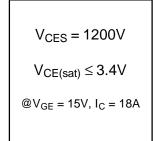


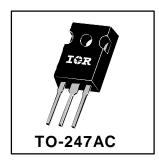
IRGPH40M


INSULATED GATE BIPOLAR TRANSISTOR

Short Circuit Rated Fast IGBT

Features

- Short circuit rated 10 μ s @ 125°C, V _{GE} = 15V
- Switching-loss rating includes all "tail" losses
- Optimized for medium operating frequency (1 to 10kHz)



Description

Insulated Gate Bipolar Transistors (IGBTs) from International Rectifier have higher usable current densities than comparable bipolar transistors, while at the same time having simpler gate-drive requirements of the familiar power MOSFET. They provide substantial benefits to a host of high-voltage, high-current applications.

These new short circuit rated devices are especially suited for motor control and other applications requiring short circuit withstand capability.

Absolute Maximum Ratings

	Parameter	Max.	Units
V _{CES}	Collector-to-Emitter Voltage	1200	V
I _C @ T _C = 25°C	Continuous Collector Current	31	
I _C @ T _C = 100°C	Continuous Collector Current	18	Α
I _{CM}	Pulsed Collector Current ①	62	
I _{LM}	Clamped Inductive Load Current ②	62	
t _{sc}	Short Circuit Withstand Time	10	μs
V_{GE}	Gate-to-Emitter Voltage	±20	V
E _{ARV}	Reverse Voltage Avalanche Energy 3	15	mJ
P _D @ T _C = 25°C	Maximum Power Dissipation	160	W
P _D @ T _C = 100°C	Maximum Power Dissipation	65	
TJ	Operating Junction and	-55 to +150	
T _{STG}	Storage Temperature Range		°C
	Soldering Temperature, for 10 sec.	300 (0.063 in. (1.6mm) from case)	
	Mounting torque, 6-32 or M3 screw.	10 lbf•in (1.1N•m)	

Thermal Resistance

	Parameter	Min.	Тур.	Max.	Units
$R_{\theta JC}$	Junction-to-Case	_	_	0.77	
$R_{\theta CS}$	Case-to-Sink, flat, greased surface	_	0.24	_	°C/W
$R_{\theta JA}$	Junction-to-Ambient, typical socket mount	_	_	40	
Wt	Weight	_	6 (0.21)	_	g (oz)

IRGPH40M

Electrical Characteristics @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
V _{(BR)CES}	Collector-to-Emitter Breakdown Voltage	1200			V	$V_{GE} = 0V, I_{C} = 250\mu A$
V _{(BR)ECS}	Emitter-to-Collector Breakdown Voltage 4	20			V	$V_{GE} = 0V, I_{C} = 1.0A$
$\Delta V_{(BR)CES}/\Delta T_J$	Temperature Coeff. of Breakdown Voltage	_	1.1	_	V/°C	V _{GE} = 0V, I _C = 1.0mA
V _{CE(on)}	Collector-to-Emitter Saturation Voltage		2.3	3.4		I _C = 18A
		_	3.0		V	$I_C = 31A$ $V_{GE} = 15V$
		_	2.8			$I_C = 18A, T_J = 150^{\circ}C$
V _{GE(th)}	Gate Threshold Voltage	3.0	_	5.5		$V_{CE} = V_{GE}, I_{C} = 250 \mu A$
$\Delta V_{GE(th)}/\Delta T_{J}$	Temperature Coeff. of Threshold Voltage	_	-14	_	mV/°C	$V_{CE} = V_{GE}, I_{C} = 250 \mu A$
g _{fe}	Forward Transconductance ⑤	4.0	10	_	S	$V_{CE} = 100V, I_{C} = 18A$
I _{CES}	Zero Gate Voltage Collector Current			250	μA	$V_{GE} = 0V, V_{CE} = 1200V$
		_		3500		V _{GE} = 0V, V _{CE} = 1200V, T _J = 150°C
I _{GES}	Gate-to-Emitter Leakage Current	_	_	±100	nA	$V_{GE} = \pm 20V$

Switching Characteristics @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
Q_g	Total Gate Charge (turn-on)	_	50	75		I _C = 18A
Q _{ge}	Gate - Emitter Charge (turn-on)	_	11	21	nC	V _{CC} = 400V
Q_{gc}	Gate - Collector Charge (turn-on)	_	15	30		$V_{GE} = 15V$
t _{d(on)}	Turn-On Delay Time	-	30	_		$T_J = 25^{\circ}C$
t _r	Rise Time		21	_	ns	$I_C = 18A, V_{CC} = 960V$
t _{d(off)}	Turn-Off Delay Time	-	400	890		$V_{GE} = 15V$, $R_G = 10\Omega$
t _f	Fall Time	-	390	740		Energy losses include "tail"
Eon	Turn-On Switching Loss	-	1.1	_		
E _{off}	Turn-Off Switching Loss	-	6.3	_	mJ	
E _{ts}	Total Switching Loss	_	7.4	14		
t _{sc}	Short Circuit Withstand Time	10	_	_	μs	$V_{CC} = 720V, T_J = 125^{\circ}C$
						$V_{GE} = 15V, R_G = 10\Omega, V_{CPK} < 1000V$
t _{d(on)}	Turn-On Delay Time	_	28	_		$T_{J} = 150^{\circ}C,$
t _r	Rise Time		24	_	ns	$I_C = 18A, V_{CC} = 960V$
t _{d(off)}	Turn-Off Delay Time		600	_		$V_{GE} = 15V$, $R_G = 10\Omega$
t _f	Fall Time	_	870	_		Energy losses include "tail"
Ets	Total Switching Loss	-	15	_	mJ	
LE	Internal Emitter Inductance		13	_	nΗ	Measured 5mm from package
C _{ies}	Input Capacitance		1360	_		$V_{GE} = 0V$
C _{oes}	Output Capacitance		100	_	pF	$V_{CC} = 30V$
C _{res}	Reverse Transfer Capacitance	_	15	_		f = 1.0MHz

Notes:

- \odot Repetitive rating; V _{GE}=20V, pulse width limited by max. junction temperature.
- ③ Repetitive rating; pulse width limited by maximum junction temperature.
- S Pulse width 5.0µs, single shot.

- @ $V_{CC}\!\!=\!\!80\%(V_{CES}),~V_{GE}\!\!=\!\!20V,~L\!\!=\!\!10\mu H,~$ $R_{G}\!\!=\!10\Omega$
- ⓐ Pulse width ≤ 80 μ s; duty factor ≤ 0.1%.

Refer to Section D - page D-13 for Package Outline 3 - JEDEC Outline TO-247AC