

MAS9116

Stereo Digital Volume Control

- Signal Voltage up to ± 18V
- Two Independent Channels
- Use of Differential DACs Possible
- Serial Control Registers

DESCRIPTION

MAS9116 is a stereo volume control for audio systems, which require high output voltages (AC3). It has a 16-bit serial interface, which controls two audio channels. Simple serial interface allows microcontroller to control many MAS9116 chips on the same PCB board. "Clicking" between gain changes is eliminated by changing gain only when zero crossing has been detected from the signal. The use of external operational amplifier provides flexibility for the operating voltage, signal swing, noise floor and cost optimization.

FEATURES

- Zero Detection for Gain Changes
- Gain Range +15.5db...-111.5dB
- 0.5 dB Step Size
- Mute Pin and Register
- Power On/Off Transient Suppression
- Signal Peak Level Comparator with Adjustable Reference

BLOCK DIAGRAM

APPLICATION

- High End Audio Systems
- Multichannel Audio Systems

PIN CONFIGURATION

			SO16			
	_		\smile		_	
AVCC	Ц	1		16		AGND
LMO	Ц	2		15		RMO
LFO	Ц	3		14		RFO
LIN	П	4		13		RIN
LGND	Ц	5		12		RGND
XCS	Ц	6		11		DGND
DVCC	Ц	7		10		CCLK
XMUTE	q	8		9		DATA

PIN DESCRIPTION

Pin Name	Pin	Туре	Function
AVCC	1	Р	Power Supply, for Analog
LMO	2	AI	External Amplifier Negative Input (Left)
LFO	3*	AI	Feedback Signal from External Amplifier Output (Left)
LIN	4*	AI	Input, Left Channel
LGND	5	AI	Signal Ground, Left Channel
XCS	6	DI	Chip Select Input of Serial Interface
DVCC	7	Р	Power Supply, for Digital
XMUTE	8	DI	Mute Input
DATA	9	DIO	Data Input and Output of Serial Interface, Tristate
CCLK	10	DI	Clock Input of Serial Interface
DGND	11	G	Ground for Digital
RGND	12	AI	Signal Ground, Right Channel
RIN	13*	AI	Input, Right Channel
RFO	14*	AI	Feedback Signal from External Amplifier Output (Right)
RMO	15	AI	External Amplifier Negative Input (Right)
AGND	16	G	Ground for Analog

*) Note: Pins 3, 4, 13 and 14 are only 300V HBM ESD protected

GENERAL DESCRIPTION

Main features

MAS9116 is a stereo digital volume control designed for audio systems. The levels of the left and right analog channels are set by the serial interface. Both channels can be programmed independently. Resistor values are decoded to 0.5 dB resolution by using internal multiplexers for a gain from –111.5 to +15.5 dB. The code for –112 dB activates mute for maximum attenuation. MAS9116 operates from single +5V supply and accepts input levels up to ±18V.

Interfaces

Control information is written into or read back from the internal register via the serial control port. Serial control port consists of a bi-directional pin for data (DATA), chip select pin (XCS) and control clock (CCLK) and supports the serial communication protocol. All control instructions require two bytes of data.

To shift the data in CCLK must be pulsed 16 times when XCS is low. The data is shifted into the serial input register on the rising edges of CCLK pulses. The first 8 bits contain address information. The second byte contains the control word. XCS must return to high after the second byte. The instruction actually takes effect on the 17th rising edge of CCLK. That is, after the 16th CCLK XCS must be returned to high. Then the instruction is executed on the next CCLK. See the timing diagram on page 8.

The same process takes place for reading the information. XCS will remain low for next 16 CCLK pulses. The data is shifted out on the falling edges of CCLK. When XCS is high, the DATA pin is in high impedance state, which enables DATA pins of other devices to be multiplexed together.

On the PCB board the same DATA and CCLK lines can be directed to every MAS9116 chip. If the XCSpin is not active (low), DATA-pin of that chip is in high-impedance state. This allows using a simple PCB board for multichannel audio systems.

Operating modes

When power is first applied, power-on reset initializes control registers and sets MAS9116 into mute state. The activation of the device requires that XMUTE pin is high and a control byte with a greater than the default value is written in the gain register. It is possible to return to the mute stage either by setting XMUTE pin low or writing zero (00hex) to the gain register. For device testing XMUTE pin is bidirectional. When the test register bit 1 is high XMUTE pin is output pin. Internal signals can be directed to the pin.

Changing the gain of the channel

When new gain value is written into the gain register the chip will activate zero crossing and delay generator enable signal for the selected channel. MAS9116 will wait until falling edge zero crossing in input signal. To ensure that there is no audible click from the output of amplifier configuration when gain is changed. LIN is the input line for left channel and RIN for right channel. If there are no zero crossings in the signal the gain is changed anyway after 18ms. Delay generator will provide about 100ns pulse after 18ms when it is enabled.

Programming both gain registers at same time sets gain values first to the right channel and then to the left channel.

Peak Level Detection

MAS9116 has an 8-bit digital-to-analog converter (DAC) used for monitoring the peak level of the signal. The reference value is programmed via the serial interface. The reference value VREF is calculated from VREF=k/256x18V, where k is the binary value of the control byte and 18V is a typical signal value. When positive peak signal level exceeds this value, comparator signal sets bits 0 and 1 of the status register. The register contents stay high until the peak register has been read.

REGISTER DESCRIPTION

Register			A	ddres	ss By	/te			Data Byte		
	7	6	5	4	3	2	1	0	msb…lsb	Function	
Peak Detector Status CR4	X	1	0	1	1	R/W	X	X	Output code 00000000 0000001 00000010 00000011	No overload Right overload Left overload Both overload	
Peak Detector Reference CR3	X	1	1	0	0	R/W	X	X	Input code 11111111 1111110 11111101 • • 00000010 0000001 00000001	DAC output 255/256 AVCC 254/256 AVCC 253/256 AVCC • • 2/256 AVCC 1/256 AVCC AGND	
Left Channel Gain CR2	X	1	1	0	1	R/W	X	X	Input code 11111111 1111110 11111101 • • 11100000 00000010 00000001 00000000	Gain dB +15.5 +15.0 +14.5 • 0.0 -111.0 -111.5 mute	
Right Channel Gain CR1	X	1	1	1	0	R/W	X	X	Input code 11111111 11111110 11111101 • • • 11100000 00000010 00000001 00000001	Gain dB +15.5 +15.0 +14.5 • 0.0 -111.0 -111.5 mute	
Test, CR5	X	1	1	1	1	R/W	Х	Х	R	eserved	
Both Channel Gains	Х	1	0	0	1	W	X	X	Write to both gain registers		

Address byte bits:

- Bit 2 is read/write bit (1=read, 0=write). •
- X is don't care, recommended high for low • power.

Data byte bits:

- All registers get their default value 00Hex except CR3 which gets FFHex during power-on reset. Default value for all bits is zero (00hex). •
- •

TEST REGISTER CR5 DESCRIPTION

XMUTE pin is output pin when bit 1 is set in register CR5. Bits 2, 3 and 4 select different internal signals. In test phase those signals can be seen via XMUTE pin.

Condition		Data Byte bits							Function
	7	6	5	4	3	2	1	0	
XMUTE=in	0	0	0	0	0	0	0	1	Force to latch the new gain value to resistor network
Test, XMUTE=out	0	0	0	0	0	0	1	0	left delay generator
Test, XMUTE=out	0	0	0	0	0	1	1	0	left peak detector
Test, XMUTE=out	0	0	0	0	1	0	1	0	left zero crossing
Test, XMUTE=out	0	0	0	0	1	1	1	0	left enable for zeroc and delay
									generator
Test, XMUTE=out	0	0	0	1	0	0	1	0	right delay generator
Test, XMUTE=out	0	0	0	1	0	1	1	0	right peak detector
Test, XMUTE=out	0	0	0	1	1	0	1	0	right zero crossing
Test, XMUTE=out	0	0	0	1	1	1	1	0	right enable for zeroc and delay generator

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Conditions	Min	Мах	Unit
Signal Voltage	RIN, RFO, LIN, LFO		-20	+20	V
Positive Supply Voltage	AVCC, DVCC		-0.5	+6.0	V
All other pins			-0.5	AVCC +0.5	
Storage Temperature	TS		-55	+125	°C
Operating Temperature	TA		-40	+85	°C
ESD (HBM) pins 3, 4, 13 and 14			300		V
ESD (HBM) all other pins			2000		V

RECOMMENDED OPERATION CONDITIONS

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Signal Voltage	RIN, RFO, LIN, LFO		-18		+18	V
Positive Supply Voltage	AVCC,DVCC		4.5	5	5.5	V
Negative Supply Voltage	AGND,DGND			0		V
Signal Grounds	LGND,RGND			0		V
Operating Temperature	TA		-20	+25	+60	°C

ANALOG CHARACTERISTICS

♦ Analog Inputs/Outputs

(AVCC=+5,0 V, AVSS=0 V, TA=+25°C unless otherwise noted)

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Input Resistance	RIN	For any gain	7	10		kΩ
Input Capacitance	CIN	For any gain		2		pF
Input offset voltage	VIH	External OP275 amplifier, gain=1			1	mV
Supply current	IVCC	From AVCC		2.5	5	mA
Supply current	IGND	From AGND		2.5	5	mA
Power supply rejection ratio ¹	PSRR	From AVCC		80		dB

♦ Gain Control

(AVCC=+5,0 V, AVSS=0 V, TA=+25°C unless otherwise noted)

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Gain range	G		-111,5		+15,5	dB
Step size	D			0,5		dB
Gain error ¹	DE	Lowest gains guaranteed by design, not tested in production.			0,5	dB
Gain match error ¹	ME	Between channels			0,2	dB
Mute attenuation	MATT		113			dB

◆ Audio Performance

(AVCC=+5,0 V, AVSS=0 V, TA=+25°C unless otherwise noted)

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Noise ¹	N	Vin=0				
		-gain=0dB			13	μVrms
		-gain=-60dB		4		•
		-gain=mute		2,5		
Total harmonic	THDN	Vin=6Vrms, gain=1,		0,01		%
distortion plus noise		Vout with OP275,				
		020kHz				
Dynamic range ¹	DR		120	130		dB
Crosstalk ¹	CR	Between channels,	-100	-110		dB
		gain=1, fin=1kHz				

¹ Quaranteed by design

DIGITAL CHARACTERISTICS

♦ Digital Inputs/Outputs

(AVCC=+5,0 V, AVSS=0 V, TA=+25°C unless otherwise noted)

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Input low voltage	VIL	All digital inputs, DC			0,3* DVCC	V
Input high voltage	VIH	All digital inputs, DC	0,7* DVCC			V
Output low voltage	VOL	All digital outputs, IL=2mA			0,4	V
Output high voltage	VOH	All digital outputs, IH=2mA	DVCC- 0,4			V

♦ Serial Interface Timing

(AVCC=+5,0 V, AVSS=0 V, TA=+25°C unless otherwise noted)

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Frequency of CCLK	FCCLK				1	MHz
Period of CCLK high	TWHC	Measured from VIH to VIH	500			ns
Period of CCLK low	TWLC	Measured from VIL to VIL	500			ns
Rise time of CCLK	TRC	Measured from VIL to VIH			100	ns
Fall time of CCLK	TFC	Measured from VIH to VIL			100	ns
Hold time, CCLK high to XCS low	THCHS		20			ns
Setup time, XCS low to CCLK high	TSSLCH		100			ns
Setup time, valid CI to CCLK high	TSDCH		100			ns
Hold time, CCLK high to invalid CI	THCHD		100			ns
Delay time, CCLK low to valid CI	TDCLD	Load=100pF			200	ns
Delay time, XCS high or 8 th CCLK low to invalid CI	TDSZ	Load= 3.3 k Ω	20		200	ns
Hold time, 16 th CCLK high to XCS high	THLCHS		200			ns
Setup time, XCS high to CCLK high	TSSHCH		200			ns

APPLICATION INFORMATION

Power supply decoupling

To get the best performance of the chip all digital activities should be avoided during analog signal processing. Special attention should be paid for power and ground decoupling. If possible separate power supplies should be used for analog and digital side. Clean analog power supply should be used for AVCC. Voltage in DVCC should be same as in AVCC to avoid latch-up phenomena. Decoupling capacitors must be located as near to MAS9116 as possible.

If same power supply is used for both AVCC and DVCC recommended connection diagram is presented in application note 1.

Application Note 1

Typical application

Application note 2

Configuration for balanced output DAC (one channel).

DEVICE PACKAGE OUTLINES

Package outlines and recommended PCB dimensions.

All dimensions are in accordance with JEDEC standard MS-013.

ORDERING INFORMATION

Product Code	Product	Package	Quantity	Comments
MAS9116ASBA-T	MAS9116	16-pin Plastic SOIC	1000 pcs/reel in MBB	MBB=Moisture Barrier Bag
MAS9116ASBA	MAS9116	16-pin Plastic SOIC	47 pcs/tube	MSB0091A Bake recommendation for surface mounted devices

LOCAL DISTRIBUTOR

MICRO ANALOG SYSTEMS OY CONTACTS

MICRO ANALOG SYSTEMS OY	Tel. (09) 80 521
Kamreerintie 2, P.O.Box 51	Tel. Int. +358 9 80 521
FIN-02771 Espoo, FINLAND	Telefax +358 9 805 3213
http://www.mas-oy.com	E-mail: info@mas-oy.com

NOTICE

Micro Analog Systems Oy reserves the right to make changes to the products contained in this data sheet in order to improve the design or performance and to supply the best possible products. Micro Analog Systems Oy assumes no responsibility for the use of any circuits shown in this data sheet, conveys no license under any patent or other rights unless otherwise specified in this data sheet, and makes no claim that the circuits are free from patent infringement. Applications for any devices shown in this data sheet are for illustration only and Micro Analog Systems Oy makes no claim or warranty that such applications will be suitable for the use specified without further testing or modification.