

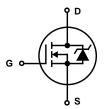
Data Sheet July 1999 File Number 3372.2

1.5A, 500V, 7.000 Ohm, N-Channel Power MOSFETs

These are N-Channel enhancement mode silicon gate power field effect transistors. They are advanced power MOSFETs designed, tested, and guaranteed to withstand a specified level of energy in the breakdown avalanche mode of operation. All of these power MOSFETs are designed for applications such as switching regulators, switching convertors, motor drivers, relay drivers, and drivers for high power bipolar switching transistors requiring high speed and low gate drive power. These types can be operated directly from integrated circuits.

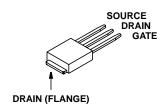
Formerly developmental type TA17445.

Ordering Information

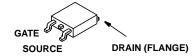

PART NUMBER	PACKAGE	BRAND			
IRFU410	TO-251AA	IFU410			
IRFR410	TO-252AA	IFR410			

NOTE: When ordering, use the entire part number.

Features


- 1.5A, 500V
- $r_{DS(ON)} = 7.000\Omega$
- Single Pulse Avalanche Energy Rated
- · SOA is Power Dissipation Limited
- · Nanosecond Switching Speeds
- · High Input Impedance
- 150°C Operating Temperature
- · Related Literature
 - TB334 "Guidelines for Soldering Surface Mount Components to PC Boards"

Symbol



Packaging

JEDEC TO-251AA

JEDEC TO-252AA

IRFR410, IRFU410

Absolute Maximum Ratings $T_C = 25^{\circ}C$, Unless Otherwise Specified

	IRFR410, IRFU410	UNITS
Drain to Source Voltage (Note 1)	500	V
Drain to Gate Voltage ($R_{GS} = 20k\Omega$) (Note 1)	500	V
Continuous Drain Current I_D $T_C = 100^{\circ}C \qquad I_D$	1.5 1.2	A A
Pulsed Drain Current (Note 3)	3.0	Α
Gate to Source Voltage	±20	V
Maximum Power Dissipation	42	W
Linear Derating Factor	0.33	W/oC
Single Pulse Avalanche Rating (See Figure 5) (Note 4)	Refer to UIS Curve	mJ
Operating and Storage Temperature	-55 to 150	oC
Maximum Temperature for Soldering Leads at 0.063in (1.6mm) from Case for 10s	300 260	°C °C

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

NOTE:

1. $T_J = 25^{\circ}C$ to $125^{\circ}C$.

Electrical Specifications $T_C = 25^{\circ}C$, Unless Otherwise Specified

PARAMETER	PARAMETER SYMBOL TEST CONDITIONS		MIN	TYP	MAX	UNITS
Drain to Source Breakdown Voltage	BV _{DSS}	$I_D = 250\mu A, V_{GS} = 0V$		-	-	V
Temperature Coefficient of Breakdown Voltage	ΔB- V _{DSS} /ΔT _J	Reference to 25°C, I _D = 250μA		0.61	-	V/°C
Gate to Source Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}, I_{D} = 250 \mu A$		-	4	V
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} = 500V, V _{GS} = 0V	-	-	25	μА
		V _{DS} = 500V, V _{GS} = 0V, T _J = 125 ^o C		-	250	μА
Gate to Source Leakage Current	I _{GSS}	V _{GS} = ±20V	-	-	±100	nA
Drain to Source On Resistance (Note 3)	r _{DS(ON)}	I _D = 1.5A, V _{GS} = 10V, (Figure 9)		-	7.000	Ω
Forward Transconductance (Note 3)	9 _{fs}	V _{DS} = 50V, I _{DS} = 0.75A, (Figure 8)		-	-	S
Turn-On Delay Time	t _{d(ON)}	V_{DD} = 250V, I_{D} \approx 1.5A, R_{GS} = 24 Ω , R_{L} = 167 Ω , MOSFET Switching Times are Essentially Independent of Operating Temperature		7	-	ns
Rise Time	t _r			10	-	ns
Turn-Off Delay Time	t _{d(OFF)}			24	-	ns
Fall Time	t _f			15	-	ns
Total Gate Charge	Q _{g(TOT)}	VGS = 10V, ID \approx 1.5A, VDS = 0.8 x Rated BV _{DSS} ,	-	9	12	nC
Gate to Source Charge	Q _{gs}	(Figure 12) Gate Charge is Essentially Independent of	-	1.1	1.4	nC
Gate to Drain "Miller" Charge	Q _{gd}	Operating Temperature		5	7	nC
Input Capacitance	C _{ISS}	V _{GS} = 0V, V _{DS} = 25V, f = 1.0MHz,		210	-	pF
Output Capacitance C _{OSS} (Figure 10)		(Figure 10)	-	30	-	pF
Reverse Transfer Capacitance	C _{RSS}			7	-	pF

Electrical Specifications $T_C = 25^{\circ}C$, Unless Otherwise Specified (Continued)

PARAMETER	SYMBOL	TEST CONDITIONS		MIN	TYP	MAX	UNITS
Internal Drain Inductance	L _D	Measured From the Drain Lead, 6mm (0.25in) From Package to Center of Die	Inductances	-	4.5	-	nΗ
Internal Source Inductance	L _S	Measured From The Source Lead, 6mm (0.25in) From Header to Source Bonding Pad	G S ELS	-	7.5	-	nΗ
Thermal Resistance Junction to Case	R _{θJC}			-	-	3.0	°C/W
Thermal Resistance Junction to Ambient	$R_{\theta JA}$	Free Air Operation		-	-	110	°C/W

Source to Drain Diode Specifications

PARAMETER	SYMBOL	TEST CONDITIONS		MIN	TYP	MAX	UNITS
Continuous Source to Drain Current	I _{SD}	Modified MOSFET	١º	-	-	1.5	Α
Pulse Source to Drain Current (Note 3)	I _{SDM}	Symbol Showing the Integral Reverse P-N Junction Diode	G o s	-	-	3.0	A
Source to Drain Diode Voltage (Note 2)	V _{SD}	$T_J = 25^{\circ}C, I_{SD} = 1.5A, V$	/ _{GS} = 0V, (Figure 11)	-	-	2.0	V
Reverse Recovery Time	trr	$T_J = 25^{\circ}C$, $I_{SD} = 1.5A$, $dI_{SD}/dt = 100A/\mu s$		130	-	520	ns

NOTES:

- 2. Pulse test: pulse width $\leq 300 \mu s,$ duty cycle $\leq 2\%.$
- 3. Repetitive rating: pulse width limited by maximum junction temperature. See Transient Thermal Impedance curve. (Figure 3)
- 4. V_{DD} = 50V, starting T_J = 25°C, L = 40 μ H, R_G = 25 Ω , peak I_{AS} = 1.5A.

Typical Performance Curves Unless Otherwise Specified

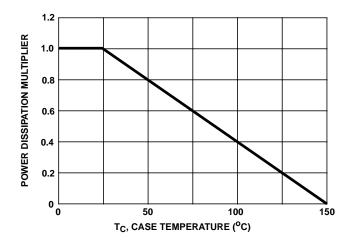


FIGURE 1. NORMALIZED POWER DISSIPATION vs CASE TEMPERATURE

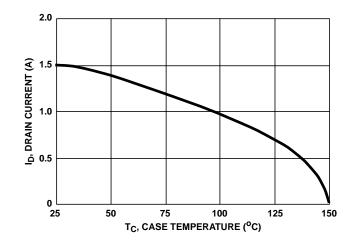


FIGURE 2. MAXIMUM CONTINUOUS DRAIN CURRENT vs CASE TEMPERATURE

Typical Performance Curves Unless Otherwise Specified (Continued)

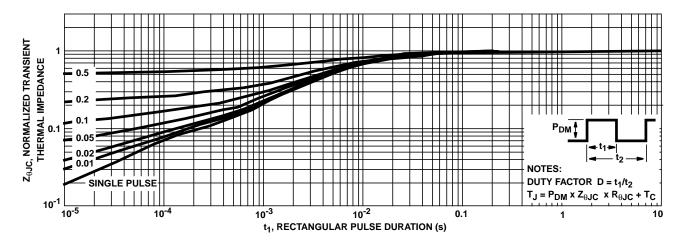


FIGURE 3. NORMALIZED MAXIMUM TRANSIENT THERMAL IMPEDANCE

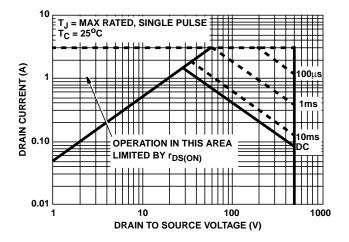


FIGURE 4. FORWARD BIAS SAFE OPERATING AREA

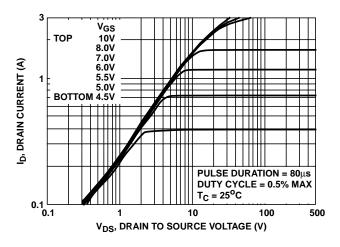


FIGURE 6. OUTPUT CHARACTERISTICS, T_C = 25°C

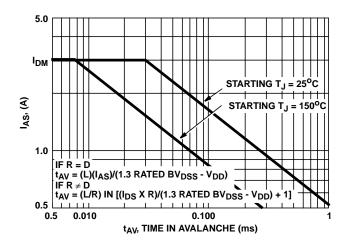


FIGURE 5. UNCLAMPED INDUCTIVE SWITCHING

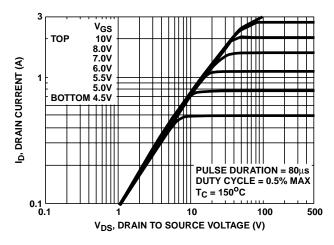


FIGURE 7. OUTPUT CHARACTERISTICS, T_C = 150°C

Typical Performance Curves Unless Otherwise Specified (Continued)

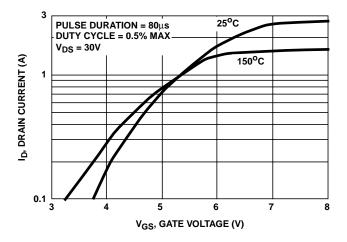


FIGURE 8. TRANSFER CHARACTERISTICS

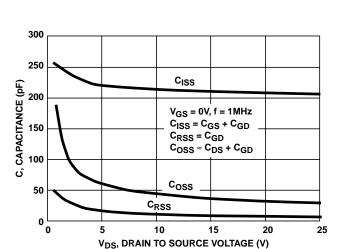


FIGURE 10. CAPACITANCE vs DRAIN TO SOURCE VOLTAGE

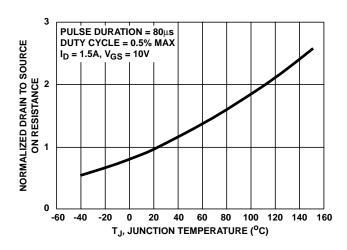


FIGURE 9. NORMALIZED DRAIN TO SOURCE ON RESISTANCE vs JUNCTION TEMPERATURE

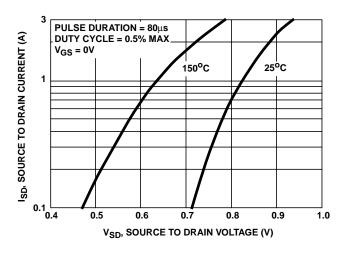


FIGURE 11. SOURCE TO DRAIN DIODE VOLTAGE

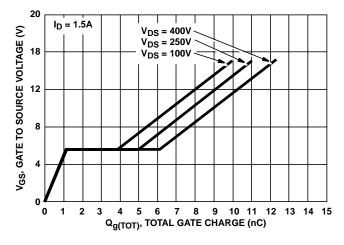


FIGURE 12. GATE TO SOURCE VOLTAGE vs GATE CHARGE

Test Circuits and Waveforms

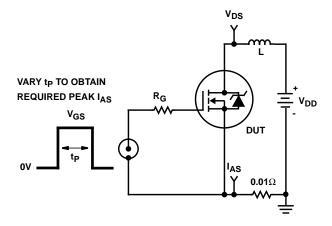


FIGURE 13. UNCLAMPED ENERGY TEST CIRCUIT

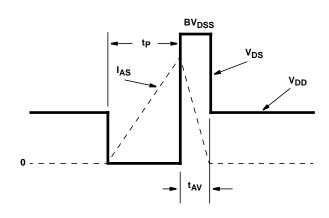


FIGURE 14. UNCLAMPED ENERGY WAVEFORMS

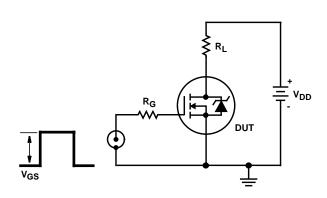


FIGURE 15. SWITCHING TIME TEST CIRCUIT

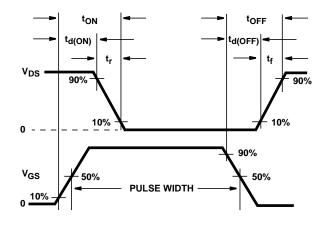


FIGURE 16. RESISTIVE SWITCHING WAVEFORMS

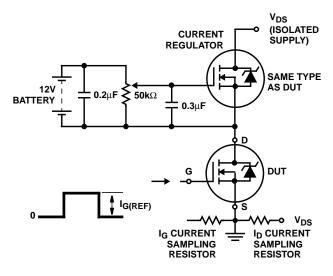


FIGURE 17. GATE CHARGE TEST CIRCUIT

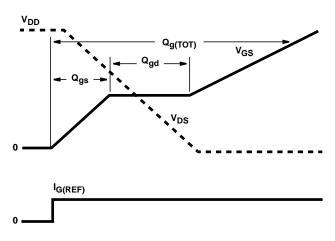


FIGURE 18. GATE CHARGE WAVEFORMS

All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification.

Intersil semiconductor products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.

For information regarding Intersil Corporation and its products, see web site http://www.intersil.com

Sales Office Headquarters

NORTH AMERICA

Intersil Corporation P. O. Box 883, Mail Stop 53-204 Melbourne, FL 32902 TEL: (407) 724-7000

TEL: (407) 724-7000 FAX: (407) 724-7240 **EUROPE**

Intersil SA Mercure Center 100, Rue de la Fusee 1130 Brussels, Belgium TEL: (32) 2.724.2111 FAX: (32) 2.724.22.05 **ASIA**

Intersil (Taiwan) Ltd.
7F-6, No. 101 Fu Hsing North Road
Taipei, Taiwan
Republic of China
TEL: (886) 2 2716 9310
FAX: (886) 2 2715 3029