

INITIAL RELEASE Final Electrical Specifications LTC1096L/LTC1098L

Low Voltage, Micropower Sampling 8-Bit Serial I/O A/D Converters

December 1995

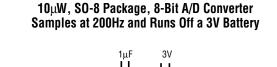
FEATURES

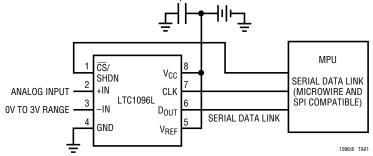
- Specified at 2.65V Minimum Supply
- Maximum Supply Current: 80µA
- Auto Shutdown to 1nA
- 8-Pin SO Package
- On-Chip Sample-and-Hold
- Conversion Time: 32µs
- Sample Rates: 16.5ksps
- I/O Compatible with SPI, MICROWIRE[™], etc.

APPLICATIONS

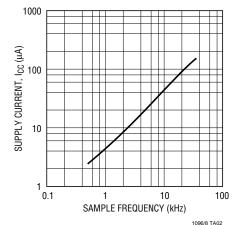
- Battery-Operated Systems
- Remote Data Acquisition
- Isolated Data Acquisition
- Battery Monitoring
- Temperature Measurement

DESCRIPTION


The LTC[®]1096L/LTC1098L are 3V micropower, 8-bit successive approximation sampling A/D converters. They typically draw only 40μ A of supply current when converting and automatically power down to a typical supply current of 1nA between conversions. They are packaged in 8-pin SO packages and operate on a 3V supply. These 8-bit, switched capacitor, successive approximation ADCs include a sample-and-hold. The LTC1098L offers a software selectable 2-channel multiplexed input.

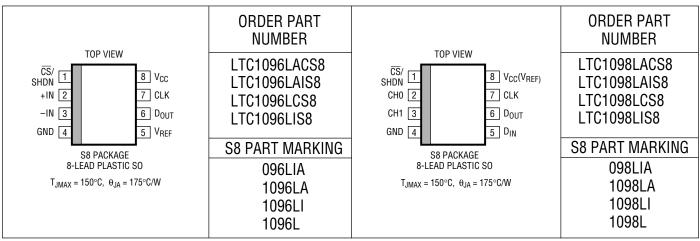

On-chip serial ports allow efficient data transfer to a wide range of microprocessors and microcontrollers over three wires. This, coupled with micropower consumption, makes remote location possible and facilitates transmitting data through isolation barriers.

The circuits can be used in ratiometric applications or with an external reference. The high impedance analog inputs and the ability to operate with reduced spans (to 1V full scale) allow direct connection to sensors and transducers in many applications, eliminating the need for gain stages.


T, LTC and LT are registered trademarks of Linear Technology Corporation. MICROWIRE is a registered trademark of National Semiconductor Corporation.

TYPICAL APPLICATION

Supply Current vs Sample Rate


Information furnished by Linear Technology Corporation is believed to be accurate and reliable. However, no responsibility is assumed for its use. Linear Technology Corporation makes no representation that the interconnection of its circuits as described herein will not infringe on existing patent rights.

ABSOLUTE MAXIMUM RATINGS (Notes 1 and 2)

Supply Voltage (V _{CC}) to GND	12V
Voltage	
Analog and Reference	0.3V to V _{CC} + 0.3V
Digital Inputs	–0.3V to 12V
Digital Outputs	–0.3V to V _{CC} + 0.3V
Power Dissipation	500mW

Operating Temperature	
LTC1096LAC/LTC1098LAC	0°C to 70°C
LTC1096LAI/LTC1098LAI	–40°C to 85°C
LTC1096LC/LTC1098LC	0°C to 70°C
LTC1096LI/LTC1098LI	–40°C to 85°C
Storage Temperature Range	–65°c to 150°C
Lead Temperature (Soldering, 10 sec.)	300°C

PACKAGE/ORDER INFORMATION (Note 3)

Consult factory for Military grade parts.

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP MAX	UNITS
V _{CC}	Supply Voltage		2.65	4.0	V
f _{CLK}	Clock Frequency	V _{CC} = 2.65V	25	250	kHz
tcyc	Total Cycle Time	LTC1096L, f _{CLK} = 250kHz LTC1098L, f _{CLK} = 250kHz	58 58		μs μs
t _{hDI}	Hold Time, D _{IN} After CLK↑	V _{CC} = 2.65V	450		ns
t _{suCS}	Setup Time $\overline{CS}\downarrow$ Before First CLK \uparrow (See Operating Sequence)	V _{CC} = 2.65V, LTC1096L V _{CC} = 2.65V, LTC1098L	1		μs μs
t _{WAKEUP}	Wakeup Time CS↓ Before First CLK↓ After First CLK↑ (See Figure 1, LTC1096L Operating Sequence)	V _{CC} = 2.65V, LTC1096L	10		μs
	Wakeup Time $\overline{CS}\downarrow$ Before MSBF Bit CLK \downarrow (See Figure 2, LTC1098L Operating Sequence)	V _{CC} = 2.65V, LTC1098L	10		μs
t _{suDI}	Setup Time, D _{IN} Stable Before CLK↑	V _{CC} = 2.65V	1		μs
t _{WHCLK}	CLK High Time	V _{CC} = 2.65V	1.6		μs
t _{WLCLK}	CLK Low Time	V _{CC} = 2.65V	1.6		μs
t _{WHCS}	CS High Time Between Data Transfer Cycles	V _{CC} = 2.65V	2		μs
twlcs	CS Low Time During Data Transfer	LTC1096L, f _{CLK} = 250kHz LTC1098L, f _{CLK} = 250kHz	56 56		μs μs

CONVERTER AND MULTIPLEXER CHARACTERISTICS

 $V_{CC} = 2.65V$, $V_{REF} = 2.5V$, $f_{CLK} = 250kHz$, unless otherwise noted.

PARAMETER	CONDITIONS		LTC109 Min	6LA/LTC1098LA Typ Max	LTC1 Min	096L/LTC Typ	1098L MAX	UNITS
Resolution (No Missing Code)		•	8		8			Bits
Offset Error	(Note 4)	•		±0.5			±1	LSB
Linearity Error		•		±0.5			±1	LSB
Full Scale Error		•		±0.5			±1	LSB
Total Unadjusted Error (Note 5)	V _{REF} = 2.5V	•		±1			±1.5	LSB
Analog Input Range	(Note 6)			-0.05V to V	_{CC} + 0.05V			V
REF Input Range (Note 6)	$2.65 \le V_{CC} \le 4.0V$			-0.05V to V	_{CC} + 0.05V			V
Analog Input Leakage Current	(Note 7)			±1			±1	μA

DIGITAL AND DC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
V _{IH}	High Level Input Voltage	V _{CC} = 3.6V	•	1.9			V
V _{IL}	Low Level Input Voltage	V _{CC} = 2.65V	•			0.45	V
IIH	High Level Input Current	V _{IN} = V _{CC}	•			2.5	μA
IIL	Low Level Input Current	V _{IN} = 0V	•			-2.5	μA
V _{OH}	High Level Output Voltage	$V_{CC} = 2.65V, I_0 = 10\mu A$ $I_0 = 360\mu A$	•	2.4 2.1	2.64 2.50		V V
V _{OL}	Low Level Output Voltage	V _{CC} = 2.65V, I ₀ = 400µA	•			0.3	V
I _{OZ}	Hi-Z Output Leakage	CS =High	•			±3	μA
ISOURCE	Output Source Current	V _{OUT} = 0V			-10		mA
I _{SINK}	Output Sink Current	V _{OUT} = V _{CC}			15		mA
I _{REF}	Reference Current	$\label{eq:cs} \begin{array}{l} \overline{\text{CS}} = \text{V}_{\text{CC}} \\ t_{\text{CYC}} \geq 200 \mu \text{s}, \ f_{\text{CLK}} \leq 50 \text{kHz} \\ t_{\text{CYC}} = 58 \mu \text{s}, \ f_{\text{CLK}} = 250 \text{kHz} \end{array}$	•		0.001 3.500 35.00	2.5 7.5 50.0	μΑ μΑ μΑ
I _{CC}	Supply Current	$\overline{CS} = V_{CC}$	•		0.001	± 3	μA
		$\begin{array}{ll} \mbox{LTC1096L}, & t_{CYC} \geq 200 \mu s, \ f_{CLK} \leq 50 \mbox{Hz} \\ t_{CYC} = 58 \mu s, \ f_{CLK} = 250 \mbox{Hz} \end{array}$	•		40 120	80 180	μΑ μΑ
		$\begin{array}{ll} \mbox{LTC1098L,} & t_{CYC} \geq 200 \mu s, \ f_{CLK} \leq 50 \mbox{Hz} \\ & t_{CYC} = 58 \mu s, \ f_{CLK} = 250 \mbox{Hz} \end{array}$	•		44 155	88 230	μΑ μΑ

 V_{CC} = 2.65V, V_{REF} = 2.5V, f_{CLK} = 250kHz, unless otherwise noted.

AC CHARACTERISTICS

 $V_{CC} = 2.65V$, $V_{REF} = 2.5V$, $f_{CLK} = 250kHz$, unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
t _{SMPL}	Analog Input Sample Time	See Operating Sequences			1.5		CLK Cycles
f _{SMPL(MAX)}	Maximum Sampling Frequency		•	16.5			kHz
t _{CONV}	Conversion Time	See Operating Sequences			8		CLK Cycles
t _{dDO}	Delay Time, CLK \downarrow to D _{OUT} Data Valid	See Test Circuits	•		500	1000	ns
t _{dis}	Delay Time, $\overline{\text{CS}}$ to D _{OUT} Hi-Z	See Test Circuits	•		220	800	ns
t _{en}	Delay Time, CLK \downarrow to D _{OUT} Enable	See Test Circuits	•		160	480	ns
t _{hDO}	Time Output Data Remains Valid After CLK \downarrow	C _{LOAD} = 100pF			400		ns
t _f	D _{OUT} Fall Time	See Test Circuits	•		70	250	ns
t _r	D _{OUT} Rise Time	See Test Circuits	•		50	200	ns
C _{IN}	Input Capacitance	Analog Inputs On Channel Off Channel			25 5		pF pF
		Digital Input			5		pF

The
denotes specifications which apply over the full operating temperature range.

Note 1: Absolute Maximum Ratings are those values beyond which the life of a device may be impaired.

Note 2: All voltage values are with respect to GND.

Note 3: This device is specified at 2.65V. Consult factory for 5V specified devices.

Note 4: Linearity error is specified between the actual end points of the A/D transfer curve.

Note 5: Total unadjusted error includes offset, full scale, linearity, multiplexer and hold step errors.

ριη ευηςτιόης

LTC1096L

CS/SHDN (Pin 1): Chip Select Input. A logic low on this input enables the LTC1096L. A logic high on this input disables the LTC1096L and disconnects the power to the LTC1096L.

IN⁺ (Pin 2): Analog Input. This input must be free of noise with respect to GND.

IN⁻ (Pin 3): Analog Input. This input must be free of noise with respect to GND.

GND (Pin 4): Analog Ground. GND should be tied directly to an analog ground plane.

V_{REF} (Pin 5): Reference Input. The reference input defines the span of the A/D converter and must be kept free of noise with respect to GND.

Note 6: Two on-chip diodes are tied to each reference and analog input which will conduct for reference or analog input voltages one diode drop below GND or one diode drop above V_{CC}. This spec allows 50mV forward bias of either diode for $2.65V \le V_{CC} \le 3.6V$. This means that as long as the reference or analog input does not exceed the supply voltage by more than 50mV, the output code will be correct. To achieve an absolute OV to 3V input voltage range will therefore require a minimum supply voltage of 2.950V over initial tolerance, temperature variations and loading.

Note 7: Channel leakage current is measured after the channel selection.

D_{OUT} (**Pin 6**): Digital Data Output. The A/D conversion result is shifted out of this output.

CLK (Pin 7): Shift Clock. This clock synchronizes the serial data transfer.

V_{CC} (Pin 8): Power Supply Voltage. This pin provides power to the A/D converter. It must be free of noise and ripple by bypassing directly to the analog ground plane.

LTC1098L

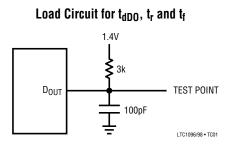
CS/SHDN (Pin 1): Chip Select Input. A logic low on this input enables the LTC1098L. A logic high on this input disables the LTC1098L and disconnects the power to the LTC1098L.

CHO (Pin 2): Analog Input. This input must be free of noise with respect to GND.

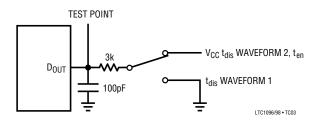
PIN FUNCTIONS

CH1 (Pin 3): Analog Input. This input must be free of noise with respect to GND.

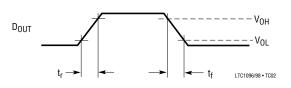
GND (Pin 4): Analog Ground. GND should be tied directly to an analog ground plane.

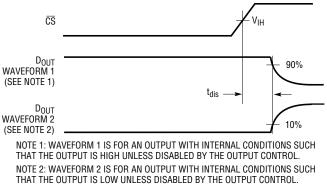

 \mathbf{D}_{IN} (Pin 5): Digital Data Input. The multiplexer address is shifted into this pin.

D_{OUT} (**Pin 6**): Digital Data Output. The A/D conversion result is shifted out of this output.

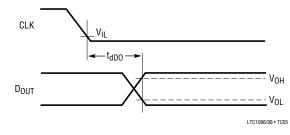

CLK (Pin 7): Shift Clock. This clock synchronizes the serial data transfer.

 V_{CC} (V_{REF}) (Pin 8): Power Supply Voltage. This pin provides power and defines the span of the A/D converter. It must be free of noise and ripple by bypassing directly to the analog ground plane

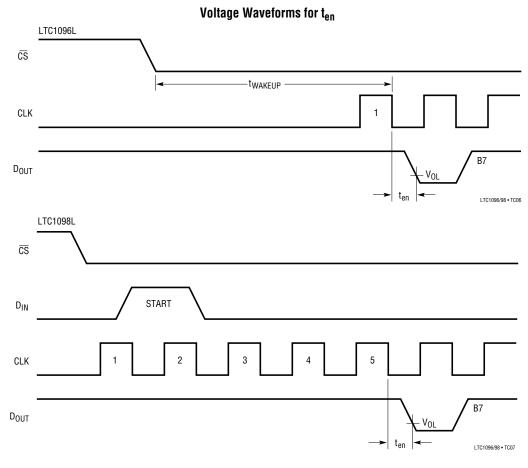

TEST CIRCUITS


Load Circuit for t_{dis} and t_{en}

Voltage Waveforms for D_{OUT} Rise and Fall Times, $t_{\text{r}}, t_{\text{f}}$

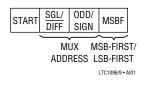


Voltage Waveforms for t_{dis}


LTC1096/98 • TC04

Voltage Waveforms for D_{OUT} Delay Time, t_{dDO}

TEST CIRCUITS



APPLICATIONS INFORMATION

INPUT DATA WORD

The LTC1096L requires no $D_{\rm IN}$ word. It is permanently configured to have a single differential input. The conversion result, in which the output on the $D_{\rm OUT}$ line is presented in MSB-first sequence followed by LSB sequence, provides easy interface to MSB- or LSB-first serial ports.

The LTC1098L latches data into the D_{IN} input on the rising edge of the clock. The input data words are defined as follows:

Start Bit

The first "logical one" clocked into the D_{IN} input after \overline{CS} goes low is the start bit. The start bit initiates the data transfer. The LTC1098L will ignore all leading zeroes which precede this logical one. After the start bit is received, the remaining bits of the input word will be clocked in. Further inputs on the D_{IN} pin are then ignored until the next \overline{CS} cycle.

Multiplexer (MUX) Address

The bits of the input word following the START bit assign the MUX configuration for the requested conversion. For a given channel selection, the converter will measure the voltage between the two channels indicated by the "+" and "-" signs in the selected row of the following tables. In

APPLICATIONS INFORMATION

single-ended mode, all input channels are measured with respect to GND.

MUX ADDRESS		CHAN		
SGL/DIFF	ODD/SIGN	CHO	CH1	GND
1	0	+		-
1	1		+	-
0	0	+	_	
0	1	_	+	
-			11	C1096/8 • AI02

LTC1098L Channel Selection

MSB-First/LSB-First (MSBF)

The output data of the LTC1098L is programmed for MSB-first or LSB-first sequence using the MSBF bit. When the MSBF bit is a logical one, data will appear on the D_{OUT} line in MSB-first format. Logical zeroes will be filled in indefinitely following the last data bit. When the MSBF bit is a logical zero, LSB-first data will follow the normal MSB-first data on the D_{OUT} line (see Figures 1 and 2).

ANALOG CONSIDERATIONS

Grounding

The LTC1096L/LTC1098L should be used with an analog ground plane and single point grounding techniques. Do

not use wire wrapping techniques to breadboard and evaluate the device. To achieve the optimum performance use a printed circuit board. The GND pin (Pin 4) should be tied directly to the ground plane with minimum lead length.

Bypassing

For good performance, the LTC1096L/LTC1098L V_{CC} and V_{REF} pins must be free of noise and ripple. Any changes in the V_{CC} and V_{REF} voltage with respect to ground during the conversion cycle can induce errors or noise in the output code. Bypass the V_{CC} and V_{REF} pins directly to the analog ground plane with a minimum 0.1µF capacitor and with leads as short as possible. The LTC1098L combines V_{CC} and V_{REF} into one pin, V_{CC}(V_{REF}), which can be bypassed by a 0.1µF capacitor.

Analog Inputs

Because of the capacitive redistribution A/D conversion techniques used, the analog inputs of the LTC1096L/ LTC1098L have capacitive switching input current spikes. These current spikes settle quickly and do not cause a problem. But if large source resistances are used or if slow settling op amps drive the inputs, take care to ensure the transients caused by the current spikes settle completely before the conversion begins.

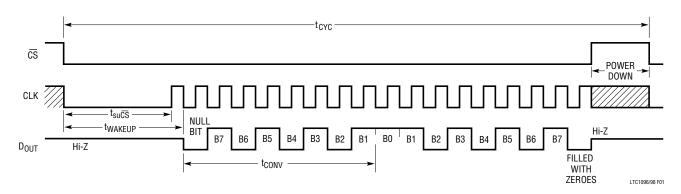
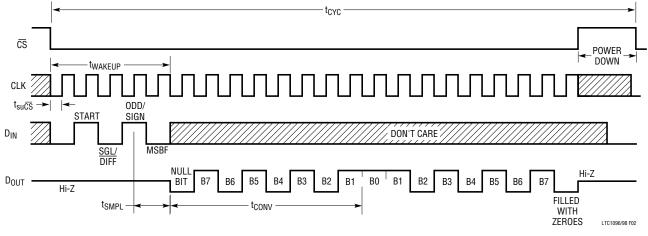
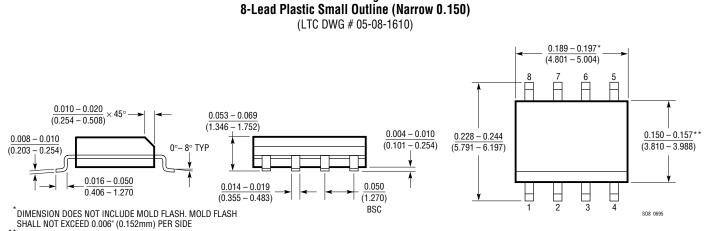



Figure 1. LTC1096L Operating Sequence

APPLICATIONS INFORMATION


MSB-FIRST DATA (MSBF = 0)

S8 Package

PACKAGE DESCRIPTION Dimensions in inches (millimeters) unless otherwise noted.

DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD

FLASH SHALL NOT EXCEED 0.010" (0.254mm) PER SIDE

RELATED PARTS

PART NUMBER	DESCRIPTION	COMMENTS
LTC1096/LTC1098	8-Pin SO, Micropower 8-Bit ADC	Low Power, Small Size, Low Cost
LTC1196/LTC1198	8-Pin SO, 1Msps 8-Bit ADC	Low Power, Small Size, Low Cost
LTC1285/LTC1288	8-Pin SO, 3V Micropower 12-Bit ADC	12-Bit ADC in SO-8
LTC1289	Multiplexed 3V 12-Bit ADC	8-Channel 12-Bit Serial I/O
LTC1584L	Multiplexed 3V 12-Bit ADC	4-Channel 12-Bit Serial I/O, Micropower