CDP1854A/3, CDP1854AC/3

High Reliability CMOS Programmable Universal Asynchronous Receiver/Transmitter (UART)

Features

- Two Operating Modes
- Mode 0 - Functionally Compatible with Industry Types Such as the TR1602A and CDP6402
- Mode 1 - Interfaces Directly with CDP1800 Series Microprocessors without Additional Components
- Full or Half-Duplex Operation
- Parity, Framing, and Overrun Error Detection
- Fully Programmable with Externally Selectable Word Length (5-8 Bits), Parity Inhibit, Even/Odd Parity, and 1, 1-1/2, or 2 Stop Bits

Ordering Information

PACK- AGE	TEMP. RANGE	5V/200K BAUD	10V/400K BAUD	PKG. NO.
SBDIP	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	CDP1854ACD3	CDP1854ACD3	D40.6

Description

The CDP1854A/3 and CDP1854AC/3 are high reliability silicon gate CMOS Universal Asynchronous Receiver/Transmitter (UART) circuits. They are designed to provide the necessary formatting and control for interfacing between serial and parallel data. For example, these UARTs can be used to interface between a peripheral or terminal with serial I/O ports and the 8-bit CDP1800-series microprocessor parallel data bus system. The CDP1854A/3 is capable of full duplex operation, i.e., simultaneous conversion of serial input data to parallel output data and parallel input data to serial output data.

The CDP1854A/3 UART can be programmed to operate in one of two modes by using the mode control input. When the mode input is high (MODE $=1$), the CDP1854A/3 is directly compatible with the CDP1800 series microprocessor system without additional interface circuitry. When the mode input is low (MODE $=0$), the device is functionally compatible with industry standard UARTs such as the TR1602A and CDP6402. It is also pin compatible with these types, except that pin 2 is used for the mode control input.
The CDP1854A/3 and the CDP1854AC/3 are functionally identical. The CDP1854A/3 has a recommended operating voltage range of 4 V to 10.5 V , and the CDP1854AC/3 has a recommended operating voltage range of 4 V to 6.5 V .

Pinouts


```
Absolute Maximum Ratings
DC Supply-Voltage Range, (VDD)
    (All voltages referenced to V VS terminal)
    CDP1854A/3.
    CDP1854AC/3
Input Voltage Range, All Inputs
DC Input Current, Any One Input.
Device Dissipation Per Output Transistor
    For T}\mp@subsup{T}{A}{}=\mathrm{ Full Package-Temperature Range
```

\qquad

```
    -0.5 to +11V
    .-0.5 to +7V
                            -0.5 to VDD +0.5V
.-55 % C to +125年C
Absolute Maximum Ratings
DC Supply-Voltage Range, (VD)
(All voltages referenced to \(\mathrm{V}_{\text {SS }}\) terminal)
CDP1854A/3
``` \(\qquad\)
``` .-0.5 to +11 V
.-0.5 to +7 V
Input Voltage Range, All Inputs
``` \(\qquad\)
``` -0.5 to \(V_{D D}+0.5 \mathrm{~V}\)
..\(\pm 10 \mathrm{~mA}\)
.100 mW
Operating-Temperature Range ( \(\mathrm{T}_{\mathrm{A}}\) ) Package Type D.
``` \(\qquad\)

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
NOTE:
1. \(\theta_{\mathrm{JA}}\) is measured with the component mounted on an evaluation PC board in free air.

\section*{Static Electrical Specifications}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[b]{3}{*}{PARAMETER}} & \multicolumn{3}{|c|}{CONDITIONS} & \multicolumn{4}{|c|}{LIMITS} & \multirow[b]{3}{*}{UNITS} \\
\hline & & \multirow[b]{2}{*}{\[
\begin{aligned}
& \mathrm{V}_{\mathrm{O}} \\
& \text { (V) }
\end{aligned}
\]} & \multirow[b]{2}{*}{\[
\begin{aligned}
& \mathrm{V}_{\mathrm{IN}} \\
& \text { (V) }
\end{aligned}
\]} & \multirow[b]{2}{*}{\begin{tabular}{l}
\(V_{D D}\) \\
(V)
\end{tabular}} & \multicolumn{2}{|l|}{\(-55^{\circ} \mathrm{C},+25^{\circ} \mathrm{C}\)} & \multicolumn{2}{|c|}{\(+125^{\circ} \mathrm{C}\)} & \\
\hline & & & & & MIN & MAX & MIN & MAX & \\
\hline \multirow[t]{2}{*}{Quiescent Device Current} & \multirow[t]{2}{*}{\(I_{\text {DD }}\)} & - & 0, 5 & 5 & - & 500 & - & 1000 & \(\mu \mathrm{A}\) \\
\hline & & - & 0, 10 & 10 & - & 500 & - & 1000 & \(\mu \mathrm{A}\) \\
\hline \multirow[t]{2}{*}{Output Low Drive (Sink) Current} & \multirow[t]{2}{*}{IoL} & 0.4 & 0,5 & 5 & 0.75 & - & 0.5 & - & mA \\
\hline & & 0.5 & 0, 10 & 10 & 1.80 & - & 1.2 & - & mA \\
\hline \multirow[t]{2}{*}{Output High Drive (Source) Current} & \multirow[t]{2}{*}{\(\mathrm{IOH}^{\text {O }}\)} & 4.6 & 0,5 & 5 & - & -0.5 & - & -0.35 & mA \\
\hline & & 9.5 & 0, 10 & 10 & - & -1.0 & - & -0.70 & mA \\
\hline \multirow[t]{2}{*}{Output Voltage Low-Level (Note 1)} & \multirow[t]{2}{*}{V \({ }_{\text {OL }}\)} & - & 0,5 & 5 & - & 0.1 & - & 0.2 & V \\
\hline & & - & 0, 10 & 10 & - & 0.1 & - & 0.2 & V \\
\hline \multirow[t]{2}{*}{Output Voltage High Level (Note 1)} & \multirow[t]{2}{*}{\(\mathrm{V}_{\mathrm{OH}}\)} & - & 0, 5 & 5 & 4.9 & - & 4.9 & - & V \\
\hline & & - & 0, 10 & 10 & 9.9 & - & 9.8 & - & V \\
\hline \multirow[t]{2}{*}{Input Low Voltage} & \multirow[t]{2}{*}{\(\mathrm{V}_{\text {IL }}\)} & 0.5, 4.5 & - & 5 & - & 1.5 & - & 1.5 & V \\
\hline & & 0.5, 9.5 & - & 10 & - & 3 & - & 3 & V \\
\hline \multirow[t]{2}{*}{Input High Voltage} & \multirow[t]{2}{*}{\(\mathrm{V}_{\mathrm{IH}}\)} & 0.5, 4.5 & - & 5 & 3.5 & - & 3.5 & - & V \\
\hline & & 0.5, 9.5 & - & 10 & 7 & - & 7 & - & V \\
\hline \multirow[t]{2}{*}{Input Leakage Current} & \multirow[t]{2}{*}{IN} & - & 0, 5 & 5 & - & \(\pm 1\) & - & \(\pm 5\) & \(\mu \mathrm{A}\) \\
\hline & & - & 0, 10 & 10 & - & \(\pm 1\) & - & \(\pm 5\) & \(\mu \mathrm{A}\) \\
\hline \multirow[t]{2}{*}{Three-State Output Leakage Current} & \multirow[t]{2}{*}{lout} & 0, 5 & 0,5 & 5 & - & \(\pm 1\) & - & \(\pm 10\) & \(\mu \mathrm{A}\) \\
\hline & & 0, 10 & 0, 10 & 10 & - & \(\pm 1\) & - & \(\pm 10\) & \(\mu \mathrm{A}\) \\
\hline Input Capacitance (Note 1) & \(\mathrm{C}_{\mathrm{IN}}\) & - & - & - & - & 10 & - & 10 & pF \\
\hline Output Capacitance (Note 1) & Cout & - & - & - & - & 15 & - & 15 & pF \\
\hline
\end{tabular}

NOTE:
1. Guaranteed but not tested.

Operating Conditions At \(T_{A}=\) Full Package-Temperature Range. For maximum reliability, operating conditions should be selected so that operation is always within the following ranges:
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{PARAMETER} & CONDITIONS & \multicolumn{4}{|c|}{LIMITS} & \multirow[b]{3}{*}{UNITS} \\
\hline & \multirow[b]{2}{*}{\begin{tabular}{l}
\(V_{D D}\) \\
(V)
\end{tabular}} & \multicolumn{2}{|l|}{\(-55^{\circ} \mathrm{C},+25^{\circ} \mathrm{C}\)} & \multicolumn{2}{|c|}{\(+125^{\circ} \mathrm{C}\)} & \\
\hline & & MIN & MAX & MIN & MAX & \\
\hline DC Operating Voltage Range & - & 4 & 10.5 & 4 & 6.5 & V \\
\hline Input Voltage Range & - & \(\mathrm{V}_{\text {SS }}\) & \(V_{D D}\) & \(\mathrm{V}_{S S}\) & \(V_{D D}\) & V \\
\hline \multirow[t]{2}{*}{Baud Rate (Receive or Transmit)} & 5 & - & 250 & - & 215 & K bits/s \\
\hline & 10 & - & 520 & - & 430 & K bits/s \\
\hline
\end{tabular}

Dynamic Electrical Specifications \(t_{R}, t_{F}=15 n s, V_{I H}=V_{D D}, V_{I L}=V_{S S}, C_{L}=100 \mathrm{pF}\), (See Figure 1)

TRANSMITTER TIMING - MODE 1
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Clock Period} & \multirow[t]{2}{*}{\({ }^{\text {t CC }}\)} & 5 & 240 & - & 280 & - & ns \\
\hline & & 10 & 120 & - & 145 & - & ns \\
\hline \multirow[t]{2}{*}{Pulse Width Clock Low Level} & \multirow[t]{2}{*}{\({ }^{\mathrm{t}} \mathrm{CL}\)} & 5 & 105 & - & 125 & - & ns \\
\hline & & 10 & 55 & - & 65 & - & ns \\
\hline \multirow[t]{2}{*}{Clock High Level} & \multirow[t]{2}{*}{\({ }^{\text {t }} \mathrm{CH}\)} & 5 & 135 & - & 155 & - & ns \\
\hline & & 10 & 65 & - & 80 & - & ns \\
\hline \multirow[t]{2}{*}{TPB} & \multirow[t]{2}{*}{\({ }^{\text {t }}\) T} & 5 & 125 & - & 165 & - & ns \\
\hline & & 10 & 70 & - & 80 & - & ns \\
\hline \multirow[t]{2}{*}{Propagation Delay Time Clock to Data Start Bit} & \multirow[t]{2}{*}{\({ }^{t} \mathrm{CD}\)} & 5 & - & 425 & - & 485 & ns \\
\hline & & 10 & - & 205 & - & 235 & ns \\
\hline \multirow[t]{2}{*}{TPB to THRE} & \multirow[t]{2}{*}{\({ }_{\text {t }}\)} & 5 & - & 315 & - & 380 & ns \\
\hline & & 10 & - & 155 & - & 185 & ns \\
\hline \multirow[t]{2}{*}{Clock to THRE} & \multirow[t]{2}{*}{\({ }^{\text {t }}\) CTH} & 5 & - & 335 & - & 390 & ns \\
\hline & & 10 & - & 160 & - & 190 & ns \\
\hline
\end{tabular}

Dynamic Electrical Specifications \(t_{R}, t_{F}=15 \mathrm{~ns}, \mathrm{~V}_{I H}=\mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{\mathrm{IL}}=\mathrm{V}_{\mathrm{SS}}, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}\), (See Figure 2)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{PARAMETER} & \multirow[b]{3}{*}{\[
\begin{aligned}
& \mathrm{V}_{\mathrm{DD}} \\
& \text { (V) }
\end{aligned}
\]} & \multicolumn{4}{|c|}{LIMITS} & \multirow[b]{3}{*}{UNITS} \\
\hline & & \multicolumn{2}{|l|}{\(-55^{\circ} \mathrm{C},+25^{\circ} \mathrm{C}\)} & \multicolumn{2}{|c|}{\(+125^{\circ} \mathrm{C}\)} & \\
\hline & & MIN & MAX & MIN & MAX & \\
\hline
\end{tabular}

RECEIVER TIMING - MODE 1
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Clock Period} & \multirow[t]{2}{*}{tcc} & 5 & 240 & - & 280 & - & ns \\
\hline & & 10 & 120 & - & 145 & - & ns \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
Pulse Width \\
Clock Low Level
\end{tabular}} & \multirow[t]{2}{*}{\({ }^{t} \mathrm{CL}\)} & 5 & 105 & - & 125 & - & ns \\
\hline & & 10 & 55 & - & 65 & - & ns \\
\hline \multirow[t]{2}{*}{Clock High Level} & \multirow[t]{2}{*}{\({ }^{\text {t }} \mathrm{CH}\)} & 5 & 135 & - & 155 & - & ns \\
\hline & & 10 & 65 & - & 80 & - & ns \\
\hline \multirow[t]{2}{*}{TPB} & \multirow[t]{2}{*}{\({ }_{\text {t }}\) T} & 5 & 125 & - & 165 & - & ns \\
\hline & & 10 & 70 & - & 80 & - & ns \\
\hline \multirow[t]{2}{*}{Setup Time Data Start Bit to Clock} & \multirow[t]{2}{*}{\({ }^{\text {b }}\) C} & 5 & 105 & - & 120 & - & ns \\
\hline & & 10 & 65 & - & 70 & - & ns \\
\hline \multirow[t]{2}{*}{Propagation Delay Time TPB to \(\overline{\text { DATA AVAILABLE }}\)} & \multirow[t]{2}{*}{\({ }^{\text {t }}\) ¢ \({ }^{\text {a }}\)} & 5 & - & 295 & - & 340 & ns \\
\hline & & 10 & - & 150 & - & 170 & ns \\
\hline \multirow[t]{2}{*}{Clock to DATA AVAILABLE} & \multirow[t]{2}{*}{\({ }^{\text {t }}\) CDA} & 5 & - & 305 & - & 355 & ns \\
\hline & & 10 & - & 150 & - & 170 & ns \\
\hline \multirow[t]{2}{*}{Clock to Overrun Error} & \multirow[t]{2}{*}{\({ }^{\text {t CoE }}\)} & 5 & - & 305 & - & 330 & ns \\
\hline & & 10 & - & 150 & - & 175 & ns \\
\hline \multirow[t]{2}{*}{Clock to Parity Error} & \multirow[t]{2}{*}{\({ }^{\text {t CPE }}\)} & 5 & - & 305 & - & 330 & ns \\
\hline & & 10 & - & 150 & - & 175 & ns \\
\hline \multirow[t]{2}{*}{Clock to Framing Error} & \multirow[t]{2}{*}{\(\mathrm{t}_{\text {CFE }}\)} & 5 & - & 280 & - & 330 & ns \\
\hline & & 10 & - & 145 & - & 165 & ns \\
\hline
\end{tabular}

NOTES:
1. The holding register is loaded on the trailing edge of TPB.
2. The transmitter shift register, if empty, is loaded on the first high-to-low transition of the clock which occurs at least \(1 / 2\) clock period \(+t_{\top C}\) after the trailing edge of TPB and transmission of a start bit occurs \(1 / 2\) clock period \(+\mathrm{t}_{\mathrm{CD}}\) later.
3. Write is the overlap of TPB, CS1, and CS3 \(=1\) and \(\overline{\mathrm{CS3}}, \mathrm{RD} / \overline{\mathrm{WR}}=0\)

FIGURE 1. TRANSMITTER TIMING DIAGRAM - MODE 1

NOTES:
1. If a start bit occurs at a time less than \(t_{D C}\) before a high-to-low transition of the clock, the start bit may not be recognized until the next high-to-low transition of the clock. The start bit may be completely asynchronous with the clock.
2. Read is the overlap of CS1, CS3, RD/ \(\overline{W R}=1\) and \(\overline{C S 2}=0\). If a pending DA has not been cleared by a read of the receiver holding register by the time a new word is loaded into the receiver holding register, the OE signal will come true.
3. OE and PE share terminal 15 and are also available as two separate bits in the status register.

FIGURE 2. MODE 1 RECEIVER TIMING DIAGRAM

Dynamic Electrical Specifications \(\mathrm{t}_{\mathrm{R}}, \mathrm{t}_{\mathrm{F}}=15 \mathrm{~ns}, \mathrm{~V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{\mathrm{IL}}=\mathrm{V}_{\mathrm{SS}}, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}\), (See Figure 3)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{PARAMETER} & \multirow[b]{3}{*}{\begin{tabular}{l}
\(V_{D D}\) \\
(V)
\end{tabular}} & \multicolumn{4}{|c|}{LIMITS} & \multirow[b]{3}{*}{UNITS} \\
\hline & & \multicolumn{2}{|l|}{\(-55^{\circ} \mathrm{C},+25^{\circ} \mathrm{C}\)} & \multicolumn{2}{|c|}{\(+125^{\circ} \mathrm{C}\)} & \\
\hline & & MIN & MAX & MIN & MAX & \\
\hline \multicolumn{7}{|l|}{CPU INTERFACE - WRITE TIMING - MODE 1} \\
\hline \multirow[t]{2}{*}{Pulse Width TPB} & 5 & 125 & - & 165 & - & ns \\
\hline & 10 & 70 & - & 80 & - & ns \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
Setup Time \\
RSEL to Write \\
\(t_{\text {RSW }}\)
\end{tabular}} & 5 & 20 & - & 10 & - & ns \\
\hline & 10 & 25 & - & 25 & - & ns \\
\hline \multirow[t]{2}{*}{Data to Write} & 5 & 65 & - & 75 & - & ns \\
\hline & 10 & 45 & - & 50 & - & ns \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
Hold Time \\
RSEL after Write \\
twRs
\end{tabular}} & 5 & -10 & - & -20 & - & ns \\
\hline & 10 & 5 & - & 5 & - & ns \\
\hline \multirow[t]{2}{*}{Data after Write twD} & 5 & 95 & - & 105 & - & ns \\
\hline & 10 & 55 & - & 55 & - & ns \\
\hline
\end{tabular}

NOTE:
1. Write is the overlap of TPB, CS1, CS3 \(=1\) and \(\overline{\mathrm{CS} 2}, \mathrm{RD} / \overline{\mathrm{WR}}=0\).

FIGURE 3. MODE 1 CPU INTERFACE (WRITE) TIMING DIAGRAM

Dynamic Electrical Specifications \(\mathrm{t}_{\mathrm{R}}, \mathrm{t}_{\mathrm{F}}=15 \mathrm{~ns}, \mathrm{~V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{\mathrm{IL}}=\mathrm{V}_{\mathrm{SS}}, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}\), (See Figure 4)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{PARAMETER} & \multirow[b]{3}{*}{\begin{tabular}{l}
\(V_{D D}\) \\
(V)
\end{tabular}} & \multicolumn{4}{|c|}{LIMITS} & \multirow[b]{3}{*}{UNITS} \\
\hline & & \multicolumn{2}{|l|}{\(-55^{\circ} \mathrm{C},+25^{\circ} \mathrm{C}\)} & \multicolumn{2}{|c|}{\(+125^{\circ} \mathrm{C}\)} & \\
\hline & & MIN & MAX & MIN & MAX & \\
\hline \multicolumn{7}{|l|}{CPU INTERFACE - READ TIMING - MODE 1} \\
\hline \multirow[t]{2}{*}{Pulse Width TPB} & 5 & 125 & - & 165 & - & ns \\
\hline & 10 & 70 & - & 80 & - & ns \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
Setup Time \\
RSEL to TPB \\
\(t_{\text {RST }}\)
\end{tabular}} & 5 & 15 & - & 0 & - & ns \\
\hline & 10 & 20 & - & 10 & - & ns \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
Hold Time \\
RSEL after TPB \\
\({ }^{\text {t TRS }}\)
\end{tabular}} & 5 & -10 & - & -25 & - & ns \\
\hline & 10 & 5 & - & 0 & - & ns \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
Propagation Delay Time \\
Read to Data Valid Time \\
\(t_{\text {RDV }}\)
\end{tabular}} & 5 & - & 360 & - & 420 & ns \\
\hline & 10 & - & 165 & - & 195 & ns \\
\hline \multirow[t]{2}{*}{RESEL to Data Valid Time trsDV} & 5 & - & 250 & - & 295 & ns \\
\hline & 10 & - & 125 & - & 145 & ns \\
\hline
\end{tabular}

NOTE:
1. Read is the overlap of CS1, CS3, RD/ \(\overline{\mathrm{WR}}=1\) and \(\overline{\mathrm{CS} 2}=0\).

FIGURE 4. MODE 1 CPU INTERFACE (READ) TIMING DIAGRAM

Dynamic Electrical Specifications \(\mathrm{t}_{\mathrm{R}}, \mathrm{t}_{\mathrm{F}}=15 \mathrm{~ns}, \mathrm{~V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{\mathrm{IL}}=\mathrm{V}_{\mathrm{SS}}, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}\), (See Figure 5)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{PARAMETER} & & \multirow[b]{3}{*}{\begin{tabular}{l}
VDD \\
(V)
\end{tabular}} & \multicolumn{4}{|c|}{LIMITS} & \multirow[b]{3}{*}{UNITS} \\
\hline & & & \multicolumn{2}{|l|}{\(-55^{\circ} \mathrm{C},+25^{\circ} \mathrm{C}\)} & \multicolumn{2}{|c|}{\(+125^{\circ} \mathrm{C}\)} & \\
\hline & & & MIN & MAX & MIN & MAX & \\
\hline \multicolumn{8}{|l|}{INTERFACE TIMING - MODE 0} \\
\hline \multirow[t]{2}{*}{Pulse Width CRL} & \multirow[t]{2}{*}{\({ }^{\text {t CRL }}\)} & 5 & 105 & - & 125 & - & ns \\
\hline & & 10 & 55 & - & 65 & - & ns \\
\hline \multirow[t]{2}{*}{MR} & \multirow[t]{2}{*}{\(\mathrm{t}_{\mathrm{MR}}\)} & 5 & 340 & - & 385 & - & ns \\
\hline & & 10 & 160 & - & 175 & - & ns \\
\hline \multirow[t]{2}{*}{Setup Time Control Word to CRL} & \multirow[t]{2}{*}{\({ }^{\text {t }}\) WWC} & 5 & 80 & - & 85 & - & ns \\
\hline & & 10 & 40 & - & 60 & - & ns \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
Hold Time \\
Control Word after CRL
\end{tabular}} & \multirow[t]{2}{*}{tccw} & 5 & 65 & - & 65 & - & ns \\
\hline & & 10 & 45 & - & 45 & - & ns \\
\hline \multirow[t]{2}{*}{Propagation Delay Time SFD High to SOD} & \multirow[t]{2}{*}{tsfor} & 5 & - & 175 & - & 195 & ns \\
\hline & & 10 & - & 105 & - & 115 & ns \\
\hline \multirow[t]{2}{*}{SFD Low to SOD} & \multirow[t]{2}{*}{tsFDL} & 5 & 165 & - & 195 & - & ns \\
\hline & & 10 & 90 & - & 105 & - & ns \\
\hline \multirow[t]{2}{*}{RRD High to Receiver Register High Impedance} & \multirow[t]{2}{*}{\(\mathrm{t}_{\text {RRDH }}\)} & 5 & - & 185 & - & 205 & ns \\
\hline & & 10 & - & 110 & - & 130 & ns \\
\hline \multirow[t]{2}{*}{RRD Low to Receiver Register Active} & \multirow[t]{2}{*}{\(t_{\text {RRDL }}\)} & 5 & 165 & - & 195 & - & ns \\
\hline & & 10 & 90 & - & 105 & - & ns \\
\hline
\end{tabular}

FIGURE 5. MODE 0 INTERFACE TIMING DIAGRAM

Dynamic Electrical Specifications \(t_{R}, t_{F}=15 n s, V_{I H}=V_{D D}, V_{I L}=V_{S S}, C_{L}=100 \mathrm{pF}\), (See Figure 6)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{PARAMETER} & & \multirow[b]{3}{*}{\begin{tabular}{l}
VDD \\
(V)
\end{tabular}} & \multicolumn{4}{|c|}{LIMITS} & \multirow[b]{3}{*}{UNITS} \\
\hline & & & \multicolumn{2}{|l|}{\({ }^{-55}{ }^{\circ} \mathrm{C},+25^{\circ} \mathrm{C}\)} & \multicolumn{2}{|c|}{\(+125^{\circ} \mathrm{C}\)} & \\
\hline & & & MIN & MAX & MIN & MAX & \\
\hline \multicolumn{8}{|l|}{TRANSMITTER TIMING - MODE 0} \\
\hline \multirow[t]{2}{*}{Clock Period} & \multirow[t]{2}{*}{\({ }^{\text {t }} \mathrm{CC}\)} & 5 & 240 & - & 280 & - & ns \\
\hline & & 10 & 120 & - & 145 & - & ns \\
\hline \multirow[t]{2}{*}{Pulse Width Clock Low Level} & \multirow[t]{2}{*}{} & 5 & 105 & - & 125 & - & ns \\
\hline & & 10 & 55 & - & 65 & - & ns \\
\hline \multirow[t]{2}{*}{Clock High Level} & \multirow[t]{2}{*}{\({ }^{\text {t }} \mathrm{CH}\)} & 5 & 135 & - & 155 & - & ns \\
\hline & & 10 & 65 & - & 80 & - & ns \\
\hline \multirow[t]{2}{*}{THRL} & \multirow[t]{2}{*}{\({ }_{\text {t }}\) HTH} & 5 & 140 & - & 165 & - & ns \\
\hline & & 10 & 80 & - & 85 & - & ns \\
\hline \multirow[t]{2}{*}{Setup Time THRL to Clock} & \multirow[t]{2}{*}{\({ }^{\text {t }}\) HC} & 5 & 205 & - & 235 & - & ns \\
\hline & & 10 & 120 & - & 140 & - & ns \\
\hline \multirow[t]{2}{*}{Data to THRL} & \multirow[t]{2}{*}{\({ }^{\text {D }}\) T} & 5 & 25 & - & 30 & - & ns \\
\hline & & 10 & 20 & - & 25 & - & ns \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
Hold Time \\
Data after THRL
\end{tabular}} & \multirow[t]{2}{*}{\({ }^{\text {t }}\) D} & 5 & 60 & - & 95 & - & ns \\
\hline & & 10 & 45 & - & 75 & - & ns \\
\hline \multirow[t]{2}{*}{Propagation Delay Time Clock to Data Start Bit} & \multirow[t]{2}{*}{\({ }^{\text {t }} \mathrm{CD}\)} & 5 & - & 435 & - & 505 & ns \\
\hline & & 10 & - & 205 & - & 235 & ns \\
\hline \multirow[t]{2}{*}{Clock to THRE} & \multirow[t]{2}{*}{\({ }^{\text {t }}\) T} & 5 & - & 345 & - & 420 & ns \\
\hline & & 10 & - & 175 & - & 200 & ns \\
\hline \multirow[t]{2}{*}{THRL to THRE} & \multirow[t]{2}{*}{\(t_{\text {TTHR }}\)} & 5 & - & 275 & - & 325 & ns \\
\hline & & 10 & - & 145 & - & 165 & ns \\
\hline \multirow[t]{2}{*}{Clock to TSRE} & \multirow[t]{2}{*}{\({ }_{\text {t }}^{\text {TTS }}\)} & 5 & - & 345 & - & 405 & ns \\
\hline & & 10 & - & 165 & - & 190 & ns \\
\hline
\end{tabular}

NOTES:
1. The holding register is loaded on the trailing edge of THRL.
2. The transmitter shift register, if empty, is loaded on the first high-to-low transition of the clock which occurs at least \(1 / 2\) clock period \(+\mathrm{t}_{\mathrm{TH}}\) C after the trailing edge of THRL and transmission of a start bit occurs \(1 / 2\) clock period +tcD later.

FIGURE 6. MODE 0 TRANSMITTER TIMING DIAGRAM

NOTES:
1. If a start bit occurs at a time less than \(t_{D C}\) before a high-to-low transition of the clock, the start bit may not be recognized until the next high-to-low transition of the clock. The start bit may be completely asynchronous with the clock.
2. If a pending DA has not been cleared by a read of the receiver holding register by the time a new word is loaded into the receiver holding register, the OE signal will come true.

FIGURE 7. MODE 0 RECEIVER TIMING DIAGRAM

Dynamic Electrical Specifications \(\mathrm{t}_{\mathrm{R}}, \mathrm{t}_{\mathrm{F}}=15 \mathrm{~ns}, \mathrm{~V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{\mathrm{IL}}=\mathrm{V}_{\mathrm{SS}}, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}\), (See Figure 7)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{PARAMETER} & & \multirow[b]{3}{*}{\begin{tabular}{l}
\(V_{D D}\) \\
(V)
\end{tabular}} & \multicolumn{4}{|c|}{LIMITS} & \multirow[b]{3}{*}{UNITS} \\
\hline & & & \multicolumn{2}{|l|}{\(-55^{\circ} \mathrm{C},+25^{\circ} \mathrm{C}\)} & \multicolumn{2}{|c|}{\(+125^{\circ} \mathrm{C}\)} & \\
\hline & & & MIN & MAX & MIN & MAX & \\
\hline \multicolumn{8}{|l|}{RECEIVER TIMING - MODE 0} \\
\hline \multirow[t]{2}{*}{Clock Period} & \multirow[t]{2}{*}{\({ }^{\text {t CC }}\)} & 5 & 240 & - & 280 & - & ns \\
\hline & & 10 & 120 & - & 145 & - & ns \\
\hline \multirow[t]{2}{*}{Pulse Width Clock Low Level} & \multirow[t]{2}{*}{\({ }^{\text {t }} \mathrm{CL}\)} & 5 & 105 & - & 125 & - & ns \\
\hline & & 10 & 55 & - & 65 & - & ns \\
\hline \multirow[t]{2}{*}{Clock High Level} & \multirow[t]{2}{*}{\({ }^{\text {t }} \mathrm{CH}\)} & 5 & 135 & - & 155 & - & ns \\
\hline & & 10 & 65 & - & 80 & - & ns \\
\hline \multirow[t]{2}{*}{DATA AVAILABLE RESET} & \multirow[t]{2}{*}{\(t_{\text {DD }}\)} & 5 & 75 & - & 90 & - & ns \\
\hline & & 10 & 45 & - & 50 & - & ns \\
\hline \multirow[t]{2}{*}{Setup Time Data Start Bit to Clock} & \multirow[t]{2}{*}{\(t_{\text {DC }}\)} & 5 & 105 & - & 130 & - & ns \\
\hline & & 10 & 65 & - & 85 & - & ns \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
Propagation Delay Time \\
DATA AVAILABLE RESET to \\
Data Available
\end{tabular}} & \multirow[t]{2}{*}{tDDA} & 5 & - & 240 & - & 280 & ns \\
\hline & & 10 & - & 130 & - & 145 & ns \\
\hline \multirow[t]{2}{*}{Clock to Data Valid} & \multirow[t]{2}{*}{tcDV} & 5 & - & 360 & - & 420 & ns \\
\hline & & 10 & - & 175 & - & 195 & ns \\
\hline \multirow[t]{2}{*}{Clock to Data Available} & \multirow[t]{2}{*}{\(\mathrm{t}_{\text {CDA }}\)} & 5 & - & 320 & - & 375 & ns \\
\hline & & 10 & - & 155 & - & 180 & ns \\
\hline \multirow[t]{2}{*}{Clock to Overrun Error} & \multirow[t]{2}{*}{tcoe} & 5 & - & 365 & - & 415 & ns \\
\hline & & 10 & - & 170 & - & 190 & ns \\
\hline \multirow[t]{2}{*}{Clock to Parity Error} & \multirow[t]{2}{*}{\({ }_{\text {t CPE }}\)} & 5 & - & 275 & - & 320 & ns \\
\hline & & 10 & - & 135 & - & 155 & ns \\
\hline \multirow[t]{2}{*}{Clock to Framing Error} & \multirow[t]{2}{*}{\(\mathrm{t}_{\text {CFE }}\)} & 5 & - & 270 & - & 320 & ns \\
\hline & & 10 & - & 135 & - & 165 & ns \\
\hline
\end{tabular}

FIGURE 8. SERIAL DATA WORD FORMAT

\section*{Burn-In Circuit}

ALL RESISTORS ARE \(47 \mathrm{k} \Omega \pm 20 \%\)
\begin{tabular}{|l|c|c|c|}
\hline \multicolumn{1}{|c|}{ TYPE } & VDD & TEMPERATURE & TIME \\
\hline CDP1854A/3 & 11 & \(+125^{\circ} \mathrm{C}\) & 160 hrs. \\
\hline CDP1854AC/3 & 7 & \(+125^{\circ} \mathrm{C}\) & 160 hrs. \\
\hline
\end{tabular}

FIGURE 9. BIAS/STATIC BURN-IN CIRCUIT

All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification.
Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.

\footnotetext{
For information regarding Intersil Corporation and its products, see web site http://www.intersil.com
}```

