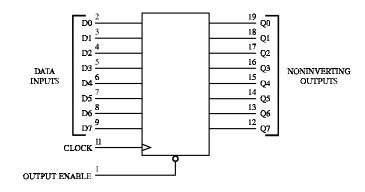

IN74ALS574

Octal 3-State Noninverting D Flip-Flop


The device is comprised of eight edge-triggered D-Type flip-flops. On the positive transition of the clock, the Q outputs will be set to the logic states that were set up at the D inputs.

A buffered output control input can be used to place the eight outputs in either a normal logic state (high or low logic levels) or a high-impedance state. In the high-impedance state the outputs neither load nor drive the bus lines significantly.

- Switching specifications at 50 pF
- \bullet Switching specifications guaranteed over full temperature and V_{CC} range
- TRI-STATE buffer-type outputs drive bus lines directly

LOGIC DIAGRAM

 $PIN 20=V_{CC}$ PIN 10 = GND

PIN ASSIGNMENT

OUTPUT	1 •	20 V _{CC}
D0 [2	19 Q0
D 1 [3	18 Q1
D2 [4	17 Q2
D3 [5	16 Q3
D4 [6	15 Q4
D5 [7	14 Q5
D6 [8	13 Q6
D7 [9	12 Q7
GND [10	пр сгоск

FUNCTION TABLE

Inputs			Output
Output Enable	Clock	D	Q
L		Н	Н
L		L	L
L	L,H,	X	no change
Н	X	X	Z

X = don't care Z = high impedance

MAXIMUM RATINGS*

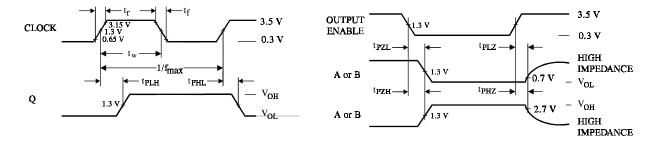
Symbol	Parameter	Value	Unit
V_{CC}	Supply Voltage	7.0	V
V_{IN}	Input Voltage	7.0	V
V _{OUT}	Output Voltage (Referenced to GND)	5.5	V
Tstg	Storage Temperature Range	-65 to +150	°C

^{*}Maximum Ratings are those values beyond which damage to the device may occur. Functional operation should be restricted to the Recommended Operating Conditions.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter		Max	Unit
V_{CC}	Supply Voltage	4.5	5.5	V
V_{IH}	High Level Input Voltage	2.0		V
V_{IL}	Low Level Input Voltage		0.8	V
I_{OH}	High Level Output Current		-2.6	mA
I _{OL}	Low Level Output Current		24	mA
T_A	Ambient Temperature Range	-10	+70	°C

DC ELECTRICAL CHARACTERISTICS over full operating conditions


				Guaranteed Limit		
Symbol	Parameter	Test C	onditions	Min	Max	Unit
V_{IK}	Input Clamp Voltage	$V_{CC} = min, I_{IN}$	= -18 mA		-1.5	V
V_{OH}	High Level Output Voltage	$V_{CC} = min, I_{OH}$	$_{\rm H} = -0.4 \; {\rm mA}$	2.5		V
		$V_{CC} = min, I_{OH}$	$_{\rm H} = -2.6 \; {\rm mA}$	2.4		
V_{OL}	Low Level Output Voltage	$V_{CC} = min, I_{OI}$	= 12 mA		0.4	V
		$V_{CC} = min, I_{OI}$	z = 24 mA		0.5	
I_{OZH}	Output Off Current HIGH	$V_{CC} = \max_{i} V_{i}$	DUT = 2.7 V		20	μΑ
I _{OZL}	Output Off Current LOW	$V_{CC} = \max_{i} V_{i}$	$D_{OUT} = 0.4 \text{ V}$		-20	μΑ
I_{IH}	High Level Input Current	$V_{CC} = max$, $V_{IN} = 2.7 \text{ V}$			20	μΑ
		$V_{CC} = \max_{i} V_{i}$	$_{\rm N} = 7.0 \ {\rm V}$		0.1	mA
I_{IL}	Low Level Input Current	$V_{CC} = max$, $V_{IN} = 0.4 \text{ V}$			-0.1	mA
I_{O}	Output Short Circuit Current	$V_{CC} = max, V_{O} = 2.25 \text{ V}$		-30	-112	mA
I_{CC}	Supply Current	$V_{CC} = max$	Outputs Low		17	mA
			Outputs High		24	
			3-State (High Z)		27	

AC ELECTRICAL CHARACTERISTICS over full operating conditions

 $(V_{CC} = 5.0 \ V \pm 10\%, \ C_L = 50 \ pF, \ R_{L1} = R_{L2} = 500 \ \Omega, \ Input \ t_r = t_f = 2.0 \ ns)$

		Guarant	Guaranteed Limit	
Symbol	Parameter	Min	Max	Unit
f_{max}	Maximum Clock Frequency	35		MHz
$t_{\rm PLH},t_{\rm PHL}$	Propagation Delay Time, from Clock to Output		14	ns
t_{PZH}, t_{PZL}	Propagation Delay Time, from Enable to Any Q		18	ns
t_{PHZ}	Propagation Delay Time, from Enable to Any Q		32	ns
t_{PLZ}	Propagation Delay Time, from Enable to Any Q		18	ns
$t_{\rm w}$	Pulse Duratio, Enable, 25°C at 5.0 V	16.5		ns
t_{su}	Data Setup Time before Clock	15		ns
$t_{\rm h}$	Data Hold Time after Clock	4		ns

 t_{PZL} , t_{PLZ} - S1 closed t_{PZH} , t_{PHZ} - S1 opened

Figure 1. Switching Waveforms

Figure 2. Switching Waveforms

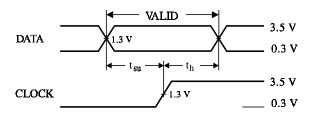
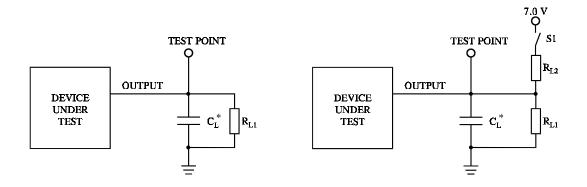
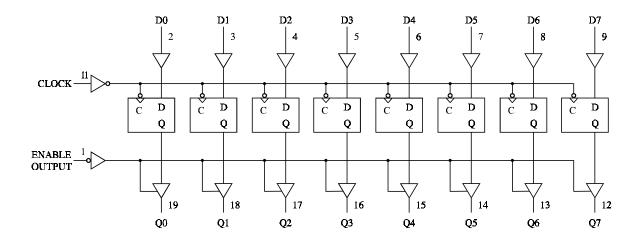



Figure 3. Switching Waveforms



^{*} Includes all probe and jig capacitance.

Figure 3. Test Circuit

Figure 4. Test Circuit

EXPANDED LOGIC DIAGRAM

^{*} Includes all probe and jig capacitance.