

DISCRETE POWER DIODES and THYRISTORS DATA BOOK

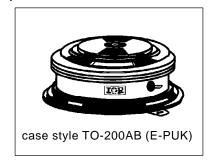
ST380C..C SERIES

PHASE CONTROL THYRISTORS

Hockey Puk Version

Features

- Center amplifying gate
- Metal case with ceramic insulator
- International standard case TO-200AB (E-PUK)
- Low profile hockey-puk to increase current-carrying capability


Typical Applications

- DC motor controls
- Controlled DC power supplies
- AC controllers

Major Ratings and Characteristics

Parameters		ST380CC	Units	
I _{T(AV)}		960	А	
	@ T _{hs}	55	°C	
I _{T(RMS)}		1900	А	
	@ T _{hs}	25	°C	
I _{TSM}	@ 50Hz	15000	А	
	@ 60Hz	15700	А	
l ² t	@ 50Hz	1130	KA ² s	
	@ 60Hz	1030	KA ² s	
V _{DRM} /V _{RRM}		400 to 600	V	
t _q typical		100	μs	
T _J		- 40 to 125	°C	

960A

ELECTRICAL SPECIFICATIONS Voltage Ratings

	•			
Type number	Voltage Code	V _{DRM} /V _{RRM} , max. repetitive peak and off-state voltage V	V _{RSM} , maximum non- repetitive peak voltage V	I_{DRM}/I_{RRM} max. @ $T_J = T_J$ max mA
ST380CC	04	400	500	50
31360CC	06	600	700	50

On-state Conduction

	Parameter	ST380CC	Units	Conditions		
I _{T(AV)}	Max. average on-state current	960 (440)	Α	180° conduction, half sine wave		
, ,	@ Heatsink temperature	55 (75)	°C	double side (single side) cooled		cooled
I _{T(RMS)}	Max. RMS on-state current	1900		DC @ 25°C	heatsink temp	perature double side cooled
I _{TSM}	Max. peak, one-cycle	15000		t = 10ms	No voltage	
	non-repetitive surge current	15700	Α	t = 8.3ms	reapplied	
		12600		t = 10ms	100% V _{RRM}	
		13200		t = 8.3ms	reapplied	Sinusoidal half wave,
l ² t	Maximum I ² t for fusing	1130		t = 10ms	No voltage	Initial $T_J = T_J$ max.
		1030	KA ² s	t = 8.3ms	reapplied	
		800	KA S	t = 10ms	100% V _{RRM}	
		725		t = 8.3ms	reapplied	
I ² √t	Maximum I ² √t for fusing	11300	KA ² √s	t = 0.1 to 10ms, no voltage reapplied		e reapplied
V _{T(TO)1}	Low level value of threshold voltage	0.85	,	$(16.7\% \times \pi \times I_{T(AV)} < I < \pi \times I_{T(AV)}), T_{J} = T_{J}$		$x I_{T(AV)}$), $T_J = T_J max$.
V _{T(TO)2}	High level value of threshold voltage	0.88	V	$(I > \pi \times I_{T(AV)}), T_J = T_J \text{ max.}$		
r _{t1}	Low level value of on-state slope resistance	0.25	mΩ	$(16.7\% \times \pi \times I_{T(AV)} < I < \pi \times I_{T(AV)}), T_J = T_J \text{ max.}$		
r _{t2}	High level value of on-state slope resistance	0.24	11122	$(I > \pi \times I_{T(AV)}), T_J = T_J \text{ max.}$		
V_{TM}	Max. on-state voltage	1.60	V	I_{pk} = 3000A, $T_J = T_J \text{ max}$, $t_p = 10 \text{ms}$ sine		t _p = 10ms sine pulse
I _H	Maximum holding current	600	^	$T_J = 25$ °C, anode supply 12V resistive		. 40\/
I _L	Typical latching current	1000	mA			/ 12v resistive load

Switching

	Parameter	ST380CC	Units	Conditions
di/dt	Max. non-repetitive rate of rise of turned-on current	1000	A/µs	Gate drive 20V, 20Ω , $t_r \le 1\mu s$ $T_J = T_J \text{ max, anode voltage } \le 80\% \text{ V}_{DRM}$
t _d	Typical delay time	1.0	116	Gate current 1A, di $_{g}$ /dt = 1A/ μ s V_{d} = 0.67% V_{DRM} , T_{J} = 25°C
t _q	Typical turn-off time	100	μs	$I_{TM} = 550A$, $T_J = T_J$ max, di/dt = 40A/ μ s, $V_R = 50V$ dv/dt = 20V/ μ s, Gate 0V 100 Ω , $t_p = 500\mu$ s



Fig. 3 - Current Ratings Characteristics

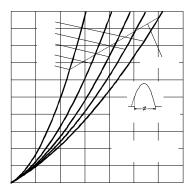


Fig. 5- On-state Power Loss Characteristics

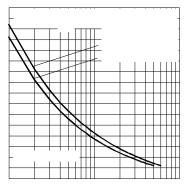


Fig. 7 - Maximum Non-Repetitive Surge Current Single and Double Side Cooled

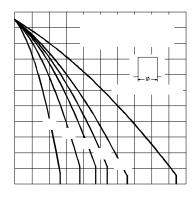


Fig. 4 - Current Ratings Characteristics

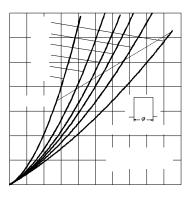


Fig. 6- On-state Power Loss Characteristics

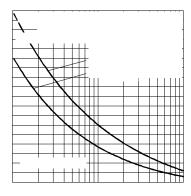


Fig. 8 - Maximum Non-Repetitive Surge Current Single and Double Side Cooled

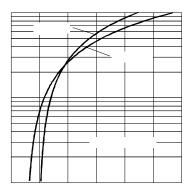


Fig. 9 - On-state Voltage Drop Characteristics

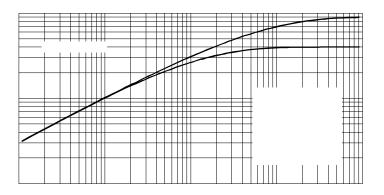


Fig. 10 - Thermal Impedance $Z_{thJ\text{-}hs}$ Characteristics

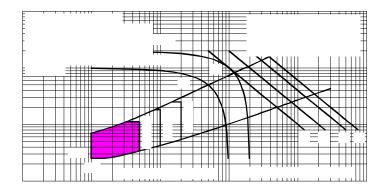


Fig. 11 - Gate Characteristics

Blocking

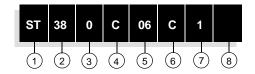
Parameter		ST380CC	Units	Conditions
dv/dt	Maximum critical rate of rise of off-state voltage	rise of 500		$T_J = T_J$ max. linear to 80% rated V_{DRM}
I _{RRM} I _{DRM}	Max. peak reverse and off-state leakage current	50	mA	$T_J = T_J \text{ max, rated } V_{DRM} / V_{RRM} \text{ applied}$

Triggering

99-	11199511119							
	Parameter	ST380CC		Units	Conditions			
P _{GM}	Maximum peak gate power	10.0		w	$T_J = T_J \text{ max, } t_D \le 5 \text{ms}$			
P _{G(AV)}	Maximum average gate power			VV	$T_J = T_J \text{ max, } f = 50 \text{Hz, } d\% = 50$			
I _{GM}	Max. peak positive gate current	3.	0	Α	$T_J = T_J \text{ max, } t_p \le 5 \text{ms}$			
+V _{GM}	Maximum peak positive gate voltage	20 5.0			$T_J = T_J \text{ max, } t_p \le 5 \text{ms}$			
-V _{GM}	Maximum peak negative gate voltage			V				
	DC gate current required to trigger	TYP.	MAX.	mA				
١,		200	-		T _J = - 40°C			
GT		100	200		$T_{J} = -40^{\circ}C$ $T_{J} = 25^{\circ}C$	Max. required gate trigger/ cur-		
		50	-		T _J = 125°C	rent/voltage are the lowest value		
.,	DO 1 1 1	2.5	-		T _J = - 40°C	which will trigger all units 12V anode-to-cathode applied		
V _{GT}	DC gate voltage required to trigger	1.8	3.0	V	$T_J = 25^{\circ}C$			
	to trigger	1.1	-		T _J = 125°C			
I _{GD}	DC gate current not to trigger	10 0.25		mA		Max. gate current/voltage not to		
V _{GD}	DC gate voltage not to trigger			٧	$T_J = T_J \text{ max}$	trigger is the max. value which will not trigger any unit with rated V _{DRM} anode-to-cathode applied		

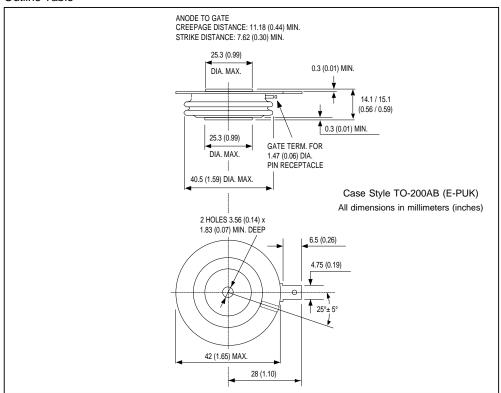
Thermal and Mechanical Specification

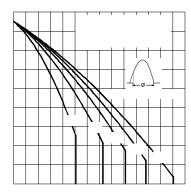
	Parameter	ST380CC	Units	Conditions
T _J	Max. operating temperature range	-40 to 125	°C	
T _{stg}	Max. storage temperature range	-40 to 150		
R _{thJ-hs}	Max. thermal resistance,	0.09	IZ (\A)	DC operation single side cooled
	junction to heatsink	0.04	K/W	DC operation double side cooled
R _{thC-hs}	Max. thermal resistance,	0.02	K/W	DC operation single side cooled
	case to heatsink	0.01	IX/ VV	DC operation double side cooled
F	Mounting force, ± 10%	9800	N	
		(1000)	(Kg)	
wt	Approximate weight	83	g	
	Case style	TO - 200AB (E-F	PUK)	See Outline Table


$\Delta R_{\text{thJ-hs}}$ Conduction

(The following table shows the increment of thermal resistence R_{thJ-hs} when devices operate at different conduction angles than DC)

uio iio								
	Conduction angle	Sinusoidal	conduction	Rectangula	Rectangular conduction		Conditions	
ı	Conduction angle	Single Side	Double Side	Single Side	Double Side	Units	Conditions	
ı	180°	0.010	0.011	0.007	0.007		$T_J = T_J \text{ max.}$	
ı	120°	0.012	0.012	0.012	0.013			
ı	90°	0.015	0.015	0.016	0.017	K/W		
	60°	0.022	0.022	0.023	0.023			
	30°	0.036	0.036	0.036	0.037			


Ordering Information Table


Device Code

- 1 Thyristor
- Essential part number
- 3 0 = Converter grade
- 4 C = Ceramic Puk
- 5 Voltage code: Code x 100 = V_{RRM} (See Voltage Rating Table)
- 6 C = Puk Case TO-200AB (E-PUK)
- 7 0 = Eyelet terminals (Gate and Auxiliary Cathode Unsoldered Leads)
 - 1 = Fast-on terminals (Gate and Auxiliary Cathode Unsoldered Leads)
 - 2 = Eyelet terminals (Gate and Auxiliary Cathode Soldered Leads)
 - 3 = Fast-on terminals (Gate and Auxiliary Cathode Soldered Leads)
- 8 Critical dv/dt: None = 500V/µsec (Standard selection)
 - L = 1000V/µsec (Special selection)

Outline Table

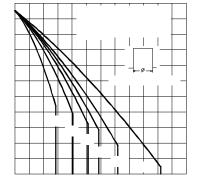


Fig. 1 - Current Ratings Characteristics

Fig. 2 - Current Ratings Characteristics