

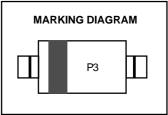
VHF Variable Capacitance Diode

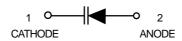
FEATURES

- Excellent linearity
- Excellent matching to 0.7% DMA
- · Very small plastic SMD package
- C28: 2.5 pF; ratio: 16.
- · Low series resistance.

APPLICATIONS

- Electronic tuning in VHF television tuners, band B up to 460 MHz
- · VCO.


DESCRIPTION


The BB133 is a variable capacitance diode fabricated in planar technology, and encapsulated in the SOD323 very small plastic SMD package.

The excellent matching performance is achieved by gliding matching and a direct matching assembly procedure. The unmatched type, BB150 has the same specification.

BB133

LIMITING VALUES

In accordance with the Absolute Maximum Rating System (IEC 134).

SYMBOL	PARAMETER	MIN.	MAX.	UNIT	
V_R	continuous reverse voltage	-	30	V	
I _F	continuous forward current	-	20	mA	
T _{stg}	storage temperature	- 55	+150	℃	
Tj	operating junction temperature	– 55	+125	℃	

ELECTRICAL CHARACTERISTICS

T_j = 25 °C unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
lr	reverse current	V _R = 30 V; see Fig.2	_	10	nA
		$V_R = 30 \text{ V}; T_j = 85 \text{ °C}; \text{ see Fig.2}$	_	200	nA
rs	diode series resistance	f = 100 MHz; note 1	_	0.9	Ω
Cd	diode capacitance	$V_R = 0.5 V$; $f = 1 MHz$; see Figs 1 and 3	38	46	pF
		$V_R = 28 \text{ V;} f = 1 \text{ MHz;}$ see Figs 1 and 3	2.2	2.6	pF
Cd(0.5V) Cd (28V)	capacitance ratio	f = 1 MHz	14	21	
ΔCd	capacitance matching	VR = 0.5 to 28 V; in a sequence of 4 diodes (gliding)	_	0.7	%
Cd		V _R = 0.5 to 28 V; in a sequence of 15 diodes (gliding)	_	2	%

Note

1. VR is the value at which $C_d = 30 pF$.

BB133

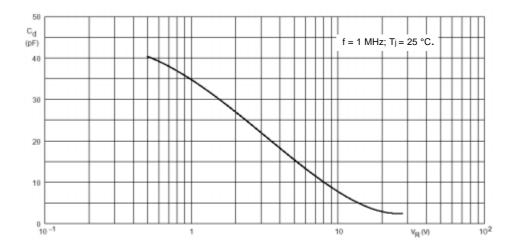


Fig.1 Diode capacitance as a function of reverse voltage; typical values.

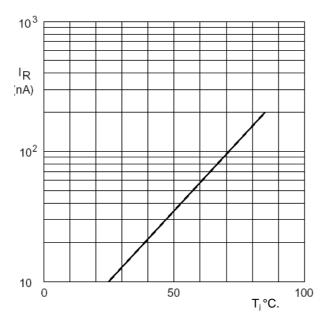


Fig.2 Reverse current as a function of junction temperature; maximum values.

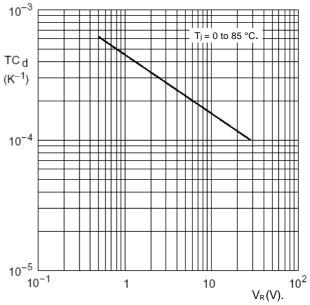


Fig.3 Temperature coefficient of diode capacitance as a function of reverse voltage; typical values.