APPROVALS

- UL recognised, File No. E91231

DESCRIPTION

The ICPL2630 / ICPL2631 are dual channel optocouplers consisting of GaAsP light emitting diodes and high gain integrated photo detectors to provide 3500 Volts $_{\text {RMS }}$ electrical isolation between input and output. The output of the detector I.C.'s are open collector Schottky clamped transistors. The ICPL2631 has an internal shield which provides a guaranteed common mode transient immunity specification of $1000 \mathrm{~V} / \mu \mathrm{s}$ minimum. This unique design provides maximum ac and dc circuit isolation while achieving TTL compatibility. The coupled parameters are guaranteed over the temperature range of $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$, such that a maximum input signal of 5 mA will provide a minimum output sink current of 13 mA (equivalent to fan-out of eight gates)

FEATURES

- High speed - 10MBit/s
- High Common Mode Transient Immunity $10 \mathrm{kV} / \mu \mathrm{s}$ typical
- Logic gate output
- ICPL2631 has improved noise shield for superior common mode rejection
- Options :-

10mm lead spread - add G after part no. Surface mount - add SM after part no. Tape\&reel - add SMT\&R after part no.

APPLICATIONS

- Line receiver, data transmission
- Computer-peripheral interface
- Data multiplexing
- Pulse transformer replacement

OPIIONSM

ABSOLUTE MAXIMUM RATINGS ($25^{\circ} \mathrm{C}$ unless otherwise specified)

Storage Temperature \square $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ Operating Temperature \qquad $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Lead Soldering Temperature
($1 / 16$ inch $(1.6 \mathrm{~mm})$ from case for 10 secs$) 260^{\circ} \mathrm{C}$

INPUT DIODE

Average Forward Current (note 5)	15 mA
Peak Forward Current (less than 1msec duration)(note 5) Reverse Voltage (note 5)	30 mA

DETECTOR

Supply Voltage $\left(\mathrm{V}_{\mathrm{CC}}\right)$ (1 minute maximum)	7V
Output Current (I_{O}) (note 5)	16 mA
Output Voltage (V_{o}) (note 5)	7V
Collector Output Power	60 mW

ISOCOM COMPONENTS LTD

Unit 25B, Park View Road West,
Park View Industrial Estate, Brenda Road Hartlepool, Cleveland, TS25 1YD
Tel: (01429) 863609 Fax :(01429) 863581

ISOCOM INC

1024 S. Greenville Ave, Suite 240, Allen, TX 75002 USA
Tel:(214)495-0755 Fax:(214)495-0901 e-mail info@isocom.com http://www.isocom.com

ELECTRICAL CHARACTERISTICS ($\mathrm{T}_{\mathrm{A}}=\mathbf{0}^{\circ} \mathrm{C}$ to $\mathbf{7 0}^{\circ} \mathrm{C}$ Unless otherwise noted)

PARAMETER	SYM	DEVICE	MIN	TYP* MAX	UNITS	TEST CONDITION	
High Level Output Current (note 5)	I_{OH}			2	250	$\mu \mathrm{~A}$	$\mathrm{~V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=5.5 \mathrm{~V}$
$\mathrm{I}_{\mathrm{F}}=250 \mu \mathrm{~A}$							

* All typicals at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

RECOMMMENDED OPERATING CONDITIONS

PARAMETER	SYMBOL	MIN	MAX	UNITS
Input Current, Low Level	I_{FL}	0	250	$\mu \mathrm{~A}$
Input Current, High Level	I_{FH}	6.3^{*}	15	mA
Supply Voltage, Output	V_{CC}	4.5	5.5	V
Fan Out (TTL Load)	N		8	
Operating Temperature	T_{A}	0	70	${ }^{\circ} \mathrm{C}$

*6.3mA is a guard banded value which allows for at least 20% CTR degradation.
Initial input current threshold value is 5.0 mA or less

SWITCHING SPECIFICATIONS AT $T_{A}=25^{\circ} \mathrm{C}\left(\mathrm{V}_{\mathrm{CC}}=\mathbf{5 V}, \mathrm{I}_{\mathrm{F}}=\mathbf{7 . 5 m A}\right.$ Unless otherwise noted $)$

PARAMETER	SYM	DEVICE	MIN	TYP	MAX	UNITS	TEST CONDITION
Propagation Delay Time to Logic Low at Output (fig 1)(note2)	$\mathrm{t}_{\text {PHL }}$			55	75	ns	$\mathrm{R}_{\mathrm{L}}=350 \Omega, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$
Propagation Delay Time to Logic High at Output (fig 1)(note3)	$\mathrm{t}_{\text {PLH }}$			45	75	ns	$\mathrm{R}_{\mathrm{L}}=350 \Omega, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$
Common Mode Transient Immunity at Logic High Level Output (fig 2)(note7)	CM_{H}	$\begin{aligned} & \text { ICPL2630 } \\ & \text { ICPL2631 } \end{aligned}$	1000	$\begin{aligned} & 10000 \\ & 10000 \end{aligned}$		$\begin{aligned} & \mathrm{V} / \mu \mathrm{s} \\ & \mathrm{~V} / \mu \mathrm{s} \end{aligned}$	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CM}}=50 \mathrm{~V}_{\mathrm{PP}} \\ & \mathrm{R}_{\mathrm{L}}=350 \Omega, \mathrm{~V}_{\mathrm{OH}}=2 \mathrm{Vmin} . \end{aligned}$
Common Mode Transient Immunity at Logic Low Level Output (fig 2)(note8)	CM_{L}	$\begin{aligned} & \text { ICPL2630 } \\ & \text { ICPL2631 } \end{aligned}$	-1000	$\begin{aligned} & -10000 \\ & -10000 \end{aligned}$		V/ $\mu \mathrm{s}$ V/ $\mu \mathrm{s}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CM}}=50 \mathrm{~V}_{\mathrm{PP}} \\ & \mathrm{R}_{\mathrm{L}}=350 \Omega, \mathrm{~V}_{\mathrm{OL}}=0.8 \mathrm{Vmax} . \end{aligned}$

NOTES:-
1 Bypassing of the power supply line is required, with a $0.01 \mu \mathrm{~F}$ ceramic disc capacitor adjacent to each isolator. The power supply bus for the isolator(s) should be seperate from the bus for any active loads. Otherwise a larger value of bypass capacitor (up to $0.1 \mu \mathrm{~F}$) may be needed to supress regenerative feedback via the power supply.
2 The $\mathrm{t}_{\mathrm{PHL}}$ propagation delay is measured from the 3.75 mA level Low to High transition of the input current pulse to the 1.5 V level on the High to Low transition of the output voltage pulse.
3 The $\mathrm{t}_{\text {pLH }}$ propagation delay is measured from the 3.75 mA level High to Low transition of the input current pulse to the 1.5 V level on the Low to High transition of the output voltage pulse.
4 Device considered a two terminal device; pins 1, 2, 3, and 4 shorted together, and pins 5, 6, 7 and 8 shorted together.
5 Each channel.
6 Measured between pins 1 and 2 shorted together and pins 3 and 4 shorted together.
$7 \quad \mathrm{CM}_{\mathrm{H}}$ is the maximum tolerable rate of rise of the common mode voltage to assure that the output will ${ }^{\mathrm{H}}$ remain in a high logic state (ie Vout $>2.0 \mathrm{~V}$).
$8 \quad \mathrm{CM}_{\mathrm{L}}$ is the maximum tolerable rate of fall of the common mode voltage to assure that the output will remain in a low logic state (ie Vout $<0.8 \mathrm{~V}$)

FIG. 1 SWITCHING TEST CIRCUIT

FIG. 2 TEST CIRCUIT FOR TRANSIENT IMMUNITY AND TYPICAL WAVEFORMS

Output Voltage vs. Forward Input Current

High Level Output Current vs. Ambient Temperature

