GIXYS

High Voltage,
 High speed IGBT

Short Circuit SOA Capability

IXSH 35N140A
IXSH 35N135A

Symbol	Test Conditions	Maximum Ratings
$\mathrm{V}_{\text {CES }}$	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$	35N140A 1400
		35N135A 1350
$\mathrm{V}_{\text {cGR }}$	$\mathrm{T}_{j}=25^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{GE}}=1 \mathrm{M} \Omega$	35N140A 1400
		35N135A 1350
$V_{\text {GES }}$	Continuous	± 20
$\mathrm{V}_{\text {GEM }}$	Transient	± 30
$\mathrm{I}_{\mathrm{C} 25}$	$\mathrm{T}_{\mathrm{c}}=25^{\circ} \mathrm{C}$	70
$\mathrm{I}_{\text {c90 }}$	$\mathrm{T}_{\mathrm{C}}=90^{\circ} \mathrm{C}$	35
$\mathrm{I}_{\text {cm }}$	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}, 1 \mathrm{~ms}$	140
$\begin{aligned} & \text { SSOA } \\ & \text { (RBSOA) } \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{GE}}=15 \mathrm{~V}, \mathrm{~T}_{\mathrm{J}}=125^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{G}}=22 \Omega \\ & \text { Clamped inductive load, } \mathrm{L}=30 \mu \mathrm{H} \end{aligned}$	$\begin{array}{r} \hline \mathrm{I}_{\mathrm{CM}}=70 \\ @ 960 \end{array}$
$\begin{aligned} & \mathrm{t}_{\mathrm{sc}} \\ & \text { (SCSOA) } \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{GE}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{CE}}=840 \mathrm{~V}, \mathrm{~T}_{J}=125^{\circ} \mathrm{C} \\ & \mathrm{R}_{\mathrm{G}}=22 \Omega, \text { non repetitive } \end{aligned}$	10
P_{c}	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	300
T,		$-55 \ldots+150$
T_{JM}		150
$\mathrm{T}_{\text {stg }}$		$-55 \ldots+150$
M ${ }_{\text {d }}$	Mounting torque	1.13/10 Nm/b.in.
Weight		6
Maximum	temperature for soldering	300

1.6 mm (0.062 in .) from case for 10 s

Symbol	Test Conditions	Characteristic Values ($\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$, unless otherwise specified)				
				typ.		
$\mathrm{BV}_{\text {ces }}$	$\mathrm{I}_{\mathrm{C}}=3 \mathrm{~mA}, \mathrm{~V}_{\mathrm{GE}}=0 \mathrm{~V}$	$\begin{aligned} & 35 N 140 A \\ & 35 N 135 A \end{aligned}$	$\begin{aligned} & 1400 \\ & 1350 \end{aligned}$			V
$\mathrm{V}_{\text {GE(th) }}$	$\mathrm{I}_{\mathrm{C}}=4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=\mathrm{V}_{\mathrm{GE}}$		4		8	V
$\mathrm{I}_{\text {ces }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CE}}=0.8 \quad \mathrm{~V}_{\mathrm{CES}} \\ & \mathrm{~V}_{\mathrm{GE}}=0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{J}}=125^{\circ} \mathrm{C} \end{aligned}$			400 2	$\underset{\mathrm{mA}}{\mathrm{~mA}}$
$\underline{\mathrm{I}_{\text {GES }}}$	$\mathrm{V}_{\mathrm{CE}}=0 \mathrm{~V}, \mathrm{~V}_{G E}= \pm 20 \mathrm{~V}$				± 100	nA
$\mathrm{V}_{\text {CE(sat) }}$	$\mathrm{I}_{\mathrm{C}}=\mathrm{I}_{\mathrm{C90}}, \mathrm{~V}_{\mathrm{GE}}=15 \mathrm{~V}$			3.4	4	V

$\mathrm{V}_{\mathrm{CES}}$	$\mathrm{I}_{\mathrm{C} 25}$	$\mathrm{~V}_{\mathrm{CE}(\mathrm{sat)})}$
1400 V	$\mathbf{7 0 ~ A}$	$\mathbf{4 V}$
1350 V	$\mathbf{7 0 ~ A}$	$\mathbf{4 V}$

TO-247 AD

$$
\mathrm{G}=\mathrm{G} \text { ate, } \quad \mathrm{C}=\text { Collector, }
$$

$$
\mathrm{E}=\mathrm{E} \text { mitter }, \quad \mathrm{TAB}=\text { Collector }
$$

Features

- International standard package JEDEC TO-247
- High frequency IGBT with guaranteed Short Circuit SOA capability
- Fast Fall Time for switching speeds up to 20 kHz
- 2nd generation $\mathrm{HDMOS}^{\text {M }}$ process
- Low $\mathrm{V}_{\mathrm{CE}(\text { sat) }}$
- for minimum on-state conduction losses
- MOS Gate turn-on
- drive simplicity

Applications

- AC motor speed control
- DC servo and robot drive
- Uninterruptible power supplies (UPS)
- Switch-mode and resonant-mode power supplies
- Welding

Advantages

- Easy to mount with 1 screw (isolated mounting screw hole)
- High power density

$\square 1 X Y S$	IXSH 35N135A
IXSH 35N140A	

Symbol	Test Conditions	haracteristic Values otherwise specified)	
		typ.	max.
$\mathrm{g}_{\text {ts }}$	$\begin{aligned} & I_{\mathrm{C}}=\mathrm{I}_{\mathrm{Cg} 9} ; \mathrm{V}_{\mathrm{CE}}=10 \mathrm{~V}, \\ & \text { Pulse test, } \mathrm{t} £ 300 \mathrm{~ms} \text {, duty cycle d } £ 2 \% \end{aligned}$	26	S
$\mathrm{I}_{\text {con) }}$	$\mathrm{V}_{\text {GE }}=15 \mathrm{~V}, \mathrm{~V}_{\text {CE }}=10 \mathrm{~V}$	210	A
$\begin{aligned} & \mathrm{C}_{\text {ies }} \\ & \mathrm{C}_{\text {oes }} \\ & \mathrm{C}_{\text {res }} \end{aligned}$	$\int \mathrm{V}_{\mathrm{CE}}=25 \mathrm{~V}, \mathrm{~V}_{\mathrm{GE}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$	$\begin{array}{r} 4150 \\ 235 \\ 55 \end{array}$	pF pF pF
$\begin{aligned} & \mathbf{Q}_{\mathrm{g}} \\ & \mathbf{Q}_{\mathrm{ge}} \\ & \mathbf{Q}_{\mathrm{gc}} \end{aligned}$	$\int I_{C}=I_{\text {C90 }}, V_{G E}=15 \mathrm{~V}, \mathrm{~V}_{\text {CE }}=0.5 \mathrm{~V}_{\text {CES }}$	$\begin{array}{r} 165 \\ 45 \\ 75 \end{array}$	nC nC nC
$\begin{aligned} & t_{\mathrm{d}(\mathrm{On})} \\ & t_{\mathrm{ri}} \\ & t_{\mathrm{d}(\mathrm{fff})} \\ & t_{\text {fil }} \\ & E_{\text {off }} \end{aligned}$	Inductive load, $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$ $\begin{aligned} & \mathrm{I}_{\mathrm{C}}=\mathrm{I}_{\mathrm{Cg9}}, \mathrm{~V}_{G E}=15 \mathrm{~V}, \mathrm{~L}=100 \mu \mathrm{H} \\ & \mathrm{~V}_{\mathrm{CE}}=960 \mathrm{~V}, \mathrm{R}_{\mathrm{G}}=2.7 \Omega \end{aligned}$ Switching times may increase for $\mathrm{V}_{\text {CE }}$ (Clamp) $>960 \mathrm{~V}$, higher $\mathrm{T}_{\text {J }}$ or increased R_{G}	$\begin{array}{r} 40 \\ 60 \\ 200 \\ 400 \\ 12 \end{array}$	
$\begin{aligned} & t_{d_{(0 n)}} \\ & t_{\text {ri }} \\ & E_{\text {on }} \\ & t_{d_{(0 f f)}} \\ & t_{\text {fii }} \\ & E_{\text {off }} \end{aligned}$	Inductive load, $\mathrm{T}_{\mathrm{J}}=125^{\circ} \mathrm{C}$ $\begin{aligned} & \mathrm{I}_{\mathrm{C}}=\mathrm{I}_{\mathrm{Cg} 0}, \mathrm{~V}_{\mathrm{GE}}=15 \mathrm{~V}, \mathrm{~L}=100 \mu \mathrm{H} \\ & \mathrm{~V}_{\mathrm{CE}}=960 \mathrm{~V}, \mathrm{R}_{\mathrm{G}}=2.7 \Omega \end{aligned}$ Remarks: Switching times may increase for V_{CE} (Clamp) > 960 V , higher $T_{\text {J }}$ or increased R_{G}	$\begin{array}{r} 40 \\ 65 \\ 4 \\ 200 \\ 800 \\ 18 \end{array}$	ns ns mJ ns ns ns mJ
$\begin{aligned} & \mathbf{R}_{\mathrm{truc}} \\ & \mathbf{R}_{\mathrm{thck}} \end{aligned}$		0.25	$\begin{array}{r} 0.42 \mathrm{~K} / \mathrm{W} \\ \mathrm{~K} / \mathrm{W} \end{array}$

IXYS reserves the right to change limits, test conditions, and dimensions.

