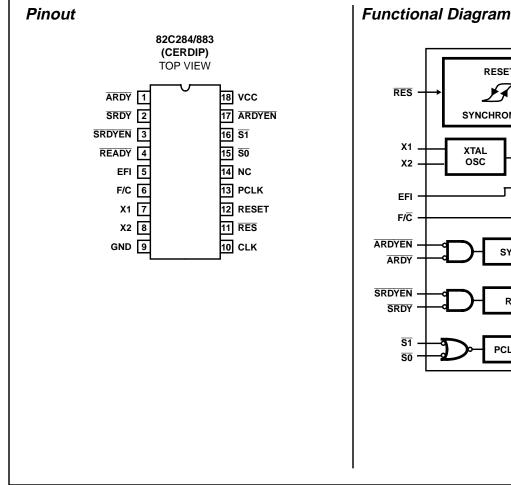


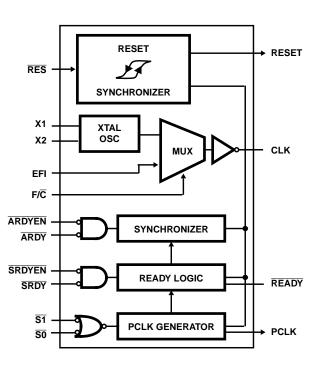
82C284/883

Clock Generator and Ready Interface for 80C286 Processors

March 1997

Features


- This Circuit is Processed in Accordance to MIL-STD-883 and is Fully Conformant Under the Provisions of Paragraph 1.2.1.
- Generates System Clock for 80C286 Processors
- Generates System Reset Output from Schmitt Trigger
 Input
 - Improved Hysteresis
- Uses Crystal or External Signal for Frequency Source
 - Dynamically Switchable Between Two Input Frequencies
- Provides Local READY and MULTIBUS™ READY Synchronization
- Static CMOS Technology
- Single +5V Power Supply
- Available in 18 Lead CERDIP Package


Description

The Intersil 82C284/883 is a clock generator/driver which provides clock signals for 80C286 processors and support components. It also contains logic to supply $\overline{\text{READY}}$ to the CPU from either asynchronous or synchronous sources and synchronous RESET from an asynchronous input with hysteresis.

Ordering Information

PART NUMBER	TEMP. RANGE	PACKAGE	PKG. NO.
MD82C284-12/883	-55 ^o C to +125 ^o C	CERDIP	F18.3

Absolute Maximum Ratings	Thermal Information		
Supply Voltage+8.0V Input, Output or I/O Voltage Applied GND -0.1V to VCC +1.0V	Thermal Resistance CERDIP Package	θ _{JA} (^o C/W) 80	θ _{JC} (^o C/W) 20
ESD Classification Class 2	Gate Count Storage Temperature Range Junction Temperature Lead Temperature (Soldering 10s)		⁰ C to +150 ⁰ C +175 ⁰ C
CAUTION: Stresses above those listed in the "Absolute Maximum Ratings" may tion of the device at these or any other conditions above those indicated in the c	1 0		ting and opera-

Operating Conditions

Operating Temperature Range55°C to +125°C	EFI Rise Time (From 0.8V to 3.2V)8ns (Max)
Operating Supply Voltage +4.5V to +5.5V	EFI Fall Time (From 3.2V to 0.8V) 8ns (Max)

TABLE 1. 82C284/883 D.C. ELECTRICAL PERFORMANCE SPECIFICATIONS

Device Guaranteed and 100% Tested.

PARAMETER	SYMBOL	CONDITIONS	GROUP A SUBGROUPS	TEMPERATURE	MIN	МАХ	UNITS
Input LOW Voltage	VIL	VCC = 4.5V	1, 2, 3	$-55^{o}C \leq T_{A} \leq +125^{o}C$	-	0.8	V
Input HIGH Voltage	VIH	VCC = 5.5V	1, 2, 3	$-55^{o}C \leq T_{A} \leq +125^{o}C$	2.2	-	V
EFI, F/\overline{C} Input High Voltage	VIHC	VCC = 5.5V	1, 2, 3	$-55^{0}C \leq T_{A} \leq +125^{0}C$	3.2	-	V
RES HIGH Voltage	VIHR	VCC = 5.5V	1, 2, 3	$\text{-55}^{o}C \leq \text{T}_{A} \leq \text{+125}^{o}C$	VCC -0.8	-	V
RES Input Hysteresis	VHYS	VCC = 5.5V	1, 2, 3	$-55^{o}C \leq T_{A} \leq +125^{o}C$	0.5	-	V
RESET, PCLK Output LOW Voltage	VOL	IOL = 5mA, VCC = 4.5V, Note 2	1, 2, 3	$-55^{o}C \leq T_{A} \leq +125^{o}C$	-	0.4	V
RESET, PCLK Output Voltage	VOH	IOH = -1mA, VCC = 4.5V, Note 2	1, 2, 3	$-55^{o}C \leq T_{A} \leq +125^{o}C$	VCC -0.4	-	V
READY Output LOW Voltage	VOLR	IOH = 10mA, VCC = 4.55V, Note 2	1, 2, 3	$-55^{o}C \leq T_{A} \leq +125^{o}C$	-	0.4	V
CLK Output LOW Voltage	VOLC	IOL = 5mA, VCC = 4.5V, Note 2	1, 2, 3	$-55^{\text{O}}\text{C} \leq \text{T}_{\text{A}} \leq +125^{\text{O}}\text{C}$	-	0.4	V
CLK Output HIGH Voltage	VOHC	IOH = -5mA, VCC = 4.5V, Note 2	1, 2, 3	$-55^{o}C \leq T_{A} \leq +125^{o}C$	VCC -0.4	-	V
Input Leakage Current	II	VIN = GND or VCC, VCC = 5.5V	1, 2, 3	$-55^{o}C \leq T_{A} \leq +125^{o}C$	-10	10	μΑ
Active Power Supply	ICCOP	82C284-10/883, Note 1	1, 2, 3	$-55^{0}C \leq T_{A} \leq +125^{0}C$	-	48	mA
Current		82C284-12/883, Note 1	1, 2, 3	$-55^{0}C \leq T_{A} \leq +125^{0}C$	-	60	mA

NOTES:

1. ICCOP measured at 10MHz for the 82C284-10/883 and at 12.5MHz for the 82C284-12/883. VIN = GND or VCC, VCC = 5.5V, outputs unloaded.

2. Interchanging of force and sense conditions is permitted.

TABLE 2. 82C284/883 A.C. ELECTRICAL PERFORMANCE SPECIFICATIONS

Device Guaranteed and 100% Tested. A.C. timings are referenced to 0.8V and 2.0V points of the signals as illustrated in datasheet waveforms, unless otherwise specified.

		(NOTE 1)	GROUP A		101	/IHz	121	ЛНz	
PARAMETER	SYMBOL	CONDITIONS	SUBGROUP	TEMPERATURE	MIN	MAX	MIN	MAX	UNITS
EFI LOW Time	t1	At VCC/2, Note 8	9, 10, 11	$\text{-55}^{\text{o}}\text{C} \leq \text{T}_{\text{A}} \leq \text{+125}^{\text{o}}\text{C}$	20	-	16	-	ns
EFI HIGH Time	t2	At VCC/2, Note 8	9, 10, 11	$\text{-}55^{0}C \leq T_{A} \leq \text{+}125^{0}C$	20	-	20	-	ns

TABLE 2. 82C284/883 A.C. ELECTRICAL PERFORMANCE SPECIFICATIONS (Continued)

Device Guaranteed and 100% Tested. A.C. timings are referenced to 0.8V and 2.0V points of the signals as illustrated in datasheet waveforms, unless otherwise specified. (Continued)

		(NOTE 1)	GROUP A		10MHz		12MHz		
PARAMETER	SYMBOL	CONDITIONS	SUBGROUP	TEMPERATURE	MIN	MAX	MIN	MAX	UNITS
Status Setup Time for Status Going Active	t5A		9, 10, 11	$-55^{0}C \leq T_{A} \leq +125^{0}C$	20	-	18	-	ns
Status Setup Time for Going Inactive	t5B		9, 10, 11	$-55^{o}C \leq T_{A} \leq +125^{o}C$	20	-	16	-	ns
Status Hold Time	t6		9, 10, 11	$\text{-55}^{o}C \leq \text{T}_{A} \leq \text{+125}^{o}C$	1	-	1	-	ns
F/C Setup Time	t7		9, 10, 11	$\text{-55}^{o}C \leq \text{T}_{A} \leq \text{+125}^{o}C$	15	-	15	-	ns
F/C Hold Time	t8		9, 10, 11	$\text{-55}^{o}C \leq \text{T}_{A} \leq \text{+125}^{o}C$	15	-	15	-	ns
SRDY or SRDYEN Setup Time	t9		9, 10, 11	$-55^{0}C \leq T_{A} \leq +125^{0}C$	15	-	15	-	ns
SRDY or SRDYEN Hold Time	t10		9, 10, 11	$-55^{o}C \leq T_{A} \leq +125^{o}C$	2	-	2	-	ns
ARDY or ARDYEN Setup Time	t11	Note 3	9, 10, 11	$-55^{0}C \leq T_{A} \leq +125^{0}C$	5	-	5	-	ns
ARDY or ARDYEN Hold Time	t12	Note 3	9, 10, 11	$-55^{0}C \leq T_{A} \leq +125^{0}C$	30	-	25	-	ns
RES Setup Time	t13	Notes 3, 7	9, 10, 11	$-55^{o}C \leq T_{A} \leq +125^{o}C$	20	-	18	-	ns
RES Hold Time	t14	Notes 3, 7	9, 10, 11	$\text{-55}^{o}C \leq \text{T}_{A} \leq \text{+125}^{o}C$	10	-	8	-	ns
CLK Period	t16		9, 10, 11	$\text{-55}^{o}C \leq T_{A} \leq \text{+125}^{o}C$	50	-	40	-	ns
CLK LOW Period	t17	Notes 2, 6	9, 10, 11	$-55^oC \leq T_A \leq +125^oC$	12	-	11	-	ns
CLK HIGH Time	t18	Notes 2, 6	9, 10, 11	$-55^{0}C \leq T_{A} \leq +125^{0}C$	16	-	13	-	ns
READY Inactive Delay	t21	At 0.8V, Note 4, Test Condition 2	9, 10, 11	$-55^{0}C \leq T_{A} \leq +125^{0}C$	5	-	5	-	ns
READY Active Delay	t22	At 0.8V, Note 4	9, 10, 11	$-55^{0}C \leq T_{A} \leq +125^{0}C$	-	24	-	18	ns
PCLK Delay	t23	CL = 75pF, Test Condition 1	9, 10, 11	$-55^{0}C \leq T_{A} \leq +125^{0}C$	-	20	-	16	ns
RESET Delay	t24	CL = 75pF, Test Condition 3	9, 10, 11	$-55^{0}C \leq T_{A} \leq +125^{0}C$	-	27	-	26	ns
PCLK LOW Time	t25	CL = 75pF, Note 5	9, 10, 11	$-55^{0}C \leq T_{A} \leq +125^{0}C$	t16- 10	-	t16- 10	-	ns
PCLK HIGH Time	t26	CL = 75pF, Note 5	9, 10, 11	$-55^{o}C \leq T_{A} \leq +125^{o}C$	t16- 10	-	t16- 10	-	ns

NOTES:

1. VCC = 4.5V and 5.5V unless otherwise specified. CLK loading: CL = 100pF.

2. With the internal crystal oscillator using recommended crystal and capacitive loading; or with the EFI input meeting specifications t1 and t2. The recommended crystal loading for CLK frequencies of 8MHz to 20MHz are 25pF from pin X1 to GND, and 15pF from pin X2 to GND; for CLK frequencies from 20MHz to 25MHz the recommended loading is 15pF from pin X1 to GND, and 15pF from X2 to GND. These recommended values are ±5pF and include all stray capacitance. Decouple VCC and GND as close to the 80C284/883 as possible.

3. This is an asychronous input. This specification is given for testing purposes only, to assure recognition at a specific CLK edge.

4. The pull-up resistor value for the $\overline{\text{READY}}$ pin is 620 Ω with the rated 150pF load.

5. t16 refers to any allowable CLK period.

6. When using a crystal with the recommended capacitive loading, CLK output HIGH and LOW times are guaranteed to meet 80C286 requirements.

7. Measured from 1.0V on the CLK to 0.8V on the RES waveform for RES active, and to 4.2V on the RES waveform for RES inactive.

8. Input test waveform characteristics: VIL= 0.0V, VIH = 4.5V.

					10MHz		12MHz		
PARAMETER	SYMBOL	CONDITIONS	NOTES	TEMPERATURE	MIN	МАХ	MIN	MAX	UNITS
Input Capacitance	CIN	FREQ = 1MHz, All measurements are referenced to de- vice GND	1	T _A = +25 ^o C	-	10	-	10	pF
EFI HIGH to CLK LOW Delay	t15A		1, 2	$-55^{o}C \leq T_{A} \leq +125^{o}C$	-	30	-	25	ns
EFI LOW to CLK HIGH Delay	t15B		1, 3	$-55^{o}C \leq T_{A} \leq +125^{o}C$	-	35	-	30	ns
CLK Rise Time	t19	1.0V to 3.6V, CL = 100pF	1	$-55^{0}C \leq T_{A} \leq +125^{0}C$	-	8	-	8	ns
CLK Fall Time	t20	3.6V to 1.0V, CL = 100pF	1	$-55^{o}C \leq T_{A} \leq +125^{o}C$	-	8	-	8	ns
X1 HIGH to CLK	t27		1, 4	$-55^{o}C \leq T_{A} \leq +125^{o}C$	-	35	-	30	ns

TABLE 3. 82C284/883 ELECTRICAL PERFORMANCE SPECIFICATIONS

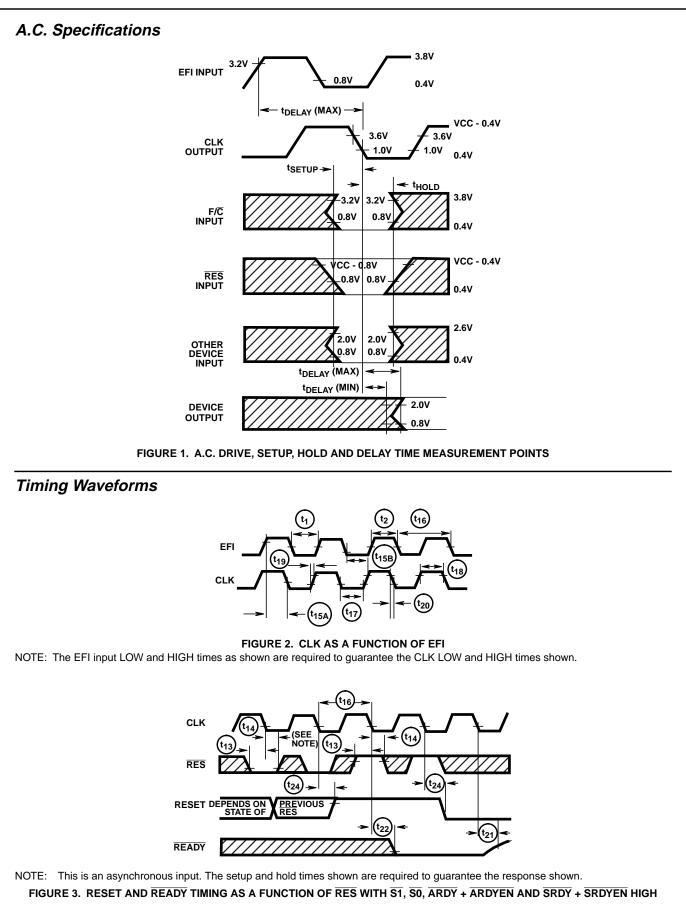
NOTES:

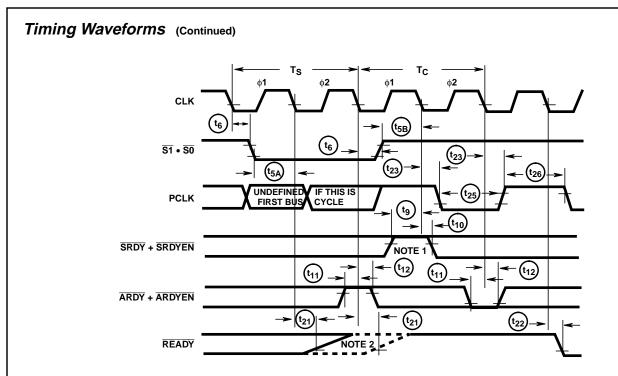
1. The parameters listed in Table 3 are controlled via design or process parameters and are not directly tested. These parameters are characterized upon initial design and after major process and/or design changes.

2. Measured from 3.2V on the EFI waveform to 1.0V on the CLK.

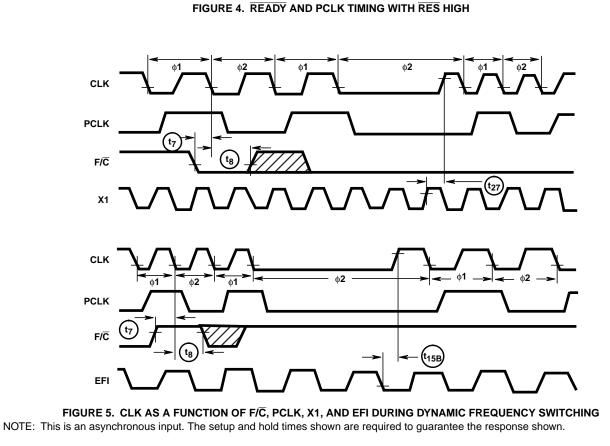
3. Measured from 0.8V on the EFI waveform to 3.6V on the CLK.

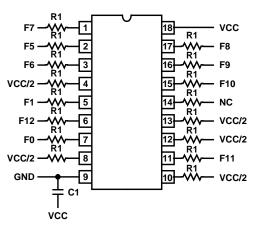
4. Measured from 3.6V on the X1 input to 3.6V on the CLK.


TABLE 4. APPLICABLE SUBGROUPS


CONFORMANCE GROUPS	METHOD	SUBGROUPS
Initial Test	100%/5004	-
Interim Test	100%/5004	1, 7, 9
PDA	100%	1
Final Test	100%	2, 3, 8A, 8B, 10, 11
Group A	-	1, 2, 3, 7, 8A, 8B, 9, 10, 11
Groups C & D	Samples/5005	1, 7, 9

A.C. Test Conditions


TEST CONDITION	RL	CL
1	750Ω	75pF
2	620Ω	150pF
3	8	75pF


NOTES:

- 1. This is an asynchronous input. The setup and hold times shown are required to guarantee the response shown.
- 2. If SRDY + SRDYEN or ARDY + ARDYEN are active before and/or during the first bus cycle after RESET, READY may not be deasserted until the falling edge of φ2 of T_S.

Burn-In Circuit

18 LEAD CERDIP

NOTES:

- 1. Supply Voltage: VCC = 5.5V, ± 0.5 V, GND = 0V. Driver Voltage: VIH = 4.5V \pm 10%, VIL = 0V
- 2. Input Voltage Limits: VIL (Max) = 0.4V, VIH (Min) = 2.6V
- 3. Component Values: R1 = $47k\Omega$, C1 = 0.1μ F (Min)
- 4. Oven type and frequency requirements microtest, F0 through F12.
- 5. Approximate current per unit. ICC = 0.3mA.

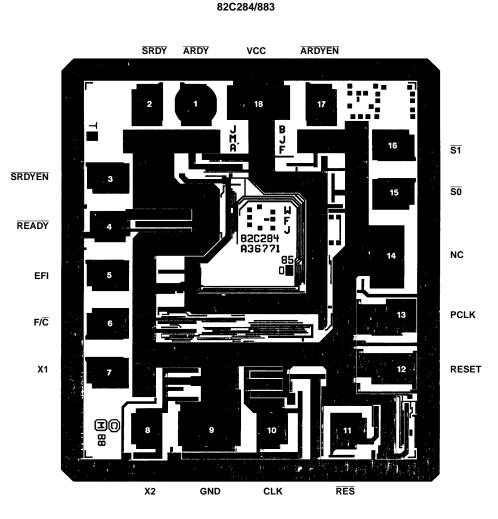
6. Special requirements:

- (a) Electrostatic Discharge Sensitive. Proper precautions must be used when handling units.
- (b) All power supplies must be at zero volts when the boards are inserted into the ovens. After insertion, apply VCC first, then activate the driver power supplies.
- 7. Oscilloscope measurements: To be on loaded boards before insertion into the oven.

Die Characteristics

DIE DIMENSIONS:

63 mils x 69 mils x 19 mils \pm 1 mil


METALLIZATION:

Type: Silicon - Aluminum Thickness: 8kÅ

GLASSIVATION: Type: Nitrox Thickness: 10kÅ

WORST CASE CURRENT DENSITY: $2 \times 10^5 \text{ A/cm}^2$

Metallization Mask Layout

All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification.

Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.

For information regarding Intersil Corporation and its products, see web site http://www.intersil.com