

HIP7038A8

PRELIMINARY

April 1994

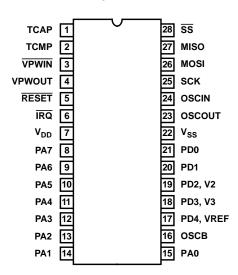
J1850 8-Bit 68HC05 Microcontroller 8K EEPROM Version

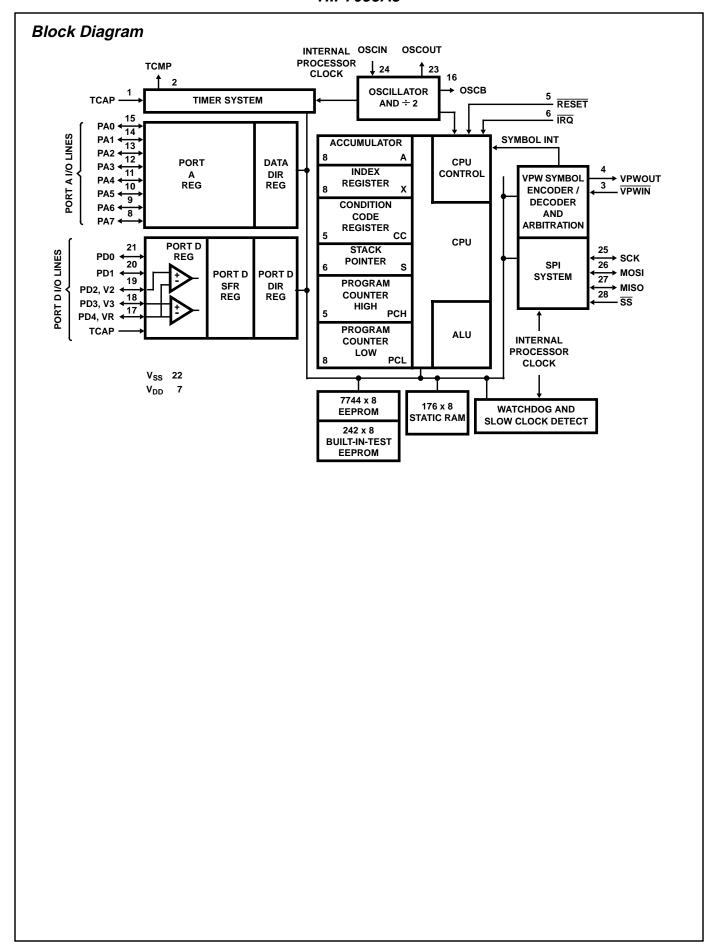
Features

- Direct Replacement for HIP7030A2/A8 Microcontrollers
 - All Hardware and Software Features
 - Equivalent Timing and Performance
- Memory
 - 176 Bytes of RAM
 - 7744 Bytes of Programmable EEPROM
 - 242 Bytes of Bootstrap Program
- Single 5V Supply
- 10MHz Operating Frequency (5.0MHz Internal Bus Frequency) at 5V.
- 28 Lead Small Outline Ceramic Package
 - Same Terminal Assignment as HIP7030A2 and HIP7030A8

Description

The HIP7038A8 HCMOS Microcomputer is an EEPROM version of the HIP7030A family of low-cost single-chip J1850 microcontrollers. These microcontrollers provide the system designer with a complete set of building blocks for implementing a "Class B" VPW multiplexed communications network interface, which fully complies with SAE Recommended Practice J1850. The HIP7038A8 contains all hardware and software features of the HIP7030A2/A8 microcontrollers with equivalent timing, performance characteristics, and an identical footprint.


The device can be programmed using the HIP7038A8 EEPROM Programmer available from Intersil. In-circuit Emulation Tools are also provided for system development.


Ordering Information

PART NUMBER	TEMPERATURE RANGE	PACKAGE
HIP7038A8F	-40°C to +85°C	28 Lead Ceramic SOIC

Pinout

HIP7038A8 (SOIC FLATPACK) TOP VIEW

Specifications HIP7038A8

Absolute Maximum Ratings

Thermal Information

Supply Voltage (V _{DD})0.3V to +6.0V
Input or Output Voltage
Pins with V _{DD} Diode0.3V to V _{DD} +0.3V
Pins without V _{DD} Diode0.3V to +10.0V
Current Drain Per Pin, I (Excluding V _{DD} and V _{SS}) 25mA
ESD Classification
Gate Count

Operating Temperature Range (T_A)-40°C to +125°C Storage Temperature Range (T_{STG})-65°C to +150°C Junction Temperature+150°C Lead Temperature (During Soldering)+265°C 1/16in. \pm 1/32in. (1.59 \pm 0.79mm) from case for 10s Max.

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

Operating Conditions

Operating Voltage Range +4.5V to +5.5V	Input High
Operating Temperature Range40°C to +85°C	Input Rise
Input Low Voltage	CMOS Ir
•	CMOSS

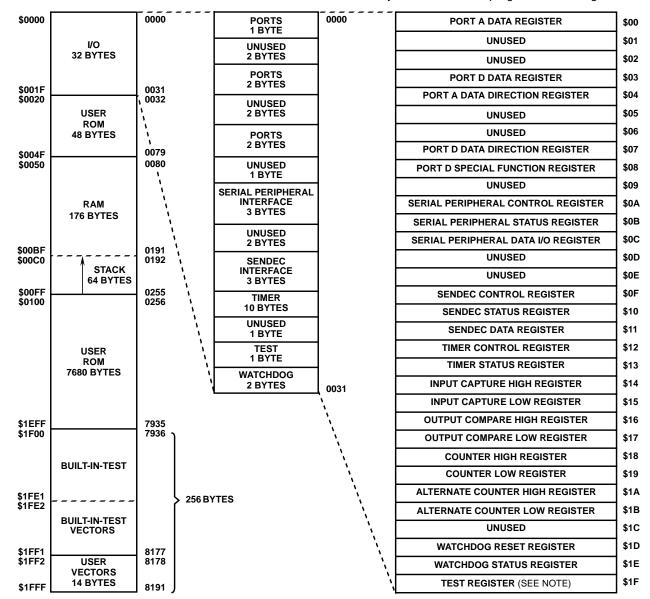
DC Electrical Specifications $V_{DD} = 5V_{DC} \pm 10\%$, $V_{SS} = 0V_{DC}$, $T_A = -40^{\circ}C$ to +85°C Unless Otherwise Specified.

PARAMETERS	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
SUPPLY CURRENT						
RUN	I _{RUN}		-	50	-	mA
WAIT	I _{WAIT}		-	4	-	mA
STOP	I _{STOP}	$T_A = +25^{\circ}C$	-	100	-	μΑ
		$T_A = -40^{\circ} \text{C to } +85^{\circ} \text{C}$	-	100	-	μΑ
Powerdown Input Voltage: RESET, IRQ, VPWIN, OSCIN	V _{INPD}	V _{DD} = 0	-0.3	-	9	V

NOTE:

^{1.} This device contains circuitry to protect the inputs against damage due to high static voltages of electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit. For proper operation it is recommended that V_{IN} and V_{OUT} be constrained to the range V_{SS}<(V_{IN} or V_{OUT})<V_{DD}. Reliability of operation is enhanced if unused inputs except OSC2 are connected to an appropriate logic voltage level (e.g., either V_{SS} or V_{DD}).

Functional Description


The HIP7038A8 MCU is functionally identical to the HIP7030A2 and HIP7030A8 microcontrollers. The device differs only in that the on-board masked ROM has been replaced with EEPROM, which allows the device to be rapidly programmed by the user. For detailed information about the functions included on the HIP7038A8 refer to File Number 3646, the technical specification of the HIP7030A2 Microcontroller. Only differences are presented here.

The availability of the HIP7038A8 dramatically reduces the time-to-market of new products by providing the development engineer rapid feedback during the design phase of a HIP7030A2/8 project.

The EEPROM is reusable and can be reprogrammed up to 10^4 times.

Memory Organization

The HIP7038A8 MCU addresses 8192 bytes of memory and I/O registers with its program counter. Of these locations, 8184 have been implemented as shown in Figure 1. The first 256 bytes of memory (page zero) include: 24 bytes of I/O features such as data ports, the port DDRs, Timer, serial peripheral interface (SPI), and J1850 VPW Registers; 48 bytes of user ROM, and 176 bytes of RAM. The next 7680 bytes complete the user ROM. The Built-In-Test ROM (242 bytes) is contained in memory locations \$1F00 through \$1FF1. The 14 highest address bytes contain the user defined reset and the interrupt vectors. Eight bytes of the lowest 32 memory locations are unused and the 176 bytes of user RAM include up to 64 bytes for the stack. Since most programs use only a small part of the allocated stack locations for interrupts and/or subroutine stacking purposes, the unused bytes are usable for program data storage.

NOTE: Accessable in test mode only.

FIGURE 1. MEMORY MAP OF THE HIP7038A8

HIP7038A8

<i>Sales Office Headq</i> NORTH AMERICA	<i>uarters</i> EUROPE	ASIA	
For i	nformation regarding Intersil Corporation and its pr	oducts, see web site http://www.intersil.com	
notice. Accordingly, the reader is ca and reliable. However, no responsibl	utioned to verify that data sheets are current befo	to make changes in circuit design and/or specifications ore placing orders. Information furnished by Intersil is bell ause; nor for any infringements of patents or other rights atent or patent rights of Intersil or its subsidiaries.	ieved to be accura
		d and tested under ISO9000 quality system	

P. O. Box 883, Mail Stop 53-204 Melbourne, FL 32902 TEL: (407) 727-9207

FAX: (407) 727-9207

Intersil SA Mercure Center 100, Rue de la Fusee 1130 Brussels, Belgium TEL: (32) 2.724.2111 FAX: (32) 2.724.22.05 Intersil (Taiwan) Ltd.
Taiwan Limited
7F-6, No. 101 Fu Hsing North Road
Taipei, Taiwan
Republic of China

TEL: (886) 2 2716 9310 FAX: (886) 2 2715 3029