
General Purpose Transistors

PNP Silicon

These transistors are designed for general purpose amplifier applications. They are housed in the SOT–323/ SC–70 which is designed for low power surface mount applications.

BC856AWT1, BWT1 BC857AWT1, BWT1 BC858AWT1, BWT1 CWT1

MAXIMUM RATINGS

Rating	Symbol	BC856	BC857	BC858	Unit
Collector-Emitter Voltage	V _{CEO}	-65	-45	-30	V
Collector-Base Voltage	V _{CBO}	-80	-50	-30	V
Emitter–Base Voltage	V _{EBO}	-5.0	-5.0	-5.0	V
Collector Current — Continuous	Ι _c	-100	-100	-100	mAdc

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Total Device Dissipation FR– 5 Board, (1) $T_A = 25^{\circ}C$	P _D	150	mW
Thermal Resistance, Junction to Ambient	R _{eja}	833	°C/W
Junction and Storage Temperature	T $_{\rm J}$, T $_{\rm stg}$	-55 to +150	°C

DEVICE MARKING

BC856AWT1 = 3A; BC856BWT1 = 3B; BC857AWT1 = 3E; BC857BV	VT1 = 3F;
BC858AWT1 = 3J; BC858BWT1 = 3K; BC858CWT1 = 3L	

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted.)

Characteristic		Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS						
Collector–Emitter Breakdown Voltage	BC856 Series		- 65	_	_	
$(I_{c} = -10 \text{ mA})$	BC857 Series	V (BR)CEO	- 45	_	_	v
	BC858 Series		- 30	_	—	
Collector–Emitter Breakdown Voltage	BC856 Series		- 80	_	_	
$(I_{C} = -10 \ \mu A, \ V_{EB} = 0)$	BC857 Series	V (BR)CES	- 50	_	_	v
	BC858 Series		- 30	_	—	
Collector-Base Breakdown Voltage	BC856 Series		- 80	_	_	
$(I_c = -10 \ \mu A)$	BC857 Series	V (BR)CBO	- 50	_	_	v
	BC858 Series		- 30	_	—	
Emitter–Base Breakdown Voltage	BC856 Series		- 5.0	_	_	
$(I_{E} = -1.0 \ \mu A)$	BC857 Series,	V (BR)EBO	- 5.0	_	_	v
	BC858 Series		- 5.0	—	—	
Collector Cutoff Current ($V_{CB} = -30 \text{ V}$)		I _{CBO}	_	_	- 15	nA
$(V_{CB} = -3)$	0 V, T _A = 150°C)	000	_	_	- 4.0	μA

1.FR-5=1.0 x 0.75 x 0.062in

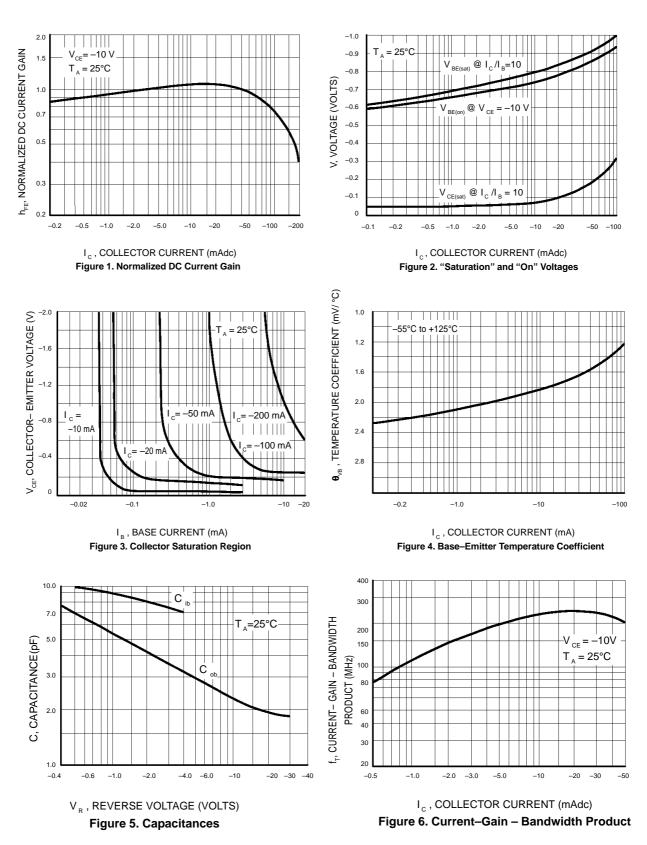
BC856AWT1, BWT1 BC857AWT1, BWT1 BC858AWT1, BWT1, CWT1

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted) (Continued)

(I $_{\text{C}}\text{=}-0.2$ mA,V $_{\text{CE}}\text{=}-5.0$ V $_{\text{dc}},$ R $_{\text{S}}\text{=}2.0$ kΩ, f =1.0 kHz, BW= 200 Hz)

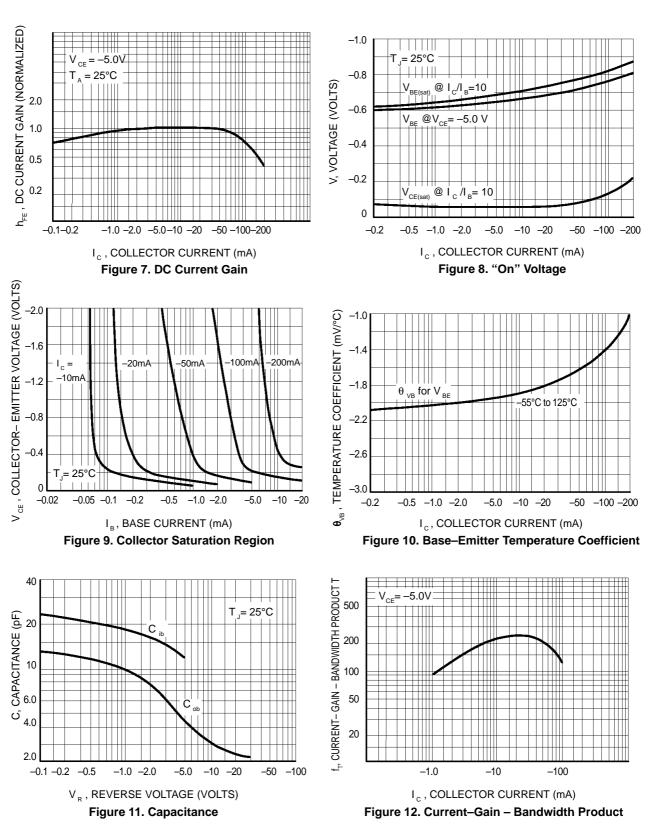
	Characteristic	Symbol	Min	Тур	Max	Unit
ON CHARACTERISTICS	6					
DC Current Gain	BC856A, BC857A, BC858A	h _{FE}	_	90	_	_
$(I_{c} = -10 \ \mu A, V_{ce} = -5.0 \ V)$	BC856B, BC857B, BC858B		_	150	_	
	BC858C,		_	270	_	
$(I_{c} = -2.0 \text{ mA}, V_{ce} = -5.0 \text{ V})$	BC856A, BC857A, BC858A		125	180	250	
	BC856B, BC857B, BC858B		220	290	475	
	BC858C		420	520	800	
Collector-Emitter Saturati	on Voltage (I $_{\rm C}$ = -10 mA, I $_{\rm B}$ = -0.5 mA)	$_{\rm C} = -10$ mA, I _B = -0.5 mA) , $ -0.3$				
	$(I_{c} = -100 \text{ mA}, I_{B} = -5.0 \text{ mA})$	V _{CE(sat)}	_	_	- 0.65	V
Base-Emitter Saturation \	/oltage ($I_c = -10 \text{ mA}, I_B = -0.5 \text{ mA}$)	M	_	- 0.7	_	V
	$(I_{\rm C} = -100 \text{ mA}, I_{\rm B} = -5.0 \text{ mA})$	V _{BE(sat)}	_	- 0.9	_	v
Base–Emitter Voltage (I c	se-Emitter Voltage (I $_{c}$ = -2.0 mA, V $_{CE}$ = -5.0 V)		- 0.6	_	- 0.75	V
(I _c :	= –10 mA, V _{CE} = –5.0 V)	V BE(on)	—	_	- 0.82	v
SMALL-SIGNAL CHA	RACTERISTICS					
Current–Gain — Bandwidth Product		f⊤	100	_	_	MHz
$(I_{c} = -10 \text{ mA}, V_{ce} = -5.0 \text{ mA})$) Vdc, f = 100 MHz)	• 1				
Output Capacitance (V CB	= – 10 V, f = 1.0 MHz)	C _{ob}	_	_	4.5	pF
Noise Figure		NE			10	dB

NF



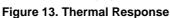
10

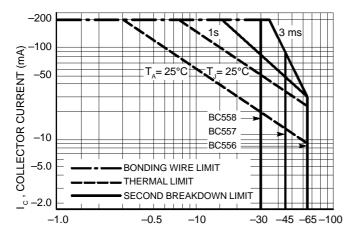
dB



BC856AWT1, BWT1 BC857AWT1, BWT1, BC858AWT1, BWT1, CWT1

BC857/BC858


BC856AWT1, BWT1 BC857AWT1, BWT1, BC858AWT1, BWT1, CWT1


BC856

BC856AWT1, BWT1 BC857AWT1, BWT1, BC858AWT1, BWT1, CWT1

V _{ce}, COLLECTOR–EMITTER VOLTAGE (V) Figure 14. Active Region Safe Operating Area The safe operating area curves indicate I $_{\rm c}$ –V $_{\rm CE}$ limits of the transistor that must be observed for reliable operation. Collector load lines for specific circuits must fall below the limits indicated by the applicable curve.

The data of Figure 14 is based upon $T_{J(pk)} = 150^{\circ}C$; T_{c} or T_{A} is variable depending upon conditions. Pulse curves are valid for duty cycles to 10% provided $T_{J(pk)} \leq 150^{\circ}C$. $T_{J(pk)}$ may be calculated from the data in Figure 13. At high case or ambient temperatures, thermal limitations will reduce the power that can be handled to values less than the limitations imposed by the secondary breakdown.