IN74ALS74

Dual D Flip-Flop with Set and Reset

Each of the two independent positive edge-triggered flip-flops in this circuit has individual Data, Clock, Set and Reset inputs, and complementary Q and \overline{Q} outputs.

- Switching specifications at 50 pF
- Switching specifications guaranteed over full temperature and V_{CC} range
- Functionally and pin-for-pin compatible with Schottky and LS TTL counterpart
- Improved AC performance over LS74 at approximately half the power

LOGIC DIAGRAM

PIN 14 = V_{CC} PIN 7 = GND

PIN ASSIGNMENT

RESET 1	þ	1•	14	þ	V CC
DATA 1	С	2	13	þ	RESET 2
CLOCK 1	С	3	1 2	þ	DATA2
SET 1	С	4	11		CLOCK 2
Q 1	С	5	10	þ	SET 2
$\overline{Q1}$	С	6	9	þ	Q2
GND	þ	7	8	þ	$\overline{Q2}$

FUNCTION TABLE

Inputs			Ou	tputs	
Set	Reset	Clock	Data	Q	\overline{Q}
L	Н	Х	Х	Н	L
Н	L	Х	Х	L	Н
L	L	Х	Х	H^*	H^*
Н	Н	\langle	Н	Н	L
Н	Н	$\langle \rangle$	L	L	Н
Н	Н	L	Х	No Change	
Н	Н	Н	Х	No Change	
Н	Н	$\overline{}$	Х	No Change	

*Both outputs will remain high as long as Set and Reset are low, but the output states are unpredictable if Set and Reset go high simultaneously. X = don't care

MAXIMUM RATINGS*

Symbol	Parameter	Value	Unit
V _{CC}	Supply Voltage	7.0	V
V _{IN}	Input Voltage	7.0	V
V _{OUT}	Output Voltage	5.5	V
Tstg	Storage Temperature Range	-65 to +150	°C

^{*}Maximum Ratings are those values beyond which damage to the device may occur. Functional operation should be restricted to the Recommended Operating Conditions.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min	Max	Unit
V _{CC}	Supply Voltage	4.5	5.5	V
V _{IH}	High Level Input Voltage	2.0		V
V _{IL}	Low Level Input Voltage		0.8	V
I _{OH}	High Level Output Current		-0.4	mA
I _{OL}	Low Level Output Current		8.0	mA
T _A	Ambient Temperature Range	-10	+70	°C

DC ELECTRICAL CHARACTERISTICS over full operating conditions

		G		Guaranteed Limit		
Symbol	Parameter	Test Conditions		Min	Max	Unit
V _{IK}	Input Clamp Voltage	$V_{\rm CC} = \min, I_{\rm IN} = -18 \text{ mA}$			-1.5	V
V _{OH}	High Level Output Voltage	$V_{CC} = min, I_{OH}$	= -0.4 mA	2.5		V
V _{OL}	Low Level Output Voltage	$V_{CC} = min, I_{OL}$	$V_{CC} = min, I_{OL} = 4 mA$		0.4	V
		$V_{CC} = min, I_{OL}$	= 8 mA		0.5	
I _{IH}	High Level Input Current	$V_{\rm CC} = \max$, $V_{\rm IN} = 2.7$ V			20	μΑ
		$V_{\rm CC} = \max, V_{\rm IP}$	$_{\rm N} = 7.0 \ {\rm V}$		0.1	mA
I _{IL}	Low Level Input Current	$V_{CC} = max,$	Clock, Data		-0.2	mA
		$V_{IN} = 0.4 V$	Reset, Set		-0.4	
Io	Output Short Circuit Current	$V_{\rm CC} = \max, V_{\rm O} = 2.25 \text{ V}$		-15	-70	mA
I _{CC}	Supply Current	$V_{CC} = max$ (Note 1)			4.0	mA

Note 1. I_{CC} is measured with Data, Clock and Reset grounded, then with Data, Clock and Set grounded.

AC ELECTRICAL CHARACTERISTICS over full operating conditions ($V_{CC} = 5.0 \text{ V} \pm 10\%$, $C_L = 50 \text{ pF}$, $R_L = 500 \Omega$, Input $t_r = t_f = 2.0 \text{ ns}$)

Symbol	Parameter	Min	Max	Unit
f _{max}	Maximum Clock Frequency		30	MHz
t _{PLH}	Propagation Delay Time, Clock to Q or Q		16	ns
t _{PHL}	Propagation Delay Time, Clock to Q or Q		18	ns
t _{PLH}	Propagation Delay Time, Set or Reset to Q or Q		13	ns
t _{PHL}	Propagation Delay Time, Set or Reset to Q or \overline{Q}		15	ns
t _{su}	Setup Time, Data to Clock	15		ns
t _h	Hold Time, Clock to Data	0		ns
t _{rec}	Recovery Time, Set or Reset Inactive to Clock	10		ns
t _w	Pulse Width, Clock	14.5		ns
t _w	Pulse Width, Set or Reset	15		ns

Figure 1. Switching Waveforms

Figure 3. Switching Waveforms

Figure 2. Switching Waveforms

* Includes all probe and jig capacitance

Figure 4. Test Circuit