Single/Dual/Quad 400MHz Curent Feed back Amplifier

FEATURES

- 400MHz Bandwidth on $\pm 5 \mathrm{~V}\left(\mathrm{~A}_{V}=1\right)$
- 350MHz Bandwidth on $\pm 5 \mathrm{~V}\left(\mathrm{~A}_{\mathrm{v}}=2,-1\right)$
- 0.1 dB Gain Flatness: 100 MHz ($\mathrm{A}_{\mathrm{v}}=1,2$ and -1)
- High Slew Rate: $800 \mathrm{~V} / \mathrm{s}$
- Wide Supply Range: $\pm 2 \mathrm{~V}(4 \mathrm{~V})$ to $\pm 6 \mathrm{~V}(12 \mathrm{~V})$
- 80mA Output Current
- Low Supply Ourrent: 4.6mAAmplifier
- LT1395: SO-8 Package

LT1396: SO-8 and MSOP Packages
LT1397: SO-14 and SSOP-16 Packages

APPLICATIO NS

- Cable Drivers
- Video Amplifiers
- MUX Amplifiers
- High Speed Portable Equipment
- IFAmplifiers

DESCRIPTIO

The LT ${ }^{\text {® }} 1395 /$ LT1396/LT1397 are single/dual/quad 400MHzcurrent feedback amplifierswith an $800 \mathrm{~V} /$ /usslew rate and the ability to drive up to 80 mA of output current.
TheLT1395/LT1396/LT1397 operate on all supplies from a single 4 V to $\pm 6 \mathrm{~V}$. At $\pm 5 \mathrm{~V}$, they draw 4.6 mA of supply current per amplifier.
TheLT1395/LT1396/LT1397 are manufactured on Linear Technology's proprietary complementarybipolar process. They havestandard single/dual/quad pinouts and they are optimized for use on supply voltages of $\pm 5 \mathrm{~V}$.

[^0]
TYPICAL APPLICATIO \cap

ABSO LUTE MAXIMUM RATING S (Note 1)

Total Supply Voltage (V^{+}to V^{-})
 \qquad
 \qquad
 PACKAG E/O RDER INFO RMATIO

 12.6V Operating Temperature Range (Note 4). $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ Input Ourrent (Note2) $\pm 10 \mathrm{~mA}$ Specified Temperature Range (Note5).. $-40^{\circ} \mathrm{Cto} 85^{\circ} \mathrm{C}$| | | |
| :---: | :---: | :---: |
| ORDER PART NUMBER | ORDER PART NUMBER | ORDER PARTNUMBER |
| LT1395CS8 | LT1396CMS8 | LT1396CS8 |
| S8 PART MARKING | MS8 PART MARKING | S8 PARTMARKING |
| 1395 | LTDY | 1396 |
| | | |
| ORDER PART NUMBER | | PART NUMB ${ }^{\text {R }}$ |
| LT1397CS | | T1397CGN |
| | | ART MARKING |
| | | 1397 |

Consult factory for Industrial and Military grade parts.

ELECTRICAL CHARACTERISTICS

The \bullet denotes specifications which apply over the specified operating temperature range, otherwise specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
For each amplifier: $\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}= \pm 5 \mathrm{~V}$, pulse tested, unless otherwise noted. (Note 5)

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
$\mathrm{V}_{\text {OS }}$	Input Offset Voltage		\bullet		1	$\begin{aligned} & \pm 10 \\ & \pm 12 \end{aligned}$	mV mV
$\Delta \mathrm{V}_{\bigcirc S} / \Delta \mathrm{T}$	Input Offset Voltage Drift		\bullet		15		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
IN^{+}	Noninverting Input Ourrent		\bullet		10	$\begin{aligned} & \pm 25 \\ & \pm 30 \end{aligned}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$
IN^{-}	Inverting Input Current		\bullet		10	$\begin{aligned} & \pm 50 \\ & \pm 60 \end{aligned}$	$\mu \mathrm{A}$
e_{n}	Input Noise Voltage Density	$f=1 \mathrm{kHz}, R_{F}=1 \mathrm{k}, R_{G}=10 \Omega, R_{S}=0 \Omega$			4.5		$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
$+i_{n}$	Noninverting Input Noise Current Density	$\mathrm{f}=1 \mathrm{kHz}$			6		$\mathrm{pA} \sqrt{ } \mathrm{Hz}$
$-i_{n}$	Inverting Input Noise Current Density	$\mathrm{f}=1 \mathrm{kHz}$			25		$\mathrm{pA} / \sqrt{ } \mathrm{Hz}$
RIN	Input Resistance	$\mathrm{V}_{\mathrm{IN}}= \pm 3.5 \mathrm{~V}$	\bullet	0.3	1		$\mathrm{M} \Omega$
G_{N}	Input Capacitance				2.0		pF
$\mathrm{V}_{\text {INH }}$	Input Voltage Range, High	$\begin{aligned} & V_{S}= \pm 5 \mathrm{~V} \\ & V_{S}=5 \mathrm{~V}, 0 \mathrm{~V} \end{aligned}$	-	3.5	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$		V
$\mathrm{V}_{\text {INL }}$	Input Voltage Range, Low	$\begin{aligned} & V_{S}= \pm 5 \mathrm{~V} \\ & V_{S}=5 \mathrm{~V}, 0 \mathrm{~V} \end{aligned}$	\bullet		$\begin{array}{r} -4.0 \\ 1.0 \end{array}$	-3.5	V
Vouth	Output Voltage Swing, High	$\begin{aligned} & V_{S}= \pm 5 \mathrm{~V} \\ & V_{S}= \pm 5 \mathrm{~V} \\ & V_{S}=5 \mathrm{~V}, 0 \mathrm{~V} \end{aligned}$	\bullet	$\begin{aligned} & 3.9 \\ & 3.7 \end{aligned}$	$\begin{aligned} & 4.2 \\ & 4.2 \end{aligned}$		V V V
Varl	Output Voltage Swing, Low	$\begin{aligned} & V_{S}= \pm 5 \mathrm{~V} \\ & V_{S}= \pm 5 \mathrm{~V} \\ & V_{S}=5 \mathrm{~V}, 0 \mathrm{~V} \end{aligned}$	\bullet		$\begin{gathered} -4.2 \\ 0.8 \end{gathered}$	$\begin{aligned} & -3.9 \\ & -3.7 \end{aligned}$	V V V
$\mathrm{V}_{\text {OUTH }}$	Output Voltage Swing, High	$\begin{aligned} & V_{S}= \pm 5 \mathrm{~V}, R_{L}=150 \Omega \\ & V_{S}= \pm 5 \mathrm{~V}, R_{L}=150 \Omega \\ & V_{S}=5 \mathrm{~V}, 0 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=150 \Omega \\ & \hline \end{aligned}$	\bullet	3.4	$\begin{aligned} & 3.6 \\ & 3.6 \end{aligned}$		V V V
Voul	Output Voltage Swing, Low	$\begin{aligned} & V_{S}= \pm 5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=150 \Omega \\ & V_{S}= \pm 5 \mathrm{~V}, R_{\mathrm{L}}=150 \Omega \\ & V_{S}=5 \mathrm{~V}, 0 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=150 \Omega \\ & \hline \end{aligned}$	\bullet		$\begin{gathered} \hline-3.6 \\ 0.6 \\ \hline \end{gathered}$	$\begin{aligned} & -3.4 \\ & -3.2 \end{aligned}$	V V V
OMRR	Common Mode Rejection Ratio	$\mathrm{V}_{\text {OM }}= \pm 3.5 \mathrm{~V}$	\bullet	42	52		dB
-lamRR	Inverting Input Ourrent Common Mode Rejection	$\begin{aligned} & \mathrm{V}_{\mathrm{aM}}= \pm 3.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{aM}}= \pm 3.5 \mathrm{~V} \end{aligned}$	\bullet		10	$\begin{aligned} & 16 \\ & 22 \end{aligned}$	$\mu \mathrm{A} V$ $\mu \mathrm{A} / \mathrm{V}$
PSRR	Power Supply Rejection Ratio	$\mathrm{V}_{\mathrm{S}}= \pm 2 \mathrm{~V}$ to $\pm 5 \mathrm{~V}$	\bullet	56	70		dB
${ }_{+}$PSRRR	Noninverting Input Ourrent Power Supply Rejection	$V_{S}= \pm 2 \mathrm{~V}$ to $\pm 5 \mathrm{~V}$	\bullet		1	$\begin{aligned} & 2 \\ & 3 \end{aligned}$	$\mu A / V$ $\mu \mathrm{A} V$
- $_{\text {PSRR }}$	Inverting Input Ourrent Power Supply Rejection	$\mathrm{V}_{S}= \pm 2 \mathrm{~V}$ to $\pm 5 \mathrm{~V}$	\bullet		2	7	$\mu \mathrm{A} V$
A_{V}	Large-Signal Voltage Gain	$\mathrm{V}_{\text {OUT }}= \pm 2 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=150 \Omega$		50	65		dB
R_{L}	Transimpedance, $\Delta \mathrm{V}_{\mathrm{ar}} / \Delta \mathrm{I}_{\mathbb{N}}{ }^{-}$	$\mathrm{V}_{\text {OUT }}= \pm 2 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=150 \Omega$		40	100		$\mathrm{k} \Omega$
lour	Maximum Output Current	$\mathrm{R}_{\mathrm{L}}=0 \Omega$	\bullet	80			mA
Is	Supply Ourrent per Amplifier		\bullet		4.6	6.5	mA
SR	Slew Rate (Note 7)	$A_{V}=-1, R_{L}=150 \Omega$		500	800		V/ $\mathrm{\mu s}$
-3dB BW	-3dB Bandwidth	$\begin{aligned} & A_{V}=1, R_{F}=374 \Omega, R_{L}=100 \Omega \\ & A_{V}=2, R_{F}=R_{G}=255 \Omega, R_{L}=100 \Omega \end{aligned}$			$\begin{aligned} & 400 \\ & 300 \end{aligned}$		$\begin{aligned} & \mathrm{MHz} \\ & \mathrm{MHz} \end{aligned}$
0.1dB BW	0.1dB Bandwidth	$\begin{aligned} & A_{V}=1, R_{F}=374 \Omega, R_{L}=100 \Omega \\ & A_{V}=2, R_{F}=R_{G}=255 \Omega, R_{L}=100 \Omega \end{aligned}$			$\begin{aligned} & 100 \\ & 100 \end{aligned}$		$\begin{aligned} & \mathrm{MHz} \\ & \mathrm{MHz} \end{aligned}$

LT1395/LT1396/LT1397

ELECTRICAL CHARACTERISTICS

The \bullet denotes specifications which apply over the specified operating temperature range, otherwise specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$. For each amplifier: $\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}= \pm 5 \mathrm{~V}$, pulse tested, unless otherwise noted. (Note 5)

SYMBOL	PARAMETER	CONDITIONS	MIN TYP	MAX	UNITS
$\mathrm{t}_{\mathrm{r},} \mathrm{t}_{\mathrm{f}}$	Small-Signal Rise and Fall Time	$R_{F}=R_{G}=255 \Omega, R_{L}=100 \Omega, \mathrm{~V}_{\text {OU }}=1 V_{P-P}$	1.3		ns
$t_{\text {PD }}$	Propagation Delay	$R_{F}=R_{G}=255 \Omega, R_{L}=100 \Omega, \mathrm{~V}_{\text {OU }}=1 \mathrm{~V}_{P-P}$	2.5		ns
OS	Small-Signal Overshoot	$R_{F}=R_{G}=255 \Omega, R_{L}=100 \Omega, V_{\text {OU }}=1 V_{P-P}$	10		\%
ts	Settling Time	$0.1 \%, A_{V}=-1, R_{F}=R_{G}=280 \Omega, R_{L}=150 \Omega$	25		ns
dG	Differential Gain (Note 8)	$\mathrm{R}_{\mathrm{F}}=\mathrm{R}_{\mathrm{G}}=255 \Omega, \mathrm{R}_{\mathrm{L}}=150 \Omega$	0.02		\%
dP	Differential Phase (Note 8)	$\mathrm{R}_{\mathrm{F}}=\mathrm{R}_{\mathrm{G}}=255 \Omega, \mathrm{R}_{\mathrm{L}}=150 \Omega$	0.04		DEG

Note 1: Absolute Maximum Ratings are those values beyond which the life of a device may be impaired.
Note 2: This parameter is guaranteed to meet specified performance through design and characterization. It has not been tested.
Note 3: A heat sink may be required depending on the power supply voltage and how many amplifiers have their outputs short circuited.
Note 4: The LT1395C/LT1396C/LT1397C are guaranteed functional over the operating temperature range of $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.
Note 5: The LT1395CLT1396C/LT1397C are guaranteed to meet specified performance from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$. The LT1395C/LT1396CLT1397C are designed, characterized and expected to meet specified performance from $-40^{\circ} \mathrm{C}$ and $85^{\circ} \mathrm{Cbut}$ is not tested or OA sampled at these temperatures. For guaranteed I-grade parts, consult the factory.

Note 6: T_{J} is calculated from the ambient temperature T_{A} and the power dissipation P_{D} according to the following formula:

$$
\begin{aligned}
& \text { LT1395CS8: } T_{J}=T_{A}+\left(P_{D} \cdot 150^{\circ} \mathrm{C} / \mathrm{W}\right) \\
& \text { LT1396CS8: } T_{J}=T_{A}+\left(P_{D} \cdot 150^{\circ} \mathrm{C} / \mathrm{W}\right) \\
& \text { LT1396CMS8: } T_{J}=T_{A}+\left(P_{D} \cdot 250^{\circ} \mathrm{C} / \mathrm{W}\right) \\
& \text { LT1397CS14: } T_{J}=T_{A}+\left(P_{D} \cdot 100^{\circ} \mathrm{C}\right) \\
& \text { LT1397CGN16: } T_{J}=T_{A}+\left(P_{D} \cdot 135^{\circ} \mathrm{C} / \mathrm{W}\right)
\end{aligned}
$$

Note 7: Slew rate is measured at $\pm 2 \mathrm{~V}$ on $\mathrm{a} \pm 3 \mathrm{~V}$ output signal.
Note 8: Differential gain and phase are measured using a Tektronix TSG120YC/NTSC signal generator and a Tektronix 1780R Video Measurement Set. The resolution of this equipment is 0.1% and 0.1°. Ten identical amplifier stages were cascaded giving an effective resolution of 0.01% and 0.01°.

TYPICAL AC PERFO RMANCE

$\mathrm{V}_{\mathbf{S}}(\mathrm{V})$	$\mathbf{A}_{\mathbf{V}}$	$\mathbf{R}_{\mathrm{L}}(\Omega)$	$\mathbf{R}_{\mathbf{F}}(\Omega)$	$\mathbf{R}_{\mathbf{G}}(\Omega)$	SMALL SIGNAL $-3 \mathrm{~dB} \mathrm{BW}(\mathrm{MHz})$	SMALL SIGNAL 0.1 dB BW (MHz)	SMALL SIGNAL PEAKING (dB)
± 5	1	100	374	-	400	100	0.1
± 5	2	100	255	255	350	100	0.1
± 5	-1	100	280	280	350	100	0.1

TYPICAL PERFO RMAnCE CHARACTERISTICS

Closed-Loop Gain vs Frequency ($A_{V}=2$)

Closed-Loop Gain vs Frequency
($A_{V}=-1$)

TYPICAL PERFO RMAnCE CHARACTERISTICS

Large-Signal Transient Response
($A_{V}=1$)

2nd and 3rd Harmonic Distortion vs Frequency

Input Voltage Noise and Current
Noise vs Frequency

Large-Signal Transient Response
($A_{V}=2$)

Maximum Undistorted Output Voltage vs Frequency

Output Impedance vs Frequency

Large-Signal Transient Response
($A_{V}=-1$)

Maximum Capacitive Load vs Feedback Resistor

1397 G13

TYPICAL PERFO RMAnCE CHARACTERISTICS

1397 G14
Positive Supply Current per Amplifier vs Temperature

1397 G17

1397 G15

Input Offset Voltage

vs Temperature

1397 G18

Output Voltage Swing vs Temperature

1397 G16
Input Bias Currents vs Temperature

1397 G19

Square Wave Response

Propagation Delay

Rise Time and Overshoot

PIn FUNCTIO NS

LT1395CS8

NC (Pin 1): No Connection.
-IN (Pin 2): Inverting Input.
+IN (Pin 3): Noninverting Input.
V^{-}(Pin 4): Negative Supply Voltage, Usually -5 V .
NC (Pin 5): No Connection.
OUT (Pin 6): Output.
V^{+}(Pin 7): Positive Supply Voltage, Usually 5V.
NC (Pin 8): No Connection.

LT1396CMS8, LT1396CS8

OUT A (Pin 1): A Channel Output.
-IN A (Pin 2): Inverting Input of A Channel Amplifier.
+IN A (Pin 3): Noninverting Input of A Channel Amplifier.
V^{-}(Pin 4): Negative Supply Voltage, Usually -5 V .
+IN B (Pin 5): Noninverting Input of BChannel Amplifier.
-IN B (Pin 6): Inverting Input of B Channel Amplifier.
OUT B (Pin 7): B Channel Output.
V^{+}(Pin 8): Positive Supply Voltage, Usually 5V.

LT1397CS

OUT A (Pin 1): A Channel Output.
-IN A (Pin 2): Inverting Input of A Channel Amplifier.
+IN A (Pin 3): Noninverting Input of A Channel Amplifier.
V^{+}(Pin 4): Positive Supply Voltage, Usually 5 V .
+IN B (Pin 5): Noninverting Input of BChannel Amplifier.
-IN B (Pin 6): Inverting Input of B Channel Amplifier.

OUT B (Pin 7): B Channel Output.
OUT C (Pin 8): CChannel Output.
-IN C (Pin 9): Inverting Input of CChannel Amplifier. +INC(Pin 10): Noninverting Input of CChannel Amplifier. V^{-}(Pin 11): Negative Supply Voltage, Usually -5 V . +IND (Pin 12): Noninverting Input of DChannel Amplifier. -IN D (Pin 13): Inverting Input of D Channel Amplifier. OUT D (Pin 14): D Channel Output.

LT1397CGN

OUT A (Pin 1): A Channel Output.
-IN A (Pin 2): Inverting Input of A Channel Amplifier.
+IN A (Pin 3): Noninverting Input of A Channel Amplifier.
V^{+}(Pin 4): Positive Supply Voltage, Usually 5V.
+IN B (Pin5): Noninverting Input of BChannel Amplifier.
-IN B (Pin 6): Inverting Input of B Channel Amplifier.
OUT B (Pin 7): B Channel Output.
NC (Pin 8): No Connection.
NC (Pin 9): No Connection.
OUT C (Pin 10): CChannel Output.
-IN C (Pin 11): Inverting Input of CChannel Amplifier.
+INC(Pin 12): Noninverting Input of CChannel Amplifier.
V^{-}(Pin 13): Negative Supply Voltage, Usually -5 V .
+IND (Pin 14): Noninverting Input of DChannel Amplifier.
-IN D (Pin 15): Inverting Input of D Channel Amplifier.
OUT D (Pin 16): D Channel Output.

APPLICATI ONS INFO RMATIO

Feedback Resistor Selection

Thesmall-signal bandwidth of theLT1395/LT1396/LT1397 is set by the external feedback resistors and the internal junction capacitors. As a result, the bandwidth is a function of the supply voltage, the value of the feedback
resistor, the closed-loop gain and the load resistor. The LT1395/LT1396/LT1397 have ben optimized for $\pm 5 \mathrm{~V}$ supply operation and have a -3 dB bandwidth of 400 MHz at again of 1 and 350 MHz at again of 2 . Please refer to the resistor selection guide in the Typical AC Performance table.

APPLICATIONS INFORMATIO

Capacitance on the Inverting Input

Current feedback amplifiers require resistive feedback from theoutput to the inverting input for stableoperation. Take care to minimize the stray capacitance between the output and the inverting input. Capacitance on the inverting input to ground will cause peaking in the frequency response (and overshoot in the transient response).

Capacitive Loads

The LT1395/LT1396/LT1397 can drive many capacitive loads directly when the proper value of feedback resistor is used. The required value for the feedback resistor will increaseas load capacitanceincreases and as closed-loop gain decreases. Alternatively, asmall resistor (5Ω to 35Ω) canbeput in series with theoutput to isolatethecapacitive load from theamplifier output. This has the advantagethat the amplifier bandwidth is only reduced when the capacitive load is present. The disadvantage is that the gain is a function of the load resistance. See the Typical Performance Characteristics curves.

Power Supplies

The LT1395/LT1396/LT1397 will operate from single or split supplies from $\pm 2 \mathrm{~V}$ (4 V total) to $\pm 6 \mathrm{~V}$ (12 V total). It is not necessary to use equal value split supplies, however the offset voltage and inverting input bias current will change. Theoffset voltage changes about 2.5 mV per volt of supply mismatch. The inverting bias current will typically changeabout $10 \mu \mathrm{~A}$ per volt of supply mismatch.

Slew Rate

Unlikeatraditional voltagefeedback op amp, theslew rate of a current feedback amplifier is not independent of the amplifier gain configuration. In a current feedback amplifier, boththeinput stageand theoutput stagehaveslew rate limitations. Intheinverting mode, andfor gains of 2or more inthenoninverting mode, thesignal amplitudebetweenthe input pins is small and the overall slew rate is that of the output stage. For gains lessthan2inthenoninverting mode, the overall slew rate is limited by the input stage.
The input slew rate of the LT1395/LT1396/LT1397 is approximately $600 \mathrm{~V} / \mu$ s and is set by internal currents and capacitances. The output slew rate is set by the value of
the feedback resistor and internal capacitance. At a gain of 2 with 255Ω feedback and gain resistors and $\pm 5 \mathrm{~V}$ supplies, theoutput slew rateistypically $800 \mathrm{~V} / \mu \mathrm{s}$. Larger feedback resistors will reduce the slew rate as will lower supply voltages.

Differential Input Signal Swing

To avoid any breakdown condition on the input transistors, thedifferential input swing must belimited to $\pm 5 \mathrm{~V}$. In normal operation, the differential voltage between the input pins is small, so the $\pm 5 \mathrm{~V}$ limit is not an issue.

Buffered RGB to Color-Difference Matrix

An LT1397 can be used to create buffered color-difference signals from RGB inputs (Fgure 1). In this application, the R input arrives via 75Ω coax. It is routed to the noninverting input of LT1397 amplifier A1 and to a845 resistor R8. There is also an 82.5Ω termination resistor R11, which yields a 75Ω input impedance at the R input when considered in parallel with R8. R8 connects to the inverting input of asecond LT1397 amplifier (A2), which also sums the weighted G and B inputs to create a -0.5 - Y output. LT1397 amplifier A3 then takes the $-0.5 \cdot$ Y output and amplifies it by a gain of -2 , resulting in the Youtput. Amplifier A1 is configured in anoninverting gain of 2 with the bottom of the gain resistor R2 tied to the Y output. Theoutput of amplifier A1 thus results in the color-difference output R-Y.
The B input is similar to the R input. It arrives via 75Ω coax, and is routed to the noninverting input of LT1397 amplifier A4, and to a 2320Ω resistor R10. There is also a 76.8Ω termination resistor R13, which yields a 75Ω input impedance when considered in parallel with R10. R10 also connects to the inverting input of amplifier A2, adding the B contribution to the Y signal as discussed above. Amplifier A4 is configured in a noninverting gain of 2 configuration with the bottom of the gain resistor R4 tied to the Y output. The output of amplifier A4 thus results in the color-difference output B-Y.

The G input also arrives via 75Ω coax and adds its contributiontothe Ysignal viaa 432Ω resistor R9, which is tied to the inverting input of amplifier A2. There is also a 90.9Ω termination resistor R12, which yields a 75Ω

APPLICATIONS INFO RMATIO n

termination when considered in parallel with R9. Using superposition, it is straightforward to determine the output of amplifier A2. Although inverted, it sums the R, G and B signals in the standard proportions of $0.3 R$, 0.59 G and 0.11 B that are used to create the Y signal. Amplifier A3 then inverts and amplifies the signal by 2, resulting in the Y output.

Figure 1. Buffered RGB to Color-Difference Matrix

Buffered Color-Difference to RGB Matrix

An LT1395 combined with an LT1396 can be used to create buffered RGB outputs from color-difference signals (Fgure 2). The R output is a back-terminated 75Ω signal created using resistor R5 and amplifier A1 configured for a gain of +2 via255 Ω resistors R3 and R4. The noninverting input of amplifier A1 is connected via 1 k resistors $R 1$ and $R 2$ to the Y and R-Yinputs respectively, resulting in cancellation of the Y signal at the amplifier input. The remaining R signal is then amplified by A 1 .
The B output is also a back-terminated 75Ω signal created using resistor R16 and amplifier A3 configured for a gain of +2 via 255Ω resistors R14 and R15. The noninverting input of amplifier A3 is connected via 1 k resistors R12 and R13 to the Y and B-Y inputs respectively, resulting in cancellation of the Y signal at the amplifier input. The remaining B signal is then amplified by A3.
The Goutput is the most complicated of the three. It is a weighted sum of the $Y, R-Y$ and $B-Y$ inputs. The Y input
is attenuated via resistors R6 and R7 such that amplifier A2's noninverting input sees 0.83 Y . Using superposition, we can calculatethe positive gain of A2 by assuming that R8 and R9 aregrounded. This results in again of 2.41 and a contribution at the output of A 2 of 2 Y . The R-Y input is amplified by A2 with thegain set by resistors R8 and R10, giving an amplification of -1.02 . This results in a contribution at theoutput of A 2 of $1.02 \mathrm{Y}-1.02 \mathrm{R}$. TheB-Yinput is amplified by A2 with the gain set by resistors R9 and R10, giving an amplification of -0.37 . This results in a contribution at the output of A 2 of $0.37 \mathrm{Y}-0.37 \mathrm{~B}$.

If wenow sum thethreecontributions at theoutput of A 2 , we get:

$$
\mathrm{A} 2 \mathrm{Or}=3.40 \mathrm{Y}-1.02 \mathrm{R}-0.37 \mathrm{~B}
$$

It is important to remember though that Y is a weighted sum of R, Gand B such that:

$$
Y=0.3 R+0.59 G+0.11 B
$$

If we substitute for Y at the output of A 2 we then get:

$$
\begin{aligned}
\mathrm{A}^{2} \mathrm{O} & =(1.02 \mathrm{R}-1.02 \mathrm{R})+2 \mathrm{G}+(0.37 \mathrm{~B}-0.37 \mathrm{~B}) \\
& =2 \mathrm{G}
\end{aligned}
$$

Theback-termination resistor R11 then halvestheoutput of A 2 resulting in the Goutput.

Figure 2. Buffered Color-Difference to RGB Matrix

LT1395/LT1396/LT1397

SIMPLIFIED SCHEMATIC, eachamplifier

PACKAGE DESCRIPTIO \cap Dimensions in inderes (nillineters) unless ofthemisis noted.

GN Package
16-Lead Plastic SSOP (Narrow 0.150)
(LTCDWG\# 05-08-1641)

* DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH SHALL NOT EXCHD 0.006 " (0.152 mm) PER SIDE
** DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD FLASH SHALL NOT EXC\#\#D 0.010 " (0.254 mm) PGR SIDE

PACKAG E DESCRIPTIO n

Dimensions in inches (millimeters) unless otherwise noted.
MS8 Package
8-Lead Plastic MSOP
(LTC DWG $05-08$-1660)

* DIMENSION DOES NOT INQUUDEMOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXC円DD 0.006" (0.152 mm) PGR SIDE
** DIMENSION DOES NOT INCLUDE INIERLEAD FLASH OR PROTRUSIONS. INITRLEAD FASH OR PROTRUSIONS SHALL NOT EXCEDD 0.006" (0.152mm) PGR SIDE

S8 Package
8-Lead Plastic Small Outline (Narrow 0.150)
(LTCDWG\# 05-08-1610)

S Package
14-Lead Plastic Small Outline (Narrow 0.150)
(LTCDWG\# 05-08-1610)
 FLASH SHALL NOT EXC\#D $0.010^{\prime \prime}(0.254 \mathrm{~mm})$ PER SIDE

Information furnished by Linear Technology Corporation is believed to be accurate and reliable. However, no responsibility is assumed for its use. Linear Technology Corporation makes no representation that theinterconnection of its circuits as described herein will not infringeon existing patent rights.

LT1395/LT1396/LT1397

TYPICAL APPLICATI On

Single Supply RGB Video Amplifier

The LT1395 can be used with a single supply voltage of 6 V or more to drive ground-referenced RGB video. In Fgure3, two 1N4148 diodesD1 and D2havebeen placed in series with the output of the LT1395 amplifier A1 but within the feedback loop formed by resistor R8. These diodes effectively level-shift A1's output downward by 2 diodes, allowing the circuit output to swing to ground.
Amplifier A1 is used in apositive gain configuration. The feedback resistor R8 is 255Ω. The gain resistor is created from the parallel combination of R6 and R7, giving a Thevenin equivalent 63.5Ω connected to 3.75 V . This gives an AC gain of +5 from the noninverting input of amplifier A1 to the cathode of D2. However, the video input is also attenuated before arriving at A1's positive
input. Assuming a 75Ω source impedance for the signal driving V_{IN}, the Thevenin equivalent signal arriving at A1's positive input is $3 \mathrm{~V}+0.4 \mathrm{~V}_{\mathbb{I}}$, with a source impedance of 714Ω. Thecombination of these two inputs gives an output at thecathode of D2 of $2 \cdot \mathrm{~V}_{\mathbb{I N}}$ with no additional DC offset. The 75Ω back termination resistor R9 halves thesignal again such that $\mathrm{V}_{\text {Or equals }}$ abuffered version of V_{IN}.

It is important to note that the $4.7 \mu \mathrm{~F}$ capacitor C 1 has been added to provide enough current to maintain the voltage drop across diodes D1 and D2 when the circuit output drops low enoughthat thediodes might otherwise turn off. This means that this circuit works fine for continuous video input, but will requirethat C1 chargeup after a period of inactivity at the input.

Figure 3. Single Supply RGB Video Amplifier (1 of 4 Channels)

RELATED PARTS

PART NUMBER	DESCRIPTION	COMMENTS
LT1227/LT1229/LT1230	140MHz Single/Dual/Quad Current Feedback Amplifier	$1100 \mathrm{~V} / \mu$ s Slew Rate, Single Adds Shutdown Pin
LT1252/LT1253/LT1254	Low Cost Video Amplifiers	Single, Dual and Quad 100MHz Current Feedback Amplifiers
LT1398/LT1399	Dual/Triple Qurrent Feedback Amplifiers	300 MHz Bandwidth, 0.1dB Fatness > 150MHz with Shutdown
LT1675	Triple 2:1 Buffered Video Mulitplexer	$2.5 n s$ Switching Time, 250MHz Bandwidth
LT1363/LT1364/LT1365	70 MHz Single/Dual/Quad Op Amps	$1000 \mathrm{~V} / \mu$ s Slew Rate, Voltage Feedback

[^0]: ©Y, LTC and LT are registered trademarks of Linear Technology Corporation.

