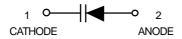


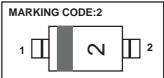
VHF variable capacitance diode

FEATURES


- · High linearity
- · Excellent matching to 2% DMA
- · Ultra small plastic SMD package
- · C28: 2.7 pF; ratio: 22
- · Low series resistance.

APPLICATIONS


- · Electronic tuning in VHF television tuners, band A up to 160 MHz
- · Voltage controlled oscillators (VCO).


DESCRIPTION

The BB182 is a planar technology variable capacitance diode, in a SOD523 (SC-79) package. The excellent matching performance is achieved by gliding matching and a direct matching assembly procedure.

BB 182

LIMITING VALUES In accordance with the Absolute Maximum Rating System (IEC 134).

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT	
V _R	continuous reverse voltage		_	32	V	
V _{RM}	peak reverse voltage	in series with a 10 $k\Omega$ resistor	_	35	V	
I _F	continuous forward current		_	20	mA	
T _{stg}	storage temperature		-55	+150	°C	
T _i	operating junction temperature		-55	+125	°C	

ELECTRICAL CHARACTERISTICS T_i=25°C unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	TYP.	UNIT
I _R	reverse current	$V_R = 30 V$; see Fig.2	_	_	10	nA
		$V_R = 30 V; T_j = 85$ °C; see Fig.2	_	_	200	nA
r _s	diode series resistance	f = 100 MHz;	_	1	1.2	Ω
		V_R is the value at which Cd =30 pF				
C _d	diode capacitance	$V_R = 1 V$; $f = 1 MHz$; see Figs 1and 3	52	_	62	pF
		$V_R = 28 \text{ V}$; f = 1 MHz; see Figs 1and 3	2.48	_	2.89	pF
$\frac{C_{d(1V)}}{C_{d(2V)}}$	capacitance ratio	f = 1 MHz	-	1.31	-	
C d(1V) C d(28V)	capacitance ratio	f = 1 MHz	20.6	-	-	
C _{d(25V)}	capacitance ratio	f = 1 MHz	-	1.05	-	
$\frac{\Delta C_d}{C_d}$	capacitance matching	V _R = 1 to 28 V; in a sequence of 15 diodes(gliding)	_	_	2	%

BB 182

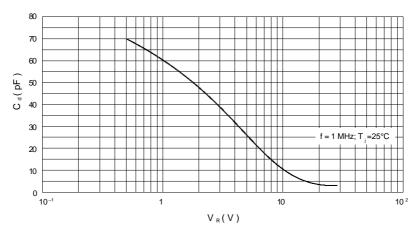


Fig.1 Diode capacitance as a function of reverse voltage; typical values.

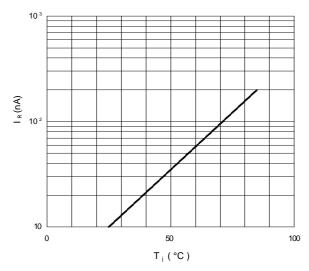


Fig.2 Reverse current as a function of junction temperature; maximum values.

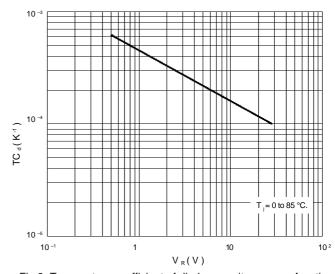


Fig.3 Temperature coefficient of diode capacitance as a function of reverse voltage; typical values.