				Min	Max	
$\mathrm{V}_{\text {IK }}$	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\min$	$-18 \mathrm{~mA}$		-1.5	V
V_{OH}	High Level Output Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{min}$,	$=-0.4 \mathrm{~mA}$	2.5		V
$\mathrm{V}_{\text {OL }}$	Low Level Output Voltage	$\mathrm{V}_{\mathrm{CC}}=\min$,	$=4 \mathrm{~mA}$		0.4	V
		$\mathrm{V}_{\mathrm{CC}}=\mathrm{min}$,	$=8 \mathrm{~mA}$		0.5	
I_{IH}	High Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\max , \mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$			20	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{CC}}=\max , \mathrm{V}_{\text {IN }}=7.0 \mathrm{~V}$			0.1	mA
$\mathrm{I}_{\text {IL }}$	Low Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\max , \mathrm{V}_{\text {IN }}=0.4 \mathrm{~V}$			-0.1	mA
I_{OS}	Output Short Circuit Current	$\mathrm{V}_{\mathrm{CC}}=\max , \mathrm{V}_{\mathrm{O}}=2.25 \mathrm{~V}$		-15	-70	mA
I_{CC}	Supply Current	$\mathrm{V}_{\mathrm{CC}}=\max$	Outputs High		1.1	mA
			Outputs Low		4.2	

AC ELECTRICAL CHARACTERISTICS over full operating conditions $\left(\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \%\right.$,
$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega$, Input $\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=2.0 \mathrm{~ns}$)

Symbol	Parameter	Guaranteed Limit		Unit
		Min	Max	
$\mathrm{t}_{\text {PLH }}$	Propagation Delay, Input A to Output Y (Figures 1,2)		11	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay, Input A to Output Y (Figures 1,2)		8	ns

Figure 1. Switching Waveforms

* Includes all probe and jig capacitance

Figure 2. Test Circuit

