4x Liftelilse

Resettable PTCs
Radial Leaded PTC

30R Series

- The 30R Series Resettable devices utilize a unique polymer-based, Positive Temperature Coefficient (PTC) material to protect electrical circuits against overcurrent conditions.
- In normal operation, the 30R Series PTC has many conductive paths and a very low resistance. In an overcurrent condition, the temperature of the polymer material rises. This dramatically reduces the conductive paths resulting in an immediate rise in resistance. In this condition, the device provides circuit protection by significantly limiting the flow of current. However, once the cause of the initial overcurrent condition is eliminated, the 30R Series PTC cools down and resets to a low resistance value permitting the normal current flow to resume.
- The 30R Series is a 30V Radial Leaded Device with a 40A Short Circuit Rating.
AGENCY APPROVALS: Recognized under the Components Program of Underwriters Laboratory and the Component Acceptance Program of CSA. TUV approved.
AGENCY FILE NUMBERS: UL E183209, CSA LR 108832
PHYSICAL SPECIFICATIONS:
Materials: Leads
30R090-250: Tin plated copper-clad steel, 24 AWG (0.020" Dia.)

30R300-900: Tin plated copper, 20 AWG (0.032" Dia.)
Lead Solderability: MIL-STD-202, Method 208E
Coating: Thermoset Coating
Device Labeling: Device is marked with the letter 'L', amperage rating, voltage rating \& date code.
Packaging: Standard bulk packaging is 500 pieces per container. Optional tape and reel packaging per EIA 486-B is also available.

Standard reel quantities:

Part Number	Reel Quantity	Part Number	Reel Quantity
		R30R300	
R30R090		R30R400	1500
R30R110		30R500	
R30R135	3000	30R600	Bulk Only
R30R160		30R700	500 Per
R30R185		30R800	Container
R30R250		30R900	

ENVIRONMENTAL SPECIFICATIONS:
Passive Aging: $85^{\circ} \mathrm{C}, 1000$ Hours. $\pm 5 \%$ typical resistance change.
Humidity Aging: $85^{\circ} \mathrm{C}, 85 \%$ R.H., 1000 hours. $\pm 5 \%$ typical resistance change.
Thermal Shock: $85^{\circ} \mathrm{C} /-40^{\circ} \mathrm{C}, 20$ times. $\pm 10 \%$ typical resistance change.
Vibration: MIL-STD 202, Method 201. No resistance change.
Mechanical Shock: MIL-STD-202, Method 213 test condition I
(100 g's, 6 sec.). No resistance change.
Max. Surface Temperature: $125^{\circ} \mathrm{C}$
Operating/Storage Temperature: $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
Rerating Curve for 30R Series

30R Series

Dimensions (Inches)

Note: Stand-offs only used for 30R090-30R250

Part Number	'A' (Max.)	'B' (Max.)	'C' (Typ.)
30R090	$6.60(0.26)$	$12.19(0.48)$	$5.08(0.20)$
30R110	$6.60(0.26)$	$14.22(0.56)$	$5.08(0.20)$
30R135	$8.89(0.35)$	$13.46(0.53)$	$5.08(0.20)$
30R160	$8.89(0.35)$	$15.42(0.60)$	$5.08(0.20)$
30R185	$10.16(0.40)$	$15.75(0.62)$	$5.08(0.20)$
30R250	$11.43(0.45)$	$18.29(0.72)$	$5.08(0.20)$
30R300	$11.43(0.45)$	$7.27(0.68)$	$5.08(0.20)$
30R400	$13.97(0.55)$	$20.07(0.79)$	$5.08(0.20)$
30R5000	$13.97(0.55)$	$24.89(0.98)$	$10.16(0.40)$
30R600	$16.51(0.65)$	$24.89(0.98)$	$10.16(0.40)$
30R700	$19.05(0.75)$	$26.67(1.05)$	$10.16(0.40)$
30R800	$21.59(0.85)$	$29.21(1.15)$	$10.16(0.40)$
30R900	$24.13(0.95)$	$29.72(1.17)$	$10.16(0.40)$

Average Time Current Curves

Dimension ' D ' is 7.62 (0.30") Minimum
Dimension ' E ' is 3.05 (0.12 ') Maximum
ORDERING INFORMATION:

Part Number	Inold (A)	Itrip (A)	$\begin{gathered} \mathrm{V}_{\max } \\ (\mathrm{Vdc}) \end{gathered}$	$I_{\text {max }}$ (A)	Pd max. (W)	Maximum Time To Trip		Resistance	
						Current (A)	$\begin{aligned} & \text { Time } \\ & \text { (Sec) } \end{aligned}$	RIL (W)	$\begin{aligned} & \mathrm{R}_{\mathrm{AT}} \\ & (\mathrm{~W}) \\ & \hline \end{aligned}$
30R090	0.90	1.80	30	40	0.6	4.50	5.9	0.070	0.22
30R110	1.10	2.20	30	40	0.7	5.50	6.6	0.050	0.17
30R135	1.35	2.70	30	40	0.8	6.75	7.3	0.040	0.13
30R160	1.60	3.20	30	40	0.9	8.00	8.0	0.030	0.11
30R185	1.85	3.70	30	40	1.0	9.25	8.7	0.030	0.09
30R250	2.50	5.00	30	40	1.2	12.5	10.3	0.020	0.07
30R300	3.00	6.00	30	40	2.0	15.0	10.8	0.020	0.08
30R400	4.00	8.00	30	40	2.5	20.0	12.7	0.010	0.05
30R500	5.00	10.00	30	40	3.0	25.0	14.5	0.010	0.05
30R600	6.00	12.00	30	40	3.5	30.0	16.0	0.005	0.04
30R700	7.00	14.00	30	40	3.8	35.0	17.5	0.005	0.03
30R800	8.00	16.00	30	40	4.0	40.0	18.8	0.005	0.02
30R900	9.00	18.00	30	40	4.2	40.0	20.0	0.005	0.02

$I_{\text {hold }}$	$=$	Hold Current: maximum current device will sustain for 4 hours without tripping in $20^{\circ} \mathrm{C}$ still air.
$I_{\text {trip }}$	$=$	Trip Current: minimum current at which the device will trip in $20^{\circ} \mathrm{C}$ still air.
$V_{\text {max }}$	$=$	Maximum voltage device can withstand without damage at rated current (Imax)
$I_{\text {max }}$	$=$	Maximum fault current device can withstand without damage at rated voltage (Vmax)
P_{d}	$=$	Power dissipated from device when in the tripped state at $20^{\circ} \mathrm{C}$ still air.
$\mathrm{R}_{I \mathrm{~L}}$	$=$	Minimum resistance of device in initial (un-soldered) state.
$\mathrm{R}_{\text {AT }}$	$=$	Maximum resistance of device at $20^{\circ} \mathrm{C}$ measured one hour after tripping.

CAUTION: Operation beyond the specified ratings may result in damage and possible arcing and flame.

