Features

- Independently Drives 4 N -Channel FET in Half Bridge or Full Bridge Configurations
- Bootstrap Supply Max Voltage to 95VDC
- Drives $\mathbf{1 0 0 0 p F}$ Load in Free Air at $50^{\circ} \mathrm{C}$ with Rise and Fall Times of Typically 15ns
- User-Programmable Dead Time (0.1 to $4.5 \mu \mathrm{~s}$)
- DIS (Disable) Overrides Input Control and Refreshes Bootstrap Capacitor when Pulled Low
- Input Logic Thresholds Compatible with 5V to 15V Logic Levels
- Shoot-Through Protection
- Undervoltage Protection

Applications

- UPS Systems
- DC Motor Controls
- Full Bridge Power Supplies
- Class D Audio Power Amplifiers
- Noise Cancellation Systems
- Battery Powered Vehicles
- Peripherals
- Medium/Large Voice Coil Motors

Description

The HIP4082 is a medium frequency, medium voltage H-Bridge N-Channel MOSFET driver IC, available in 16 lead plastic SOIC (N) and DIP packages.
Specifically targeted for PWM motor control and UPS applications, bridge based designs are made simple and flexible with the HIP4082 H-bridge driver. With operation up to 80 V , the device is best suited to applications of moderate power levels.

Similar to the HIP4081, it has a flexible input protocol for driving every possible switch combination except those which would cause a shoot-through condition. The HIP4082's reduced drive current allows smaller packaging and it has a much wider range of programmable dead times (0.1 to $4.5 \mu \mathrm{~s}$) making it ideal for switching frequencies up to 200 kHz . The HIP4082 does not contain an internal charge pump, but does incorporate nonlatching level-shift translation control of the upper drive circuits.
This set of features and specifications is optimized for applications where size and cost are important. For applications needing higher drive capability the HIP4080A and HIP4081A are recommended.

Ordering Information

PART NUMBER	TEMPERATURE RANGE	PACKAGE
HIP4082IB	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16 Lead Plastic SOIC (N)
HIP4082IP	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16 Lead Plastic DIP

Pinout

HIP4082 (PDIP, SOIC)
TOP VIEW

Application Block Diagram

Functional Block Diagram

Typical Application (PWM Mode Switching)

Specifications HIP4082

Absolute Maximum Ratings

Supply Voltage, V $_{\text {DD }}$. - 0.3 V to 16 V
Logic I/O Voltages . -0.3 V to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$
Voltage on AHS, BHS -6V (Transient) to $80 \mathrm{~V}\left(25^{\circ} \mathrm{C}\right.$ to $\left.150^{\circ} \mathrm{C}\right)$
Voltage on AHS, BHS 6 V (Transient) to $70 \mathrm{~V}\left(-55^{\circ} \mathrm{C}\right.$ to $\left.150^{\circ} \mathrm{C}\right)$ Voltage on AHB, BHB $\mathrm{V}_{\text {AHS }}$, BHS -0.3 V to $\mathrm{V}_{\text {AHS }}$, BHS $+\mathrm{V}_{\mathrm{DD}}$
Voltage on ALO, BLO $\mathrm{V}_{\mathrm{SS}}-0.3 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$ Voltage on $\mathrm{AHO}, \mathrm{BHO} \ldots \mathrm{V}_{\mathrm{AHS}}$, BHS -0.3 V to $\mathrm{V}_{\mathrm{AHB}}$, BHB +0.3 V Input Current, DEL . 5 mA to 0 mA
Phase Slew Rate . 20V/ns
NOTE: All voltages are relative $\mathrm{V}_{S S}$ unless otherwise specified.

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

Operating Conditions

Voltage on AHB, BHB $\ldots \ldots . \mathrm{V}_{\text {AHS }}$, , +7.5 V to $\mathrm{V}_{\mathrm{AHS}}$, BHS $+\mathrm{V}_{\mathrm{DD}}$

Thermal Information

Thermal Resistance, Junction-Ambient

```
SOIC Package . \(15^{\circ} \mathrm{C} / \mathrm{W}\)
```

DIP Package
$90^{\circ} \mathrm{C} / \mathrm{W}$
Maximum Power Dissipation. See Curve
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Max. Junction Temperature $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering 10s) . $+300^{\circ} \mathrm{C}$
(For SOIC - Lead Tips Only))

Electrical Specifications $\quad V_{D D}=V_{A H B}=V_{B H B}=12 \mathrm{~V}, V_{S S}=V_{A H S}=V_{B H S}=0 V, R_{D E L}=100 \mathrm{~K}$

PARAMETER	SYMBOL	TEST CONDITIONS	$\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}$			$\begin{aligned} & \mathrm{T}_{\mathrm{J}}=-55^{\circ} \mathrm{C} \\ & \mathrm{TO}+150^{\circ} \mathrm{C} \end{aligned}$		UNITS
			MIN	TYP	MAX	MIN	MAX	

SUPPLY CURRENTS \& UNDER VOLTAGE PROTECTION

V ${ }_{\text {DD }}$ Quiescent Current	I_{DD}	All inputs $=0 \mathrm{~V}, \mathrm{R}_{\text {DEL }}=100 \mathrm{~K}$	1.2	2.3	3.5	0.85	4	mA
		All inputs $=0 \mathrm{~V}, \mathrm{R}_{\text {DEL }}=10 \mathrm{~K}$	2.2	4.0	5.5	1.9	6.0	mA
V_{DD} Operating Current	$\mathrm{I}_{\text {DDO }}$	$\mathrm{f}=50 \mathrm{kHz}$, no load	1.5	2.6	4.0	1.1	4.2	mA
		50 kHz , no load, $\mathrm{R}_{\mathrm{DEL}}=10 \mathrm{k} \Omega$	2.5	4.0	6.4	2.1	6.6	mA
AHB, BHB Off Quiescent Current	$\mathrm{I}_{\text {AHBL }}, \mathrm{I}_{\mathrm{BHBL}}$	$\mathrm{AHI}=\mathrm{BHI}=0 \mathrm{~V}$	0.5	1.0	1.5	0.4	1.6	mA
AHB, BHB On Quiescent Current	$\mathrm{I}_{\text {AHBH }}, \mathrm{I}_{\text {BHBH }}$	$\mathrm{AHI}=\mathrm{BHI}=\mathrm{V}_{\mathrm{DD}}$	65	145	240	40	250	$\mu \mathrm{A}$
AHB, BHB Operating Current	$\mathrm{I}_{\text {AHBO }}, \mathrm{I}_{\text {BHBO }}$	$f=50 \mathrm{kHz}, \mathrm{CL}=1000 \mathrm{pF}$. 65	1.1	1.8	. 45	2.0	mA
AHS, BHS Leakage Current	$\mathrm{I}_{\text {HLK }}$	$\begin{aligned} & V_{\mathrm{AHS}}=\mathrm{V}_{\mathrm{BHS}}=80 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{AHB}}=\mathrm{V}_{\mathrm{BHB}}=96 \end{aligned}$	-	-	1.0	-	-	$\mu \mathrm{A}$
V_{DD} Rising Undervoltage Threshold	$\mathrm{V}_{\text {DDUV }}$		6.8	7.6	8.25	6.5	8.5	V
$\mathrm{V}_{\text {DD }}$ Falling Undervoltage Threshold	$\mathrm{V}_{\text {DDUV- }}$		6.5	7.1	7.8	6.25	8.1	V
Undervoltage Hysteresis	UVHYS		0.17	0.4	0.75	0.15	0.90	V
AHB, BHB Undervoltage Threshold	VHBUV	Referenced to AHS \& BHS	5	6.0	7	4.5	7.5	V
INPUT PINS: ALI, BLI, AHI, BHI, \& DIS								
Low Level Input Voltage	V_{IL}	Full Operating Conditions	-	-	1.0	-	0.8	V
High Level Input Voltage	V_{IH}	Full Operating Conditions	2.5	-	-	2.7		V
Input Voltage Hysteresis			-	35	-	-	-	mV
Low Level Input Current		$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$, Full Operating Conditions	-145	-100	-60	-150	-50	$\mu \mathrm{A}$
High Level Input Current	IIH	$\mathrm{V}_{\mathrm{IN}}=5 \mathrm{~V}$, Full Operating Conditions	-1	-	+1	-10	+10	$\mu \mathrm{A}$

TURN-ON DELAY PIN DEL

Dead Time	$\mathrm{T}_{\text {DEAD }}$	$\mathrm{R}_{\text {DEL }}=100 \mathrm{~K}$	2.5	4.5	8.0	2.0	8.5	$\mu \mathrm{S}$
		$\mathrm{R}_{\text {DEL }}=10 \mathrm{~K}$	0.27	0.5	0.75	0.2	0.85	$\mu \mathrm{S}$
GATE DRIVER OUTPUT PINS: ALO, BLO, AHO, \& BHO								
Low Level Output Voltage	V_{OL}	$\mathrm{I}_{\text {OUT }}=50 \mathrm{~mA}$	0.65		1.1	0.5	1.2	V
High Level Output Voltage	$\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{OH}}$	$\mathrm{I}_{\text {OUT }}=-50 \mathrm{~mA}$	0.7		1.2	0.5	1.3	V
Peak Pullup Current	I^{+}	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$	1.1	1.4	2.5	0.85	2.75	A
Peak Pulldown Current	I^{-}	$\mathrm{V}_{\text {OUT }}=12 \mathrm{~V}$	1.0	1.3	2.3	0.75	2.5	A

Specifications HIP4082

Switching Specifications $\quad V_{D D}=V_{A H B}=V_{B H B}=12 V, V_{S S}=V_{A H S}=V_{B H S}=0 V, R_{D E L}=100 K, C_{L}=1000 p F$.

PARAMETER	SYMBOL	TEST CONDITIONS	$\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}$			$\begin{aligned} & \mathrm{T}_{\mathrm{J}}=-55^{\circ} \mathrm{C} \\ & \mathrm{TO}+150^{\circ} \mathrm{C} \end{aligned}$		UNITS
			MIN	TYP	MAX	MIN	MAX	
Lower Turn-off Propagation Delay (ALI-ALO, BLI-BLO)	T ${ }_{\text {LPHL }}$		-	25	50	-	70	ns
Upper Turn-off Propagation Delay (AHI-AHO, BHI-BHO)	$\mathrm{T}_{\mathrm{HPHL}}$		-	55	80	-	100	ns
Lower Turn-on Propagation Delay (ALI-ALO, BLI-BLO)	TLPLH		-	40	85	-	100	ns
Upper Turn-on Propagation Delay (AHI-AHO, BHI-BHO)	$\mathrm{T}_{\text {HPLH }}$		-	75	110	-	150	ns
Rise Time	T_{R}		-	9	20	-	25	ns
Fall Time	T_{F}		-	9	20	-	25	ns
Minimum Input Pulse Width	TPWIN-ON/OFF		50	-	-	50	-	ns
Output Pulse Response to 50 ns Input Pulse	TPWOUT			63			80	ns
Disable Turn-off Propagation Delay (DIS - Lower Outputs)	T DISLOW		-	50	80	-	90	ns
Disable Turn-off Propagation Delay (DIS - Upper Outputs)	$\mathrm{T}_{\text {DISHIGH }}$		-	75	100	-	125	ns
Disable Turn-on Propagation Delay (DIS - ALO \& BLO)	T DLPLH		-	40	70	-	100	ns
Disable Turn-on Propagation Delay (DIS- AHO \& BHO)	$\mathrm{T}_{\text {DHPLH }}$	$\mathrm{R}_{\mathrm{DEL}}=10 \mathrm{~K}$	-	1.2	2	-	3	$\mu \mathrm{s}$
Refresh Pulse Width (ALO \& BLO)	T REF-PW		375	580	900	350	950	ns

TRUTH TABLE

INPUT			OUTPUT			
ALI, BLI	AHI, BHI	VDDUV	VHBUV	DIS	ALO, BLO	AHO, BHO
X	X	X	X	1	0	0
X	X	1	X	X	0	0
0	X	0	1	0	0	0
1	1	0	0	0	0	0
0	0	0	0	0	0	

NOTE: X signifies that input can be either a " 1 " or " 0 ".

Pin Descriptions

$\begin{gathered} \text { PIN } \\ \text { NUMBER } \end{gathered}$	SYMBOL	DESCRIPTION
1	BHB	B High-side Bootstrap supply. External bootstrap diode and capacitor are required. Connect cathode of bootstrap diode and positive side of bootstrap capacitor to this pin.
2	BHI	B High-side Input. Logic level input that controls BHO driver (Pin 16). BLI (Pin 3) high level input overrides BHI high level input to prevent half-bridge shoot-through, see Truth Table. DIS (Pin 8) high level input overrides BHI high level input. The pin can be driven by signal levels of 0 V to 15 V (no greater than V_{DD}). An internal $100 \mu \mathrm{~A}$ pull-up to V_{DD} will hold BH high, so no connection is required if high-side and low-side outputs are to be controlled by the low-side input.
3	BLI	B Low-side Input. Logic level input that controls BLO driver (Pin 14). If BHI (Pin 2) is driven high or not connected externally then BLI controls both BLO and BHO drivers, with dead time set by delay currents at DEL (Pin 5). DIS (Pin 8) high level input overrides BLI high level input. The pin can be driven by signal levels of 0 V to 15 V (no greater than V_{DD}). An internal $100 \mu \mathrm{~A}$ pull-up to V_{DD} will hold BLI high if this pin is not driven.
4	ALI	A Low-side Input. Logic level input that controls ALO driver (Pin 13). If AHI (Pin 7) is driven high or not connected externally then ALI controls both ALO and AHO drivers, with dead time set by delay currents at DEL (Pin 5). DIS (Pin 8) high level input overrides ALI high level input. The pin can be driven by signal levels of 0 V to 15 V (no greater than V_{DD}). An internal $100 \mu \mathrm{~A}$ pull-up to V_{DD} will hold ALI high if this pin is not driven.
5	DEL	Turn-on DELay. Connect resistor from this pin to V_{SS} to set timing current that defines the dead time between drivers. All drivers turn-off with no adjustable delay, so the DEL resistor guarantees no shoot-through by delaying the turn-on of all drivers. The voltage across the DEL resistor is approximately Vdd -2 V .
6	$\mathrm{V}_{\text {S }}$	Chip negative supply, generally will be ground.
7	AHI	A High-side Input. Logic level input that controls AHO driver (Pin 10). ALI (Pin 4) high level input overrides AHI high level input to prevent half-bridge shoot-through, see Truth Table. DIS (Pin 8) high level input overrides AHI high level input. The pin can be driven by signal levels of 0 V to 15 V (no greater than V_{DD}). An internal $100 \mu \mathrm{~A}$ pull-up to V_{DD} will hold AHI high, so no connection is required if high-side and low-side outputs are to be controlled by the low-side input.
8	DIS	DISable input. Logic level input that when taken high sets all four outputs low. DIS high overrides all other inputs. When DIS is taken low the outputs are controlled by the other inputs. The pin can be driven by signal levels of 0 V to 15 V (no greater than V_{DD}). An internal $100 \mu \mathrm{~A}$ pull-up to V_{DD} will hold DIS high if this pin is not driven.
9	AHB	A High-side Bootstrap supply. External bootstrap diode and capacitor are required. Connect cathode of bootstrap diode and positive side of bootstrap capacitor to this pin.
10	AHO	A High-side Output. Connect to gate of A High-side power MOSFET.
11	AHS	A High-side Source connection. Connect to source of A High-side power MOSFET. Connect negative side of bootstrap capacitor to this pin.
12	V_{DD}	Positive supply to control logic and lower gate drivers. De-couple this pin to $\mathrm{V}_{\text {SS }}$ (Pin 6).
13	ALO	A Low-side Output. Connect to gate of A Low-side power MOSFET.
14	BLO	B Low-side Output. Connect to gate of B Low-side power MOSFET.
15	BHS	B High-side Source connection. Connect to source of B High-side power MOSFET. Connect negative side of bootstrap capacitor to this pin.
16	BHO	B High-side Output. Connect to gate of B High-side power MOSFET.

Timing Diagrams

FIGURE 1. INDEPENDENT MODE

XHI $=\mathrm{HI}$ OR NOT CONNECTED

FIGURE 2. BISTATE MODE

FIGURE 3. DISABLE FUNCTION

Performance Curves

FIGURE 4. $I_{D D}$ SUPPLY CURRENT vs TEMPERATURE AND $V_{D D}$ SUPPLY VOLTAGE

FIGURE 6. FLOATING (IXHB) BIAS CURRENT vs FREQUENCY AND LOAD

FIGURE8. GATE CURRENT vs TEMPERATURE, NORMALIZED TO $25^{\circ} \mathrm{C}$

FIGURE 5. V_{DD} SUPPLY CURRENT vs TEMPERATURE AND SWITCHING FREQUENCY (1000pF LOAD)

FIGURE 7. GATE SOURCE/SINK PEAK CURRENT vs BIAS SUPPLY VOLTAGE AT $25^{\circ} \mathrm{C}$

FIGURE 9. $\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{OH}}$ vs BIAS VOLTAGE TEMPERATURE

Performance Curves (Continued)

FIGURE 10. V_{OL} vs BIAS VOLTAGE AND TEMPERATURE

FIGURE 12. UPPER LOWER TURN-ON/TURN-OFF PROPAGATION DELAY vs TEMPERATURE

FIGURE 14. FULL BRIDGE LEVEL-SHIFT CURRENT vs FREQUENCY (kHz)

FIGURE 11. UNDERVOLTAGE TRIP VOLTAGES vs TEMPERATURE

FIGURE 13. UPPER/LOWER DIS(ABLE) TO TURN-ON/OFF vs TEMPERATURE $\left({ }^{\circ} \mathrm{C}\right)$

FIGURE 15. MAXIMUM POWER DISSIPATION vs AMBIENT TEMPERATURE

Performance Curves (Continued)

FIGURE 16. DEAD-TIME vs DEL RESISTANCE AND BIAS SUPPLY (V_{DD}) VOLTAGE

FIGURE 17. MAXIMUM OPERATING PEAK AHS/BHS VOLTAGE vs TEMPERATURE

HIP4082

Dual-In-Line Plastic Packages (PDIP)

NOTES:

1. Controlling Dimensions: INCH. In case of conflict between English and Metric dimensions, the inch dimensions control.
2. Dimensioning and tolerancing per ANSI Y14.5M-1982.
3. Symbols are defined in the "MO Series Symbol List" in Section 2.2 of Publication No. 95.
4. Dimensions $A, A 1$ and L are measured with the package seated in JEDEC seating plane gauge GS-3.

E16.3 (JEDEC MS-001-BB ISSUE D) 16 LEAD DUAL-IN-LINE PLASTIC PACKAGE

SYMBOL	INCHES		MILLIMETERS		NOTES
	MIN	MAX	MIN	MAX	
A	-	0.210	-	5.33	4
A1	0.015	-	0.39	-	4
A2	0.115	0.195	2.93	4.95	-
B	0.014	0.022	0.356	0.558	-
B1	0.045	0.070	1.15	1.77	8, 10
C	0.008	0.014	0.204	0.355	-
D	0.735	0.775	18.66	19.68	5
D1	0.005	-	0.13	-	5
E	0.300	0.325	7.62	8.25	6
E1	0.240	0.280	6.10	7.11	5
e		SC		BSC	-
e_{A}		SC		BSC	6
e_{B}	-	0.430	-	10.92	7
L	0.115	0.150	2.93	3.81	4
N	16		16		9

5. D, D1, and E1 dimensions do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.010 inch (0.25 mm).
6. E and $\sqrt{e_{A}}$ are measured with the leads constrained to be perpendicular to datum $-\mathrm{C}-$.
7. e_{B} and e_{C} are measured at the lead tips with the leads unconstrained. e_{C} must be zero or greater.
8. B1 maximum dimensions do not include dambar protrusions. Dambar protrusions shall not exceed 0.010 inch (0.25 mm).
9. N is the maximum number of terminal positions.
10. Corner leads (1, N, N/2 and N/2 + 1) for E8.3, E16.3, E18.3, E28.3, E42.6 will have a B1 dimension of $0.030-0.045$ inch (0.76-1.14mm).

HIP4082

Small Outline Plastic Packages (SOIC)

M16.15 (JEDEC MS-012-AC ISSUE C) 16 LEAD NARROW BODY SMALL OUTLINE PLASTIC PACKAGE

SYMBOL	INCHES		MILLIMETERS		NOTES
	MIN	MAX	MIN	MAX	
A	0.0532	0.0688	1.35	1.75	-
A1	0.0040	0.0098	0.10	0.25	-
B	0.013	0.020	0.33	0.51	9
C	0.0075	0.0098	0.19	0.25	-
D	0.3859	0.3937	9.80	10.00	3
E	0.1497	0.1574	3.80	4.00	4
e	0.050 BSC		1.27 BSC		-
H	0.2284	0.2440	5.80	6.20	-
h	0.0099	0.0196	0.25	0.50	5
L	0.016	0.050	0.40	1.27	6
N	16		16		7
α	0°	8°	0°	8°	-

NOTES:

1. Symbols are defined in the "MO Series Symbol List" in Section 2.2 of Publication Number 95.
2. Dimensioning and tolerancing per ANSI Y14.5M-1982.
3. Dimension " D " does not include mold flash, protrusions or gate burrs. Mold flash, protrusion and gate burrs shall not exceed 0.15 mm (0.006 inch) per side.
4. Dimension "E" does not include interlead flash or protrusions. Interlead flash and protrusions shall not exceed 0.25 mm (0.010 inch) per side.
5. The chamfer on the body is optional. If it is not present, a visual index feature must be located within the crosshatched area.
6. " L " is the length of terminal for soldering to a substrate.
7. " N " is the number of terminal positions.
8. Terminal numbers are shown for reference only.
9. The lead width " B ", as measured 0.36 mm (0.014 inch) or greater above the seating plane, shall not exceed a maximum value of 0.61 mm (0.024 inch)
10. Controlling dimension: MILLIMETER. Converted inch dimensions are not necessarily exact.

All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification.
Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.

For information regarding Intersil Corporation and its products, see web site http://www.intersil.com

