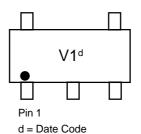
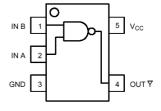

2-Input NAND Gate

MC74VHC1G00


The MC74VHC1G00 is an advanced high speed CMOS 2–input NAND gate fabricated with silicon gate CMOS technology. It achieves high speed operation similar to equivalent Bipolar Schottky TTL while maintaining CMOS low power dissipation. The internal circuit is composed of multiple stages, including a buffer output which provides high noise immunity and stable output. The MC74VHC1G00 input structure provides protection when voltages up to 7 V are applied, regardless of the supply voltage. This allows the MC74VHC1G00 to be used to interface 5 V circuits to 3 V circuits.


- High Speed: $t_{PD} = 3.0 \text{ ns}$ (Typ) at $V_{CC} = 5 \text{ V}$
- Low Power Dissipation: I $_{CC}$ = 2 mA (Max) at T $_{A}$ = 25°C
- Power Down Protection Provided on Inputs
- Balanced Propagation Delays
- Pin and Function Compatible with Other Standard Logic Families

MARKING DIAGRAMS

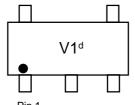


Figure 1. Pinout (Top View)

Pin 1
d = Date Code

Figure 2. Logic Symbol

PIN ASSIGNMENT						
1 IN B						
2	IN A					
3	GND					
4	OUT \overline{Y}					
5	V cc					

FUNCTION TABLE

Inp	outs	Output
Α	В	Y
L	L	Н
L	Н	Н
Н	L	Н
Н	Н	L

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 4 of this data sheet.

MC74VHC1G00

MAXIMUM RATINGS

Symbol	Parame	eter	Value	Unit
V cc	DC Supply Voltage		- 0.5 to + 7.0	V
V IN	DC Input Voltage		-0.5 to V $_{\rm CC}$ + 0.5	V
V _{OUT}	DC Output Voltage		-0.5 to V $_{\rm CC}$ + 0.5	V
I _{IK}	DC Input Diode Current		± 20	mA
I _{OK}	DC Output Diode Current		± 20	mA
I _{OUT}	DC Output Sink Current		± 12.5	mA
I _{cc}	DC Supply Current per Supply	Pin	± 25	mA
T _{STG}	Storage Temperature Range		- 65 to + 150	°C
Τ _L	Lead Temperature, 1 mm from	Case for 10 Seconds	260	°C
Τ _J	Junction Temperature Under B	ias	+ 150	°C
θ JA	Thermal Resistance	SC-70/SC-88A (Note 1)	150	°C/W
		TSOP-5	200	
PD	Power Dissipation in Still Air at	85C SC-70/SC-88A	150	mW
		TSOP-5	230	
MSL	Moisture Sensitivity		Level 1	
FR	Flammability Rating	Oxygen Index: 30% – 35%	UL 94 V-0 (0.125 in)	
V _{ESD}	ESD Withstand Voltage	Human Body Model (Note 2)	>2000	V
		Machine Model (Note 3)	> 200	
		Charged Device Model (Note 4)	N/A	
I LATCH-UP	Latch-Up Performance Ab	oove V cc and Below GND at 85C (Note 5)	± 500	mA

Maximum Ratings are those values beyond which damage to the device may occur. Exposure to these conditions or conditions beyond those indicated may adversely affect device reliability. Functional operation under absolute—maximum—rated conditions is not implied. Functional operation should be restricted to the Recommended Operating Conditions.

- 1. Measured with minimum pad spacing on an FR4 board, using 10 mm-by-1 inch, 2-ounce copper trace with no air flow.
- 2. Tested to EIA/JESD22-A114-A.
- 3. Tested to EIA/JESD22-A115-A.
- 4. Tested to JESD22-C101-A.
- 5. Tested to EIA/JESD78.

RECOMMENDED OPERATING CONDITIONS

Symbol	Paramete	Min	Max	Unit	
V _{cc}	DC Supply Voltage		2.0	5.5	V
V _{IN}	DC Input Voltage		0.0	5.5	V
V _{OUT}	DC Output Voltage		0.0	V cc	V
T _A	Operating Temperature Range		– 55	+ 125	°C
tr,tf	Input Rise and Fall Time	$V_{CC} = 3.3 \pm 0.3 \text{ V}$	0	100	ns/V
		$V_{CC} = 5.0 \pm 0.5 V$	0	20	

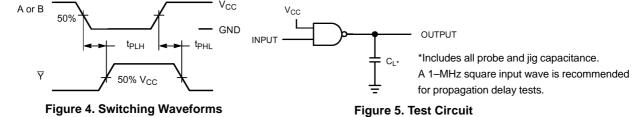
DEVICE JUNCTION TEMPERATURE VERSUS TIME TO 0.1% BOND FAILURES

	,. = 0.11= 1=1	
Junction	Time,	Time,
Temperature °C	Hours	Years
80	1,032,200	117.8
90	419,300	47.9
100	178,700	20.4
110	79,600	9.4
120	37,000	4.2
130	17,800	2.0
140	8,900	1.0



Figure 3. Failure Rate vs. Time Junction Temperature

MC74VHC1G00


DC ELECTRICAL CHARACTERISTICS

			V cc	T _A = 25°C		T _A ≤	85 °C	–55 °C t	o 125°C		
Symbol	Parameter	Test Conditions	(V)	Min	Тур	Max	Min	Max	Min	Max	Unit
V _{IH}	Minimum High-Level		2.0	1.5			1.5		1.5		V
	Input Voltage		3.0	2.1			2.1		2.1		
			4.5	3.15			3.15		3.15		
			5.5	3.85			3.85		3.85		
V _{IL}	Maximum Low-Level		2.0			0.5		0.5		0.5	V
	Input Voltage		3.0			0.9		0.9		0.9	
			4.5			1.35		1.35		1.35	
			5.5			1.65		1.65		1.65	
V _{OH}	Minimum High-Level	$V_{IN} = V_{IH} \text{ or } V_{IL}$	2.0	1.9	2.0		1.9		1.9		V
	Output Voltage	$I_{OH} = -50 \mu A$	3.0	2.9	3.0		2.9		2.9		
	$V_{IN} = V_{IH} \text{ or } V_{IL}$		4.5	4.4	4.0		4.4		4.4		
		$V_{IN} = V_{IH} \text{ or } V_{IL}$									
		$I_{OH} = -4 \text{ mA}$	3.0	2.58			2.48		2.34		
		$I_{OH} = -8 \text{ mA}$	4.5	3.94			3.80		3.66		
V _{OL}	Maximum Low-Level	$V_{IN} = V_{IH} \text{ or } V_{IL}$	2.0		0.0	0.1		0.1		0.1	V
	Output Voltage	$I_{OL} = 50 \mu A$	3.0		0.0	0.1		0.1		0.1	
	$V_{IN} = V_{IH} \text{ or } V_{IL}$		4.5		0.0	0.1		0.1		0.1	
		$V_{IN} = V_{IH} \text{ or } V_{IL}$									
		$I_{OL} = 4 \text{ mA}$	3.0			0.36		0.44		0.52	
		$I_{OL} = 8 \text{ mA}$	4.5			0.36		0.44		0.52	
I _{IN}	Maximum Input	$V_{IN} = 5.5 V \text{ or GND}$	0 to5.5			±0.1		±1.0		±1.0	μΑ
	Leakage Current										
I _{cc}	Maximum Quiescent	$V_{IN} = V_{CC}$ or GND	5.5			2.0		20		40	μΑ
	Supply Current										

AC ELECTRICAL CHARACTERISTICS C $_{load}$ = 50 pF, Input t $_{r}$ = 1 f = 3.0 ns

				Т	T _A = 25 °C		T _A ≤ 85 °C -55°		-55°C <t< th=""><th>_ <125°C</th><th></th></t<>	_ <125°C	
Symbol	Parameter	Test Conditions		Min	Тур	Max	Min	Max	Min	Max	Unit
t PLH,	Maximum	$V_{CC} = 3.3 \pm 0.3 V$	C _L = 15 pF		4.5	7.9		9.5		11.0	ns
t _{PHL}	Propagation Delay,		C _L = 50 pF		5.6	11.4		13.0		15.1	
	Input A or B to \overline{Y}										
		$V_{CC} = 5.0 \pm 0.5 V$	C ∟= 15 pF		3.0	5.5		6.5		8.0	
			C _L = 50 pF		3.8	7.5		8.5		10.0	
C IN	Maximum Input				5.5	10		10		10	pF
	Capacitance										
					cal @ 2	5°C, V	cc = 5. () V			
C PD	Power Dissipation Capacitance (Note 6)					10				pF	

^{6.} C $_{PD}$ is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load. Average operating current can be obtained by the equation: I $_{CC(OPR)} = C$ $_{PD} \bullet V$ $_{CC} \bullet f$ $_{in} + I$ $_{CC} \bullet C$ $_{PD}$ is used to determine the noload dynamic power consumption; P $_{D} = C$ $_{PD} \bullet V$ $_{CC}$ $^{2} \bullet f$ $_{in} + I$ $_{CC} \bullet V$ $_{CC}$.

MC74VHC1G00

DEVICE ORDERING INFORMATION

	Device Nomenclature						Package Type		
Device Order Number	Logic Circuit Indicator	Temp Range Identifier	Technology	Device Function	Package Suffix	Tape and Reel Suffix	(Name/SOT#/ Common Name)	Tape and Reel Size	
MC74VHC1G00DFT	MC	74	VHC1G	00	DF	T1	SC-70/SC-88A/	178 mm (7 in)	
							SOT-353	3000 Unit	
MC74VHC1G00DFT2	MC	74	VHC1G	00	DF	T2	SC-70/SC-88A/	178 mm (7 in)	
							SOT-353	3000 Unit	
MC74VHC1G00DTT1	MC	74	VHC1G	00	DT	T1	SOT-23/TSOP-5/	178 mm (7 in)	
							SC-59	3000 Unit	