LINEAR SYSTEMS

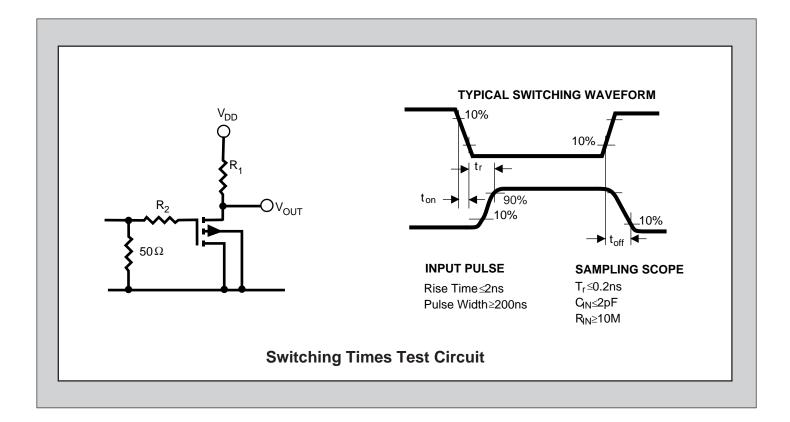
Linear Integrated Systems

<u>3N170, 3N171</u>

N-CHANNEL ENHANCEMENT MODE MOSFET

FEATURES			
VERY HIGH INPUT IMPEDANCE			
LOW SWITCHING VOLTAGES			
LOW DRAIN-SOURCE RESISTANCE			
LOW REVERSE TRANSFER CAPACITANCE			
ABSOLUTE MAXIMUM RATINGS (<u>NOTE 1</u>)			
(T _A = 25°C unless otherwise noted)			
Drain-Gate Voltage	±35V		
Drain-Source Voltage	25V		
Gate-Gate Voltage	±35V		
Drain Current	30mA		
Storage Temperature	-65°C to +200°C		
Operating Temperature	-55°C to +125°C		
Power Dissipation	300 mW		

DIE MAP	TO-72 Bottom View


ELECTRICAL CHARACTERISTICS @ 25°C (unless otherwise specified)

			LIMITS					
SYMBOL	CHARACTERISTICS		MIN.	MAX.	UNITS		CONDITIONS	
l _{gss}	Gate-Body Leakage Current			10	pА	V _{GS} = -35 V	V _{DS} = 0	
BV _{DSS}	Drain-Source Breakdown Voltag	je	25			V _{GS} = 0	I _D = 10 mA	
V _{GS(th)}	Threshold Voltage	3N170	1.0	2.0	V			
		3N171	1.5	3.0		V _{DS} = -10V	I _D = 10 μA	
I _{DSS}	Zero Gate Voltage Drain Curren	t		10	nA	V _{DS} = -10 V	V _{GS} = 0	
^r DS(on)	Drain-Source ON Resistance			200	ohms	V _{GS} = -10 V	$I_{D} = 0$	f=1KHz
l _{D(on)}	ON Drain Current		10		mA	V _{GS} = -10 V	V _{DS} = -10 V	
V _{DS(on)}	Drain-Source ON Voltage			2.0	V	V _{GS} = -10 V	I _D = 10 mA	
Y _{fs}	Forward Transfer Admittance		1000		μs	V _{DS} = -10V	I _D = 2.0mA	f=1KHz
C _{rss}	Reverse Transfer Capacitance			1.3		V _{GS} = 0	V _{DS} = 0	f=1MHz
C _{iss}	Input Capacitance			5.0	pF	V _{GS} = 0	V _{DS} = -10V	f=1MHz
C _{d(sub)}	Drain Substrate Capacitance			5.0		V _{D(SUB)} =-10V	f=1MHz	
td _(on)	Turn-On Delay Time			3.0		V _{DD} = -10V	I _{D(on)} = 10mA	
t _r	Rise Time			10		V _{GS(on)} = -10V	V _{GS(off)} = of=1K⊦	Ηz
td _(off)	Turn-Off Delay Time			3.0	ns	R _g = 50Ω		
t _f	Fall Time			15				

NOTES: 1. These ratings are limiting values above which the serviceability of the semiconductor may be impaired.

MATCHING CHARACTERISTICS 3N165

		LIMITS			
SYMBOL	CHARACTERISTICS	MIN.	MAX.	UNITS	CONDITIONS
Y _{fs1} /Y _{fs2}	Forward Transconductance Ratio	0.90	1.0		V _{DS} = -15 V I _D = -500 μA f=1kHz
V _{GS1-2}	Gate Source Threshold Voltage Differential		100	mV	V _{DS} = -15 V I _D = -500 μA
$\Delta V_{GS1-2}/\Delta T$	Gate Source Threshold Voltage Differential		100	μV/°C	V _{DS} = -15 V I _A = -500 μA
	Change with Temperature				$T_A = -55^{\circ}C$ to = +25°C

NOTES:

- MOS field-effect transistors have extremely high input resistance and can be damaged by the accumulation of excess static charge. To avoid possible damage to the device while wiring, testing, or in actual operation, follow these procedures: To avoid the build-up of static charge, the leads of the devices should remain shorted together with a metal ring except when being tested or used. Avoid unnecessary handling. Pick up devices by the case instead of the leads. Do not insert or remove devices from circuits with the power on, as transient voltages may cause permanant damage to the devices.
- 2. Per transistor.
- 3. Devices must mot be tested at $\pm 125V$ more than once, nor for longer than 300ms.
- 4. For design reference only, not 100% tested.

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.