IS22C022 VERSATILE 20 SEC INSTANT VOICE ROM

ISSI®

SEPTEMBER 1999

FEATURES

- Minimum 20 second voice length at 6 KHz
- Versatile features for playback
- Combination of voice building blocks extends the duration of playback
- · Voice data re-use saves memory space
- · Four trigger pins, S1 to S4 for eight groups
- SBT for sequential play-all or random play
- Holdable and unholdable, edge and level triggering option
- 15 ms debounce time suitable for CDS
- · IRP interrupt pin for master reset
- Three programmable output pins for STP Stop Pulse, BUSY Signal, and LED
- Built-in oscillator with variable sample rate
- · Single external resistor to determine sample rate
- Built-in D/A converter, EPROM
- ADPCM data compression provides high sound quality
- Optional pop noise elimination function
- COUT pin drives speaker with a transistor
- Vout1 and Vout2 drives buzzer or speaker directly
- Auto-power down
- 2.4V-6V single power supply operation
- Low standby current (<5 µA at 3V)
- Development tools support

GENERAL DESCRIPTION

IS22C022 is a high quality voice synthesizer capable of varying playback duration. A proprietary ADPCM algorithm is used. The audio message is stored in a 512K bits on-chip EPROM which can store up to 20 seconds of voice data at 6 KHz sample rate.

The IS22C022 eliminates the need of complicated circuitry in voice playback but still achieves high voice quality. Sounds such as human speech, animal sounds, musical sounds and even special sound effects can be synthesized. Versatile combinations in sections achieve longer playback duration. In addition, devices can be cascaded to achieve longer voice duration. Two devices can be configured in parallel in order to achieve signal mixing without an external mixer in which speech can be mixed with background music each from one of two different chips.

The IS22C022 provides wide operating voltage range from 2.4V to 6.0V. PWM digital amplifier output pins, Vout1 and Vout2 provides direct drive to buzzer or speaker.

A current output pin, COUT, enables the device to drive a speaker through a low cost NPN transistor. No complex filtering or amplifier circuit is needed. An automatic ramp-down function eliminates undesired noise at the end of playback.

Group of sections

The voice data memory area of the IS22C022 can be subdivided into 126 sections. Any combination of these sections will form an individual group for data playback. A maximum of eight groups are available with activation controlled by S1 to S4 pins. The SBT pin can be used to trigger multiple groups playback in sequence.

This specification contains ADVANCE INFORMATION data. ISSI reserves the right to make changes to its products at any time without notice in order to improve design and supply the best possible product. We assume no responsibility for any errors which may appear in this publication. © Copyright 1999, Integrated Silicon Solution, Inc.

Group Configuration

Voice within each group are combinations of different fixed memory sections of up to 126 sections. These sections are the fundamental voice building blocks for arranging playback without limiting sequencing. This provides flexibility and allows data to be re-used, beneficial for applications with many repeated sounds or words.

An example of group configuration is illustrated below:

Group No.	Section Entry
Group 1	Sec 1 + Sec 2 + Sec 3 Sec 109
Group 2	Sec 3 + Sec 2
Group 3	Sec 10 + Sec 11 + Sec 12
Group 4	Sec110 + Sec 10 + Sec 5

Group Configuration

The entry of sections for each group is truly random and without limitation. However, there is a limit in the total number of entries for eight groups, which is 992 in the IS22C022. It is acceptable to allocate all entries into only one group or distribute out to other groups. It depends on how many groups of messages are required.

Programmable Options

Groups in IS22C022 can have independent options. They include:

- Edge or Level trigger
- Unholdable or Holdable trigger
- Retriggerable or non-retriggerable
- Sequential or Random playback
- LED1, LED2, Busy, and Stop pulse are configurable
- Four selections in playback frequency

Selections in Triggering

The IS22C022 can be triggered in different ways, Edge or Level trigger, Holdable or Unholdable, Retriggerable or Non-retriggerable. The combinations of the triggering options provide versatile playback.

By enabling Retrigger, the playback can be controlled in Stop and Start mode. A trigger on any trigger pin will stop the current message and start the next message immediately.

Selections in Playback Frequency

This option provides four choices for each group in frequency which implies it is possible to have four different sampling rates in one chip or one sample rate with a different playback frequency. As a matter of fact, the available choices are also dependent on the pullup resistor value at the OSC pin. For example, if the fundamental frequency choice is F, it can provide choices in x1, x1-1/2, x2, x3.

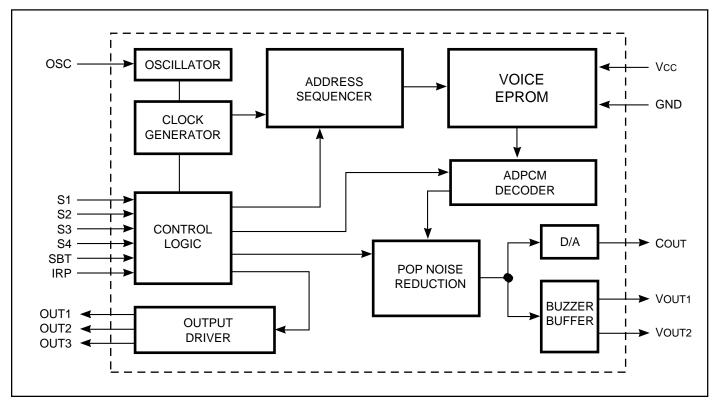
Selections in Playback Mode

There are two playback modes, Sequential and Random in the IS22C022. If the chip is programmed in Sequential Mode, messages will playback in the order from Group 1 to Group 8 by triggering the SBT pin. If the chip is programmed in Random Mode, messages will be played back randomly by triggering the SBT pin.

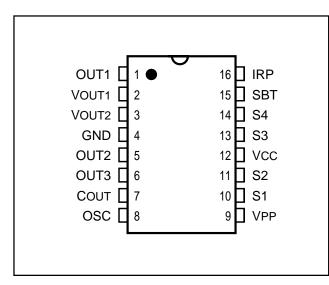
Selections in Output Buffer

There are three independent output pins, OUT1, OUT2, and OUT3, available for several combinations of LED1, LED2, Stop Pulse, and Busy Signal for each group. The following table illustrates the four different combinations.

	OUT1	OUT2	OUT3
1.	LED1	LED2	Busy
2.	STOP	LED1	LED2
3.	Busy	Stop	LED1
4.	LED2	Busy	Stop


LED1 and LED2 are complemented outputs flashing at approximately a 3 Hz rate. Stop pulse (STOP) gives a 15 ms positive pulse at the end of the playback for each Group with option have or do not have the Stop pulse.

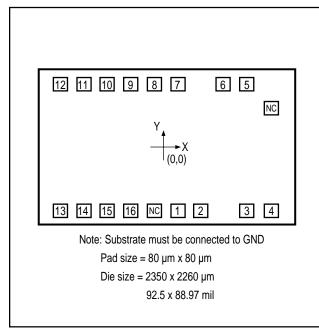
Busy is active high and Section dependent but not Group dependent. Even if same section in different group may have different output in Busy output. For instance, BUSY can be high for Section 4 in Group 1 but low in Group 4. BUSY can be used as a synchronous signal. During standby mode all three outputs must be low.


Software Support

ISSI provides dedicated software to the customer. With this tool, the customer can compose their own messages and configure the chip to fit into their applications very easily.

BLOCK DIAGRAM

PIN CONFIGURATIONS 300-mil PDIP


PIN DESCRIPTION

OUT1	Programmable output 1
OUT2	Programmable output 2
OUT3	Programmable output 3
Vout1	PWM audio signal output for buzzer and speaker
Vout2	PWM audio signal output for buzzer and speaker
GND	Power ground
Соит	Current output from internal DAC for speaker playback
OSC	Oscillator resistor pin to control sampling frequency
VPP	Program power supply, no connect when voice playback
S1	Trigger switch 1, internal pull low, active high
S2	Trigger switch 2, internal pull low, active high
Vcc	Positive power supply
S3	Trigger switch 3, internal pull low, active high
S4	Trigger switch 4, internal pull low, active high
SBT	Sequential trigger, internal pull low, active high
IRP	Interrupt to stop playback, internal pull low, active high
Note:	

Note:

1. The following pins are used to program data into the memory: pins 4, 5, 6, 8, 9, 12, 15 and 16.

BONDING DIAGRAM

Note:

Programming requires connection to pins 4, 5, 6, 8, 9, 12, 15, and 16.

BONDING PARAMETERS

Pin	Name	Х	Y
1	OUT1	-6	-1017
2	Vout1	297	-1017
3	Vout2	803	-1017
4	GND	1058	-1017
5	OUT2	927	1017
6	OUT3	697	1017
7	Соит	199	1017
8	OSC	-103	1017
9	Vpp	-358	1017
10	S1	-566	1017
11	S2	810	1017
12	Vcc	-1059	1017
13	S3	-934	-1017
14	S4	689	-1017
15	SBT	-444	-1017
16	IRP	-200	-1017

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
Vcc - GND	Terminal Voltage with Respect to GND	-0.5 to +7.0	V
Vin		GND - 0.3 < VIN < Vcc + 0.3	V
Vout		GND < Vout < Vcc	V
ТА	Operating Temperature	-10 to +85	°C
Тѕтс	Storage Temperature	-55 to +125	°C

DC CHARACTERISTICS

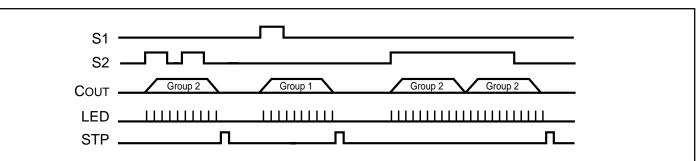
Symbol	Parameter Description	Test Conditions	Min.	Тур.	Max.	Unit
Vcc	Operating Voltage		2.4	3.0	6.0	V
lsв	Standby Current	Vcc = 3.0V, I/O Open	_	1	5	μA
Юр	Operating Current	Vcc = 3.0V, I/O Open	_	_	100	μA
Vін	Input HIGH Voltage	Vcc = 3.0V	2.5	3.0	3.5	V
VIL	Input LOW Voltage	Vcc = 2.0V	-0.3	0	0.3	V
Іон	Vout HIGH Operating Current	Vcc = 3.0V, Vout = 3.0V	_	-12	_	mA
Iol	Vout LOW Operating Current	Vcc = 3.0V, $Vout = 0V$	_	12	_	mA
lco	Cout Operating Current	Vcc = 3.0V, Vcout = 0.7V	_	-2	_	mA
ISTPH	STP HIGH Operating Current	Vcc = 3.0V, Vstp = 3.0V	_	-5	_	mA
ISTPL	STP LOW Operating Current	Vcc = 3.0V, Vstp = 0V	_	5	_	mA
ILED	LED Output Current	Vcc = 2.2V - 6.0V	6	8	10	mA
ÐF/F	Frequency Stability	(Fosc [3V] – Fosc [3.5V]) / Fosc (3.0V)		_	5	%

SAMPLING FREQUENCY vs Rosc FOR IS22C022

Common Sampling Rate vs. Oscillator Resistor

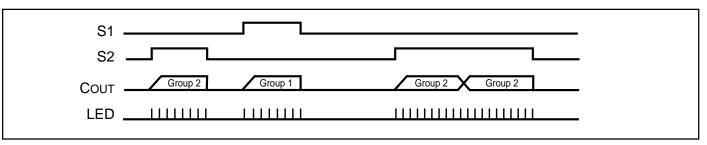
Rosc Kohm
1,920
1,750
1,610
1,490
1,380
1,290
1,200
1,130
1,070
1,010
961
915
874
835

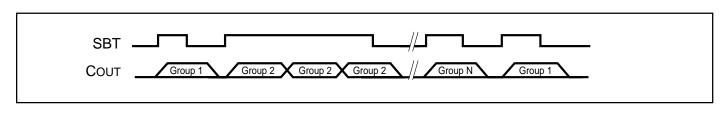
SAMPLING FREQUENCY vs Rosc FOR IS22C022


Common Resistors vs. Sampling Rate

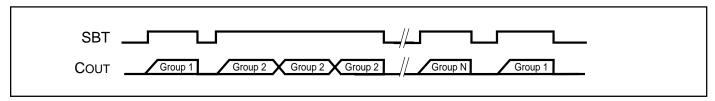
Rosc Kohm	Sampling Frequency KHz
2000	4.8
1500	6.5
1300	7.5
1200	8.0
1000	9.5
910	10.5
820	11.7
750	12.7
680	14.0
560	16.7
510	18.1
470	19.5

TIMING WAVEFORMS

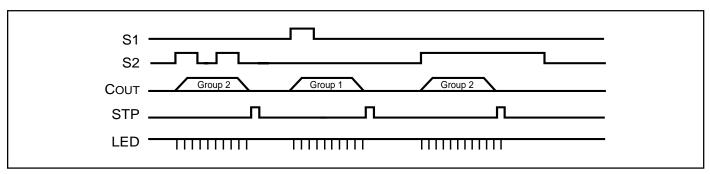

- 1. Level, Unholdable, Non-retriggerable
 - a. Trigger is shorter than a Group output
- b. Trigger is longer than a Group output


2. Level Holdable

a. Trigger is shorter than a Group output

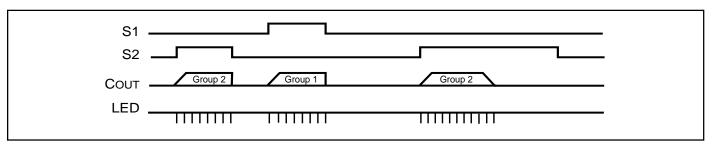

b. Trigger is longer than a Group output

3. Single Button Trigger (SBT), Sequential a. Level Unholdable

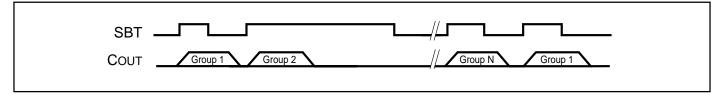

b. Level Holdable

Where N is up to 8.

4. Edge, Unholdable, Non-retriggerable


a. Trigger is shorter than a Group output b. Trigger is longer than a Group output

5. Edge Holdable

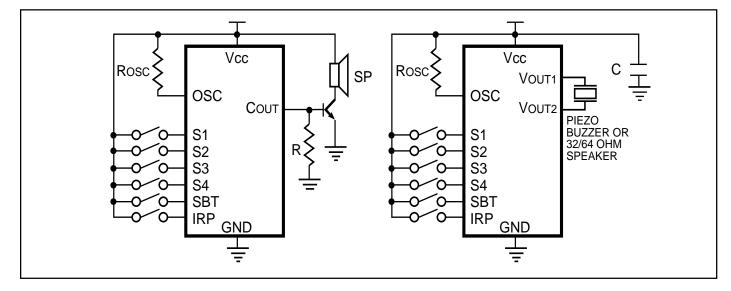

a. Trigger is shorter than a Group output

b. Trigger is longer than a Group output

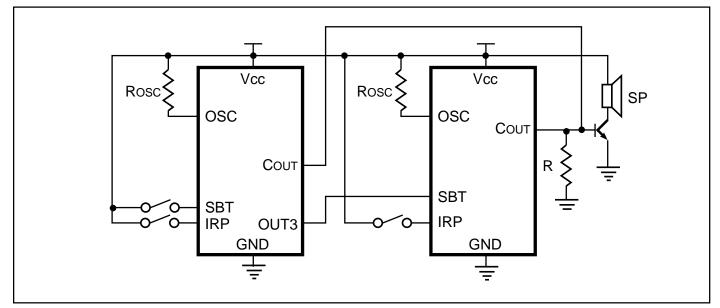
6. Single Button Trigger (SBT), Sequential

a. Edge Unholdable

b. Edge Holdable

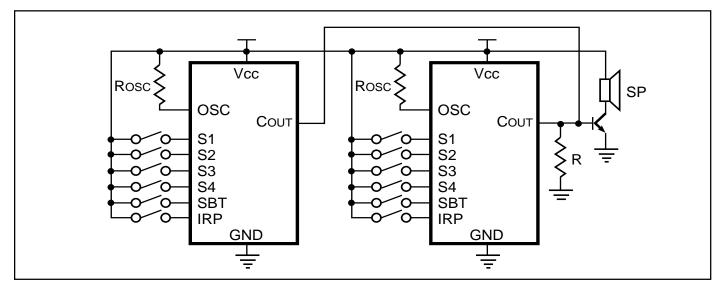


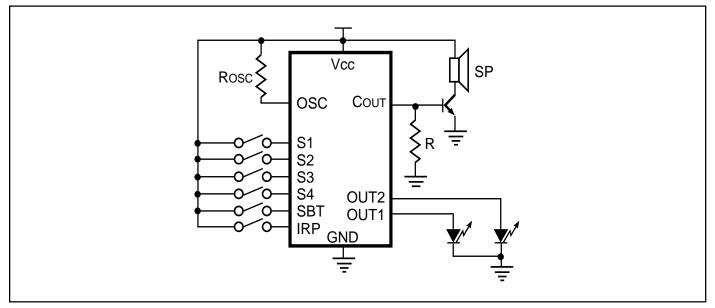
Where N is up to 8.



APPLICATION CIRCUITS

TYPICAL APPLICATION

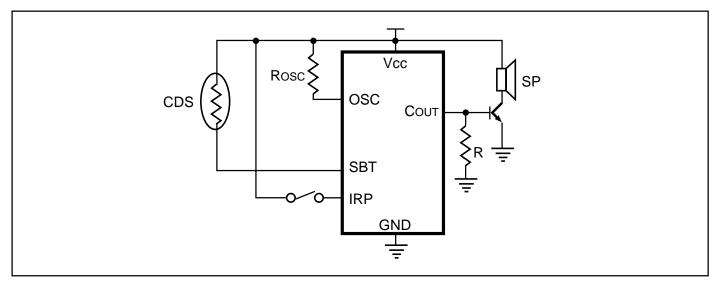

CASCADE APPLICATION


Notes:

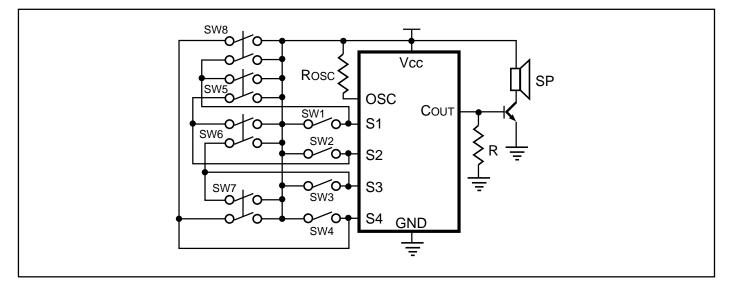
- 1. To direct dirve a speaker or buzzer, C is needed (C = 0.1 μ F).
- 2. R = 330 Ohm (if using transistor 8050 and Vcc = 4.5V).
- 3. SP = 8 Ohm speaker.
- 4. To determine the value of Rosc, refer to the Sampling Frequency vs. Rosc tables on page 5.

PRALLEL APPLICATION

LED APPLICATION



Notes:


- The following are typical values:
- 1. ß of NPN transistor > 130.
- 2. $SP = 8\Omega$. 1/4W.
- 3. Piezo buzzer resonant frequency = 1 KHz.

CDS APPLICATION

8-SEGMENT TRIGGER APPLICATION

ORDERING INFORMATION Commerical Range: 0°C to +70°C

Order Part No.	Package
IS22C022X	Unpackaged
IS22C022P	300-mil Plastic DIP

NOTICE

Integrated Silicon Solution, Inc., reserves the right to make changes to the products contained in this publication in order to improve design, performance or reliability. Integrated Silicon Solution, Inc. assumes no responsibility for the use of any circuits described herein, conveys no license under any patent or other right, and makes no representation that the circuits are free of patent infringement. Charts and schedules contained herein reflect representative operating parameters, and may vary depending upon a user's specific application. While the information in this publication has been carefully checked, Integrated Silicon Solution, Inc. shall not be liable for any damages arising as a result of any error or omission.

Integrated Silicon Solution, Inc. does not recommend the use of any of its products in life support applications where the failure or malfunction of the product can reasonably be expected to cause failure of the life support system or to significantly affect its safety or effectiveness. Products are not authorized for use in such applications unless Integrated Silicon Solution, Inc. receives written assurances, to its satisfaction, that: (a) the risk of injury or damage has been minimized; (b) the user assumes all such risks; and (c) potential liability of Integrated Silicon Solution, Inc. is adequately protected under the circumstances.

Copyright 1999 Integrated Silicon Solution, Inc.

Reproduction in whole or in part, without the prior written consent of Integrated Silicon Solution, Inc., is prohibited.

ISSI[®]

Integrated Silicon Solution, Inc.

2231 Lawson Lane Santa Clara, CA 95054 Tel: 1-800-379-4774 Fax: (408) 588-0806 E-mail: sales@issi.com www.issi.com