GaAs High Isolation Switch DC - 3.0 GHz

Features

- Low Power Consumption: < $15 \mu \mathrm{~A} @+2.5 \mathrm{~V}$
- High Isolation: 50 dB Typical @ 2 GHz
- Low Insertion Loss: < 0.8 dB @ 2 GHz
- Positive 2.5 to 5 V Control
- Low Cost Plastic MSOP-10 Package

Description

M/A-COM's SW-439 is a GaAs MMIC SPDT switch in a low cost MSOP-10 surface mount plastic package. This part is ideal for high isolation, broadband switching requirements. Typical applications include synthesizer switching, transmit/receive switching, switch matrices and filter banks in systems such as radio and cellular equipment, PCM, GPS, and fiber optic modules

The SW-439 is fabricated as a monolithic GaAs MMIC using a mature 1 micron process. The process features full passivation

MSOP-10

Ordering Information

Part Number	Package
SW-439 PIN	MSOP 10-Lead Plastic Package
SW-439TR	Tape and Reel

Electrical Specifications: $\mathrm{T}_{\mathrm{A}}=\mathbf{+ 2 5}{ }^{\circ} \mathrm{C}$

Parameter	Test Conditions	Units	Min.	Typ.	Max.
Insertion Loss	DC - 1.0 GHz	dB		0.55	0.65
	$1.0-2.0 \mathrm{GHz}$	dB		0.65	0.75
	$2.0-3.0 \mathrm{GHz}$	dB		0.80	0.90
Isolation	DC - 2.0 GHz	dB	45	47	
	$2.0-3.0 \mathrm{GHz}$	dB	31	33	
VSWR	$0.25-3.0 \mathrm{GHz}$			1.2:1	1.3:1
$\mathrm{P}_{1 \mathrm{~dB}}$ (2.5V supply)	$500 \mathrm{MHz}-2.0 \mathrm{GHz}$	dBm		20	
$\mathrm{P}_{1 \mathrm{~dB}}$ (5V supply)	$500 \mathrm{MHz}-2.0 \mathrm{GHz}$	dBm		28	
IP_{2}	2 Tone 900 MHz , 5 MHz Spacing (2.5 V)	dBm		85	
IP_{3}	2 Tone $900 \mathrm{MHz}, 5 \mathrm{MHz}$ Spacing (2.5 V)	dBm		50	
$\mathbf{T o n}_{\text {on }}, \mathbf{T}_{\text {off }}$	50\% Control to 90\% RF, Control to 10\% RF	ns		20	
$\mathrm{T}_{\text {rise }}, \mathbf{T}_{\text {fall }}$	10\% to 90\% RF, 90% to 10% RF	ns		10	
Transients	In-band	mV		15	
Gate Leakage	$\left\|\mathrm{V}_{\text {CTL }}\right\|=2.5 \mathrm{~V}$	$\mu \mathrm{A}$		5	15

V2.00

Absolute Maximum Ratings ${ }^{1}$

Parameter	Absolute Maximum
Input Power	+30 dBm
Operating Voltage	+8.5 Volts
Operating Temperature	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

1. Exceeding any one or a combination of these limits may cause permanent damage.

Pin Configuration

PIN No.	Function	Description
1	V1	Control 1
2	Gnd	Ground
3	RFC	RF Input
4	Gnd	Ground
5	V2	Control 2
6	RF2	RF Port 2
7	Gnd	Ground
8	Gnd	Ground
9	Gnd	Ground
10	RF1	RF Port 1

Typical Performance Curves

Insertion Loss vs. Frequency Over Temperature

Functional Schematic ${ }^{1}$

1. External blocking capacitors are required on all RF ports.

Truth Table

Mode (Control)	Control 1 V1	Control 2 V2	RFC - RF1	RFC - RF2
Positive 1	0 V	+2.5 to +5 V	Off	On
	+2.5 to +5 V	0 V	On	Off

1. External DC blocking capacitors are required on all RF ports.
2. Logic $0=0 \pm 0.2 \mathrm{Vdc}$ Logic $1=+2.5$ to +5 Vdc

