MMIC Medium Level Mixer
 1700-2000 MHz

MD54-0003

Features

- Low Conversion Loss
- +21 dBm Input Power @ 1 dB Compression
- Typical Two-Tone IM Ratio of $\geq 50 \mathrm{dBc}$
- LO Drive Level: +11 to +23 dBm
- DC - 200 MHz IF Bandwidth
- Low Cost Plastic SOIC Package

Description

M/A-COM's MD54-0003 is a passive mixer that achieves the performance of a double balanced diode mixer in a low cost surface mount plastic SOIC 8-lead package. The MD54-0003 is ideally suited for use where high level RF signals and very wide dynamic range are required. Typical applications include frequency up/down conversion, modulation, demodulation in systems such as base station receivers and transmitters for DCS1800, PCS and PHS applications.

The MD54-0003 uses FETs as mixing elements to achieve very wide dynamic range in a low cost plastic package. The mixer operates with LO drive levels of +11 dBm to +23 dBm . No DC bias is required.

M/A-COM's MD54-0003 is fabricated using a mature 1 -micron GaAs process. The process features full IC passivation for increased performance and reliability.

SO-8

8- Lead SOP outline dimensions Narrow body . 150
(All dimensions per JEDEC No. MS-012-AA, Issue C) Dimensions in () are in mm.
Unless Otherwise Noted: . $x x x= \pm 0.010(. x x= \pm 0.25)$
$. x x= \pm 0.02(. x= \pm 0.5)$

Ordering Information

Part Number	Description
MD54-0003	SOIC 8-Lead Plastic Package
MD54-0003TR	Forward Tape \& Reel*
MD54-0003RTR	Reverse Tape \& Reel*
MD54-0003SMB	Designer's Kit

* Standard reel size is 7 inches. If other reel size is required, consult factory for part number assignment.

Electrical Specifications

Test Conditions: RF = $1850 \mathrm{MHz}(-10 \mathrm{dBm}), \mathrm{LO}=1710 \mathrm{MHz}(13 \mathrm{dBm})$, $\mathrm{IF}=140 \mathrm{MHz}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$

Parameter	Test Conditions	Units	Min.	Typ.	Max.
Conversion Loss		dB		8.5	9.5
Isolation	LO to RF	dB	20	27	
	LO to IF	dB		12	
VSWR	RF to IF	dB		10	
	LO Port			$2.5: 1$	
	RF Port			$2.0: 1$	
IF Port			$+2.0: 1$		
Two -Tone IM Ratio ${ }^{1}$		RF Freq. $=1800 \mathrm{MHz}, \mathrm{LO}=+13 \mathrm{dBm}$	dBm		
	Two tones at -10 dBm each,				

1. IMR vs RF drive level can be calculated by the formula: $\operatorname{IMR}=50-\left(1.5 \times P_{\text {IN }}\right)$

Absolute Maximum Ratings ${ }^{1}$

Parameter	Absolute Maximum
RF Input Power 2	+22 dBm
LO Drive Power 2	+23 dBm
Operating Temperature	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

1. Operation of this device above any one of these parameters may cause permanent damage.
2. Total power for RF and LO ports should not exceed +23 dBm .

Functional Diagram ${ }^{3}$

3. External matching network on LO Port:
$\mathrm{R}=330$ ohms, $\mathrm{L}=3 \mathrm{nH}, \mathrm{C}=3.3 \mathrm{pF}$

Typical Performance

Specifications Subject to Change Without Notice.

RF, LO and IF VSWR vs FREQUENCY, LO = +13 dBm IF FREQUENCY (MHz)

North America: Tel. (800) 366-2266 Fax (800) 618-8883

- Asia/Pacific: Tel. +81 (03) 3226-1671

Fax +81 (03) 3226-1451

- Europe: Tel. +44 (1344) 869595

Fax +44 (1344) 300020

