General Description

The MAX4291/MAX4292/MAX4294 family of micropower operational amplifiers operates from a +1.8V to +5.5V single supply or ±0.9V to ±2.75V dual supplies and has Rail-to-Rail® input/output capabilities. These amplifiers provide a 500kHz gain-bandwidth product and 120dB open-loop voltage gain while using only 100µA of supply current per amplifier. The combination of low input offset voltage (±400µV) and high-open-loop gain makes them suitable for low-power/low-voltage high-precision applications.

The MAX4291/MAX4292/MAX4294 have an input common-mode range that extends to each supply rail, and their outputs typically swing within 20mV of the rails with a 2k Ω load. Although the minimum operating voltage is specified at +1.8V, these devices typically operate down to +1.5V. The combination of ultra-low-voltage operation, rail-to-rail inputs/output, and low-power consumption makes these devices ideal for any portable/two-cell battery-powered system.

The single MAX4291 is offered in an ultra-small 5-pin SC70 package and the dual MAX4292 is offered in a space-saving 8-pin μ MAX package.

Applications

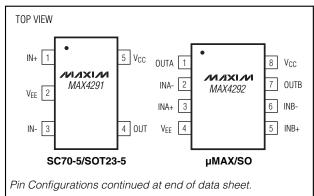
Selector Guide

2-Cell Battery-Operated Systems Portable Electronic Equipment Battery-Powered Instrumentation Digital Scales Strain Gauges Sensor Amplifiers Cellular Phones

PART	AMPLIFIERS PER PACKAGE	PIN-PACKAGE
MAX4291	1	5-pin SC70/SOT23
MAX4292	2	8-pin µMAX/SO
MAX4294	4	14-pin SO/TSSOP

Rail-to-Rail is a registered trademark of Nippon Motorola, Ltd.

Features


- Ultra-Low Voltage Operation—Guaranteed Down to +1.8V
- 100µA Supply Current per Amplifier
- 500kHz Gain-Bandwidth Product
- 120dB Open-Loop Voltage Gain (R_L = 100kΩ)
- 0.017% THD + Noise at 1kHz
- Rail-to-Rail Input Common-Mode Range
- ♦ Rail-to-Rail Output Drives 2kΩ Load
- No Phase Reversal for Overdriven Inputs
- ♦ Unity-Gain Stable for Capacitive Loads up to 100pF
- ♦ 400µV Input Offset Voltage
- Single Available in Ultra-Small 5-Pin SC70 Dual Available in Space-Saving 8-Pin µMAX

Ordering Information

PART	TEMP. RANGE	PIN- PACKAGE	TOP MARK
MAX4291EXK-T	-40°C to +85°C	5 SC70-5	AAD
MAX4291EUK-T	-40°C to +85°C	5 SOT23-5	ADML
MAX4292EUA*	-40°C to +85°C	8 µMAX	_
MAX4292ESA*	-40°C to +85°C	8 SO	—
MAX4294ESD*	-40°C to +85°C	14 SO	_
MAX4294EUD*	-40°C to +85°C	14 TSSOP	—

*Future product—contact factory for availability.

Pin Configurations

_ Maxim Integrated Products 1

For free samples & the latest literature: http://www.maxim-ic.com, or phone 1-800-998-8800. For small orders, phone 1-800-835-8769.

ABSOLUTE MAXIMUM RATINGS

Supply Voltage (V _{CC} to V _{EE})	+6V
All Other Pins(V _{CC} + 0.3V) to	
Output Short-Circuit Duration	Continuous
Continuous Power Dissipation ($T_A = +70^{\circ}C$)	
5-Pin SC70 (derate 2.5mW/°C above +70°C)	200mW
5-Pin SOT23 (derate 7.1mW/°C above +70°C)	571mW

471mW
667mW
500mW
C to +85°C
+150°C
to +150°C
+300°C

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

 $(V_{CC} = +1.8V \text{ to } +5.5V, V_{EE} = V_{CM} = 0, V_{OUT} = V_{CC} / 2, R_L = 100 \text{k}\Omega$ connected to V_{CC} / 2, **T_A = +25°C**, unless otherwise noted.) (Note 1)

PARAMETER	SYMBOL		MIN	TYP	MAX	UNITS	
Supply Voltage Range	Vcc	Inferred from F	1.8		5.5	V	
Quiescent Supply Current	lq	$V_{CC} = 1.8V$			100	210	
(per Amplifier)	IQ	$V_{CC} = 5.0V$			110	225	μA
		MAX4291EXK	, MAX4291EUK		±400	±2500	
Input Offset Voltage	Vos	MAX4292EUA	, MAX4294EUD		±400	±1500	μV
		MAX4292ESA	MAX4294ESD		±400	±1500	
Input Bias Current	IB	$V_{CC} = 5.0V, 0$	$\leq V_{CM} \leq 5.0V$		±15	±55	nA
Input Offset Current	los	V _{CC} = 5.0V, 0	$\leq V_{CM} \leq 5.0V$		±1	±7	nA
Differential Input Resistance	RIN	$ V_{IN+} - V_{IN-} <$	10mV		0.75		MΩ
Input Common-Mode Voltage Range	VCM	Inferred from (0		Vcc	V	
	CMRR	Tested for $0 \le V_{CM} \le$ 1.8V; $V_{CC} = 1.8V$	MAX4291EXK, MAX4291EUK	50	80		dB
			MAX4292EUA, MAX4294EUD	65	85		
Common-Mode Rejection Ratio			MAX4292ESA, MAX4294ESD	65	85		
	Civinn	Tested for	MAX4291EXK, MAX4291EUK	60	90		
		0 ≤ V _{CM} ≤ 5.0V,	MAX4292EUA, MAX4294EUD	70	90		dB
		$V_{CC} = 5.0V$	MAX4292ESA, MAX4294ESD	70	90		
Power-Supply Rejection Ratio		MAX4291EXK	MAX4291EUK	80	100		
	PSRR	MAX4292EUA, MAX4294EUD		80	100		dB
		MAX4292ESA, MAX4294ESD		80	80 100		1

ELECTRICAL CHARACTERISTICS

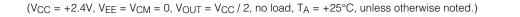
 $(V_{CC} = +1.8V \text{ to } +5.5V, V_{EE} = V_{CM} = 0, V_{OUT} = V_{CC} / 2, R_L = 100 \text{k}\Omega$ connected to $V_{CC} / 2, T_A = +25^{\circ}C$, unless otherwise noted.) (Note 1)

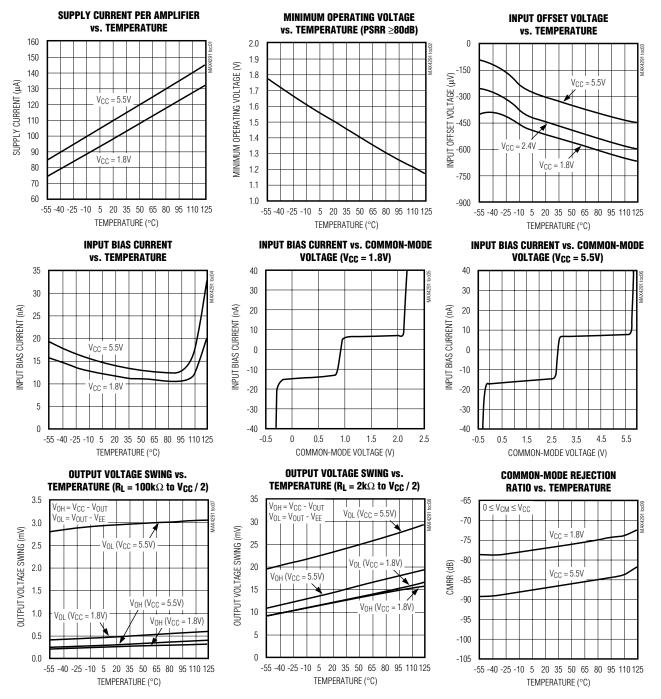
PARAMETER	SYMBOL		CONDITIONS	MIN	TYP	MAX	UNITS
Large-Signal Voltage Gain		Vcc = 1.8V	$\label{eq:RL} \begin{array}{l} R_L = 100 k\Omega, \\ 0.015 V \leq V_{OUT} \leq V_{CC} - 0.015 V \end{array}$	80	120		
	Av	VCC = 1.8V	$ \begin{array}{l} R_{L} = 2 k \Omega, \\ 0.1 V \leq V_{OUT} \leq V_{CC} - 0.1 V \end{array} $	80	110		dB
		V _{CC} = 5.0V	$\label{eq:RL} \begin{array}{l} R_L = 100 k\Omega, \\ 0.015 V \leq V_{OUT} \leq V_{CC} - 0.015 V \end{array}$	80	130		aB
		VCC = 5.0V	$\label{eq:RL} \begin{array}{l} R_L = 2k\Omega, \\ 0.1V \leq V_{OUT} \leq V_{CC} - 0.1V \end{array}$	80	120		
Output Voltage Swing High	V _{OH}	Specified as IV _{CC} – V _{OH} I	$R_L = 100 k\Omega$ to V _{CC} / 2		2	20	mV
Output voltage Swing Flight			$R_L = 2k\Omega$ to V _{CC} / 2		15	40	
Output Voltage Swing Low	V _{OL}	Specified as IV _{EE} – V _{OL} I	$R_L = 100 k\Omega$ to V _{CC} / 2		3	15	mV
Output Voltage Swing Low			$R_L = 2k\Omega$ to V _{CC} / 2		18	40	1110
Output Short-Circuit Current	IOUT(SC)	Sourcing or sin	king		20		mA
Channel-to-Channel Isolation	CHISO	Specified at f =	10kHz (MAX4292/MAX4294 only)		100		dB
Gain Bandwidth Product	GBW				500		kHz
Phase Margin	фМ				65		degrees
Gain Margin	Gм				12		dB
Slew Rate	SR				0.2		V/µs
Input Voltage Noise Density	en	f = 10kHz		70		nV/√Hz	
Input Current Noise Density	in	f = 10kHz		0.05		pA/√Hz	
Capacitive-Load Stability		$A_{VCL} = +1V/V,$	no sustained oscillations		100		рF

ELECTRICAL CHARACTERISTICS

 $(V_{CC} = +1.8V \text{ to } +5.5V, V_{EE} = V_{CM} = 0, V_{OUT} = V_{CC} / 2, R_L = 100 k\Omega$ connected to $V_{CC} / 2, T_A = T_{MIN}$ to T_{MAX} , unless otherwise noted.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	MAX	UNITS
Supply Voltage Range	Vcc	Inferred from PSRR test			5.5	V
Quiescent Supply Current		$V_{CC} = 1.8V$			240	uА
(per Amplifier)	IQ	$V_{CC} = 5.0 V$			270	μΑ
		MAX4291EXK, MAX4291EUK			±3000	
Input Offset Voltage	Vos	MAX4292EUA, MAX4294EUD			±1500	μV
		MAX4292ESA, MAX4294ESD			±1500	


ELECTRICAL CHARACTERISTICS


(V_{CC} = +1.8V to +5.5V, V_{EE} = V_{CM} = 0, V_{OUT} = V_{CC} / 2, R_L = 100k Ω connected to V_{CC} / 2, T_A = T_{MIN} to T_{MAX}, unless otherwise noted.) (Note 1)

PARAMETER	SYMBOL		CONDITIONS		TYP	MAX	UNITS	
Input Offset Voltage Drift	TCVos				1.2		µV/°C	
Input Bias Current	IB	$V_{CC} = 5.0V, 0$	$\leq V_{CM} \leq 5.0V$			±80	nA	
Input Offset Current	los	Vcc = 5.0V, 0 :	$\leq V_{CM} \leq 5.0V$			±10	nA	
Input Common-Mode Voltage Range	Vсм	Inferred from C	CMRR test	0		Vcc	V	
		Tested for	MAX4291EXK, MAX4291EUK	50				
		$0 \le V_{CM} \le 1.8V$,	MAX4292EUA, MAX4294EUD	60			dB	
	01400	$V_{\rm CC} = 1.8V$	MAX4292ESA, MAX4294ESD	60				
Common-Mode Rejection Ratio	CMRR	Tested for	MAX4291EXK, MAX4291EUK	60				
		$0 \le V_{CM} \le 5.0V$,	MAX4292EUA, MAX4294EUD	65			dB	
		$V_{CC} = 5.0V$	MAX4292ESA, MAX4294ESD	65				
		MAX4291EXK, MAX4291EUK		78				
Power-Supply Rejection Ratio	PSRR	MAX4292EUA, MAX4294EUD		80			dB	
		MAX4292ESA, MAX4294ESD		80				
	Av	V _{CC} = 1.8V	$ \begin{array}{l} {\sf R}_{\sf L} = \ 100 {\sf k} \Omega, \\ 0.015 V \leq {\sf V}_{OUT} \leq {\sf V}_{CC} - 0.015 V \end{array} $	80			- dB	
Lorge Signel Vellage Cain			$\label{eq:RL} \begin{split} R_L &= 2k\Omega, \\ 0.1V \leq V_{OUT} \leq V_{CC} - 0.1V \end{split}$	80				
Large-Signal Voltage Gain		V _{CC} = 5.0V	$ \begin{array}{l} {\sf R}_{\sf L} = \ 100 {\sf k} \Omega, \\ 0.015 V \leq {\sf V}_{\sf OUT} \leq {\sf V}_{\sf CC} - 0.015 V \end{array} $	80				
			$\label{eq:RL} \begin{split} R_L &= 2k\Omega, \\ 0.1V \leq V_{OUT} \leq V_{CC} - 0.1V \end{split}$	80				
Output Voltage Swing High	Vou	Specified as	$R_L = 100 k\Omega$ to V _{CC} / 2			20	m\/	
Output Voltage Swing High	Voн	IVCC – VOHI	$R_L = 2k\Omega$ to $V_{CC}/2$			40	- mV	
Output Voltage Swing Low	Vol	Specified as	$R_L = 100 k\Omega$ to V _{CC} / 2			15	mV	
Output Voltage Swillig LOW	VOL	IVEE - VOLI	$R_L = 2k\Omega$ to V _{CC} / 2			40	IIIV	

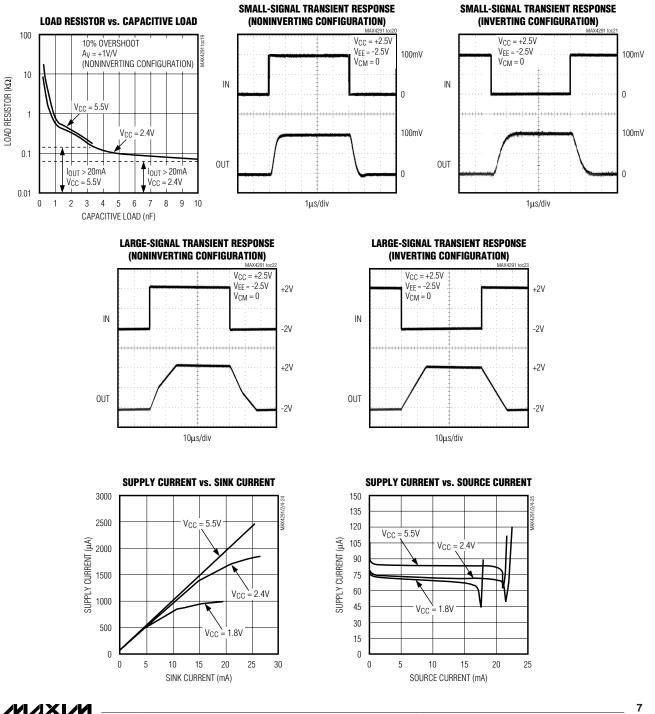
Note 1: All devices are 100% tested at $T_A = +25^{\circ}C$. All temperature limits are guaranteed by design.

Typical Operating Characteristics

FREQUENCY (kHz)

6

Typical Operating Characteristics (continued) (V_{CC} = +2.4V, V_{EE} = V_{CM} = 0, V_{OUT} = V_{CC} / 2, no load, T_A = +25°C, unless otherwise noted.) **OPEN-LOOP GAIN vs. OUTPUT SWING LOW OPEN-LOOP GAIN vs. OUTPUT SWING HIGH OPEN-LOOP GAIN vs. OUTPUT SWING LOW** (V_{CC} = +1.8V, R_L CONNECTED TO V_{CC}) (V_{CC} = +1.8V, RL CONNECTED TO V_{EE}) (V_{CC} = +5.5V, RL CONNECTED TO V_{CC}) 130 120 130 Rı = 2kΩ $\dot{R}_{I} = 2k\Omega$ R = 2kΩ 120 120 110 $R_L = 1k\Omega$ = 1kQ 110 110 100 $R_L = 1k\Omega$ 100 100 GAIN (dB) GAIN (dB) 90 (dB) 90 90 GAIN 80 80 80 70 70 70 60 60 60 50 50 50 100 150 200 250 300 350 400 450 500 50 100 150 200 250 300 350 400 450 500 0 50 0 0 50 100 150 200 250 300 350 400 450 500 V_{OL} (mV) VOH (mV) V_{OL} (mV) **OPEN-LOOP GAIN vs. OUTPUT SWING HIGH** (V_{CC} = +5.5V, R_L CONNECTED TO V_{EE}) **OPEN-LOOP GAIN vs. TEMPERATURE** 130 130 $R_1 = 2k\Omega$ 120 120 = 1kΩ Rı 110 110 **DPEN-LOOP GAIN (dB)** $= 2k\Omega$ TO V_{CC} 1k Ω TO V_{EE} 100 100 $R_L = 2k\Omega TO V_{EE}$ GAIN (dB) $R_L = 1 k \Omega \text{ TO } V_{CC}$ 90 90 80 80 70 70 60 60 $V_{CC} = 5.5V$ 50 50 50 100 150 200 250 300 350 400 450 500 0 -55 -40 -25 -10 5 20 35 50 65 80 95 110 125 V_{OH} (mV) TEMPERATURE (°C) GAIN AND PHASE vs. FREQUENCY GAIN AND PHASE vs. FREQUENCY **TOTAL HARMONIC DISTORTION** $(C_{L} = 100 pF)$ **PLUS NOISE vs. FREQUENCY** $(C_{L} = 0)$ 60 180 180 60 1 = +1000V/V $R_L = 2k\Omega$ 50 144 50 144 $A_{v} = +1V/V$ (NONINVERTING 40 108 40 108 CONFIGURATION) 30 30 72 72 THD + NOISE (%) 10 PHASE (DEGREES) PHASE (DEGREES) 36 36 20 20 GAIN (dB) GAIN (dB) 0 10 0 10 -36 0 0 -36 -72 -72 -10 -10 -20 -20 -108 -108 +1.8V -30 -144 -30 -144 -180 -180 -40 -40 0.01 0.1 100 1000 10 0.1 10 100 1000 0.01 0.1 10 100 1 1


FREQUENCY (kHz)

FREQUENCY (kHz)

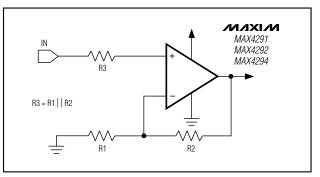
///XI//I

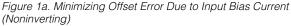
Typical Operating Characteristics (continued)

(V_{CC} = +2.4V, V_{EE} = V_{CM} = 0, V_{OUT} = V_{CC} / 2, no load, T_A = +25°C, unless otherwise noted.)

Pin Description

	PIN		PIN		PIN			FUNCTION
MAX4291	MAX4292	MAX4294	NAME	FUNCTION				
1	-	-	IN+	Noninverting Input				
2	4	11	VEE	Negative Supply. Connect to ground for single-supply operation.				
3	-	-	IN-	Inverting Input				
4	-	-	OUT	Amplifier Output				
5	8	4	Vcc	Positive Supply				
-	1, 7	1, 7	OUTA, OUTB	Outputs for Amplifiers A and B				
-	2, 6	2, 6	INA-, INB-	Inverting Inputs to Amplifiers A and B				
-	3, 5	3, 5	INA+, INB+	Noninverting Inputs to Amplifiers A and B				
-	-	8, 14	OUTC, OUTD	Outputs for Amplifiers C and D				
-	-	9, 13	INC-, IND-	Inverting Inputs to Amplifiers C and D				
-	-	10, 12	INC+, IND+	Noninverting Inputs to Amplifiers C and D				


Detailed Description


Rail-to-Rail Input Stage

The MAX4291/MAX4292/MAX4294 have rail-to-rail inputs and output stages that are specifically designed for low-voltage, single-supply operation. The input stage consists of separate NPN and PNP differential stages, which operate together to provide a common-mode range extending to both supply rails. The crossover region of these two pairs occurs halfway between V_{CC} and V_{EE}. The input offset voltage is typically \pm 400µV. Low operating supply voltage, low supply current, rail-to-rail common-mode input range, and rail-to-rail outputs make this family of operational amplifiers (op amps) an excellent choice for precision or general-purpose, low-voltage, battery-powered systems.

Since the input stage consists of NPN and PNP pairs, the input bias current changes polarity as the commonmode voltage passes through the crossover region. Match the effective impedance seen by each input to reduce the offset error caused by input bias currents flowing through external source impedances (Figures 1a and 1b).

The combination of high source impedance plus input capacitance (amplifier input capacitance plus stray capacitance) creates a parasitic pole that produces an underdamped signal response. Reducing input capacitance or placing a small capacitor across the feedback resistor improves response in this case.

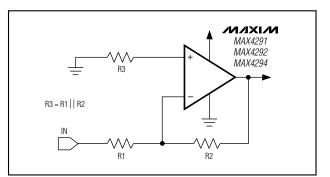


Figure 1b. Minimizing Offset Error Due to Input Bias Current (Inverting)

Table 1. MAX4291 Characteristics with Typical Battery Systems

BATTERY TYPE	RECHARGE- ABLE	V _{FRESH} (V)	Vend-of-life (V)	CAPACITY, AA SIZE (mA-h)	MAX4291 OPERATING TIME IN NORMAL MODE (h)
Alkaline (2 cells)	No	3.0	1.8	2000	20,000
Nickel-Cadmium (2 cells)	Yes	2.4	1.8	750	7500
Lithium-Ion (1 cell)	Yes	3.5	2.7	1000	10,000
Nickel-Metal- Hydride (2 cells)	Yes	2.4	1.8	1000	10,000

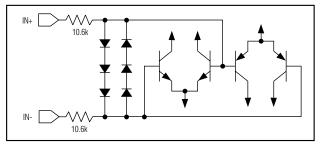


Figure 2. Input Protection Circuit

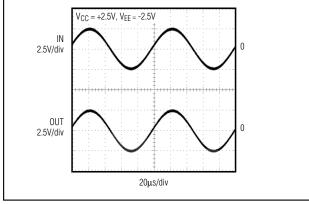


Figure 3. Rail-to-Rail Input/Output Voltage Range

The MAX4291/MAX4292/MAX4294 family's inputs are protected from large differential input voltages by internal 10.6k Ω series resistors and back-to-back triplediode stacks across the inputs (Figure 2). For differential input voltages (much less than 1.8V), input resistance is typically 0.75M Ω . For differential input voltages greater than 1.8V, input resistance is around 21.2k Ω , and the input bias current can be approximated by the following equation:

$I_{\text{BIAS}} = \frac{(V_{\text{DIFF}} - 1.8V)}{21.2k\Omega}$

In the region where the differential input voltage approaches 1.8V, the input resistance decreases exponentially from 0.75M Ω to 21.2k Ω as the diode block begins to conduct. Conversely, the bias current increases with the same curve.

In unity-gain configuration, high slew rate input signals may capacitively couple to the output through the triplediode stacks.

Rail-to-Rail Output Stage

The MAX4291/MAX4292/MAX4294 output stage can drive up to a $2k\Omega$ load and still swing to within 20mV of the rails. Figure 3 shows the output voltage swing of a MAX4291 configured as a unity-gain buffer, powered from a $\pm 2.5V$ supply. The output for this setup typically swings from (VEE + 3mV) to (VCC - 2mV) with a 100k\Omega load.

Applications Information

Power-Supply Considerations

The MAX4291/MAX4292/MAX4294 operate from a single +1.8V to +5.5V supply (or dual $\pm 0.9V$ to $\pm 2.75V$ supplies) and consume only 100µA of supply current per amplifier. A high power-supply rejection ratio of 80dB allows the amplifiers to be powered directly off a decaying battery voltage, simplifying design and extending battery life.

The MAX4291/MAX4292/MAX4294 are ideally suited for use with most battery-powered systems. Table 1 lists a variety of typical battery types showing voltage when fresh, voltage at end-of-life, capacity, and approximate operating time from a MAX4291 (assuming nominal conditions).

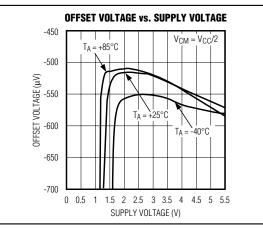


Figure 4. Offset Voltage vs. Supply Voltage

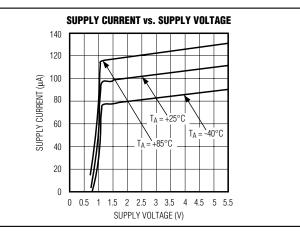


Figure 5. Supply Current vs. Supply Voltage

Although the amplifiers are fully guaranteed over temperature for operation down to a +1.8V single supply, even lower voltage operation is possible in practice. Figures 4 and 5 show the offset voltage and supply current as a function of supply voltage and temperature.

Load-Driving Capability

The MAX4291/MAX4292/MAX4294 are fully guaranteed over temperature and supply voltage range to drive a maximum resistive load of $2k\Omega$ to V_{CC}/2, although heavier loads can be driven in many applications. The rail-to-rail output stage of the amplifier can be modeled as a current source when driving the load toward V_{CC}, and as a current sink when driving the load toward V_{EE}. The limit of this current source/sink varies with supply voltage, ambient temperature, and lot-to-lot variations of the units.

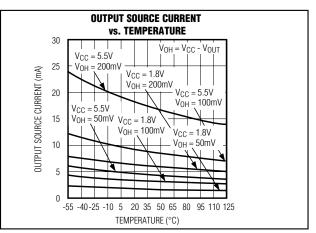


Figure 6a. Output Source Current vs. Temperature

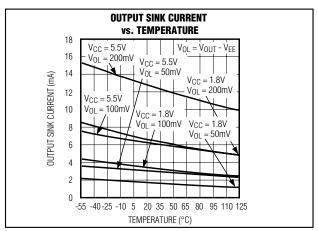


Figure 6b. Output Sink Current vs. Temperature

Figures 6a and 6b show the typical current source and sink capabilities of the MAX4291/MAX4292/MAX4294 family as a function of supply voltage and ambient temperature. The contours on the graph depict the output current value, based on driving the output voltage to within 50mV, 100mV, and 200mV of either power-supply rail.

For example, a MAX4291 running from a single +1.8V supply, operating at TA = +25°C can source 3.5mA to within 100mV of V_{CC} and is capable of driving a 485Ω load resistor to V_{EE}:

$$R_L = \frac{(1.8V - 0.1V)}{3.5mA} = 485\Omega$$
 to V_{EE}

The same application can drive a 220k Ω load resistor when terminated in VCC/2 (+0.9V in this case).

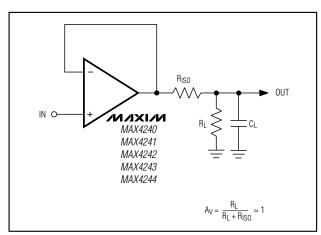
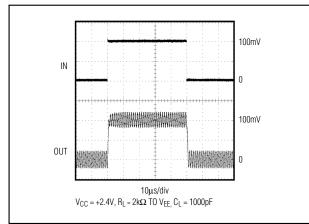
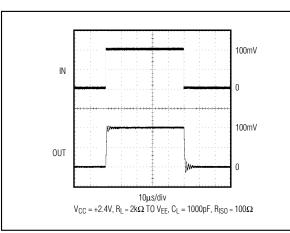


Figure 7a. Using a Resistor to Isolate a Capacitive Load from the Op Amp




Figure 7b. Pulse Response Without Isolating Resistor

Driving Capacitive Loads

The MAX4291/MAX4292/MAX4294 are unity-gain stable for loads up to 100pF (see the Load Resistor vs. Capacitive Load graph in the *Typical Operating Characteristics*). Applications that require greater capacitive drive capability should use an isolation resistor between the output and the capacitive load (Figure 7). Note that this alternative results in a loss of gain accuracy because RISO forms a voltage divider with the load resistor.

Power-Supply Bypassing and Layout

The MAX4291/MAX4292/MAX4294 family operates from either a single ± 1.8 V to ± 5.5 V supply or dual ± 0.9 V to ± 2.75 V supplies. For single-supply operation, bypass the power supply with a 100nF capacitor to VEE (in this case GND). For dual-supply operation, both the V_{CC}

Ultra-Small, +1.8V, μPower,

Rail-to-Rail I/O Op Amps

Figure 7c. Pulse Response with Isolating Resistor (100 Ω)

and the V_{EE} supplies should be bypassed to ground with separate 100nF capacitors.

Good PC board layout techniques optimize performance by decreasing the amount of stray capacitance at the op amp's inputs and output. To decrease stray capacitance, minimize trace lengths and widths by placing external components as close as possible to the op amp. Surface-mount components are an excellent choice.

Using the MAX4291/MAX4292/MAX4294 as Comparators

Although optimized for use as operational amplifiers, the MAX4291/MAX4292/MAX4294 can also be used as rail-to-rail I/O comparators. Typical propagation delay depends on the input overdrive voltage, as shown in Figure 8. External hysteresis can be used to minimize the risk of output oscillation. The positive feedback circuit, shown in Figure 9, causes the input threshold to change when the output voltage changes state. The two thresholds create a hysteresis band that can be calculated by the following equations:

$$V_{HYST} = V_{HI} - V_{LO}$$
$$V_{HI} = \left[1 + \frac{R1}{R2} + \frac{R1}{R_{HYST}}\right] V_{REF}$$
$$V_{LO} = V_{HI} - \left(\frac{R1}{R_{HYST}}\right) V_{CC}$$

When the output of the comparator is low, the supply current increases. The output stage has biasing circuitry to monitor the output current. When the amplifier is

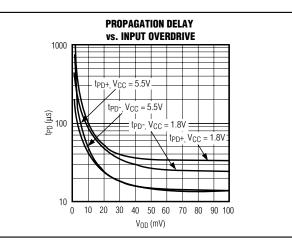


Figure 8. Propagation Delay vs. Input Overdrive

used as a comparator, the output stage is overdriven and the current through the biasing circuitry increases to maximum. For the MAX4291, typical supply currents increase to 1.5mA with V_{CC} = 1.8V and to 9mA when V_{CC} = 5.0V (Figure 10).

Using the MAX4291/MAX4292/MAX4294 as Low-Power Current Monitors

The MAX4291/MAX4292/MAX4294 are ideal for applications powered from a two-cell battery stack. Figure 11 shows an application circuit in which the MAX4291 is used for monitoring the current of a two-cell battery stack. In this circuit, a current load is applied, and the voltage drop at the battery terminal is sensed.

The voltage on the load side of the battery stack is equal to the voltage at the emitter of Q1 due to the feedback loop containing the op amp. As the load current increases, the voltage drop across R1 and R2 increases. Thus, R2 provides a fraction of the load current (set by the ratio of R1 and R2) that flows into the emitter of the PNP transistor. Neglecting PNP base current, this current flows into R3, producing a ground-referenced voltage proportional to the load current. To minimize errors, scale R1 to give a voltage drop that is large enough in comparison to the op amp's Vos.

Calculate the output voltage of the application using the following equation:

$$V_{OUT} = \left[I_{LOAD} \times \left(\frac{R1}{R2}\right)\right] \times R3$$

For a 1V output and a current load of 50mA, the choice of resistors can be R1 = 2Ω , R2 = $100k\Omega$, and R3 = $1M\Omega$.

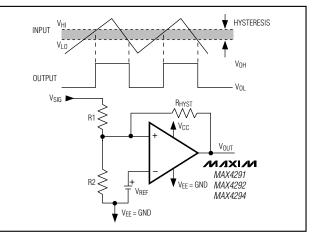


Figure 9. Hysteresis Comparator Circuit

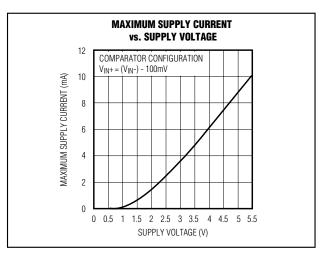
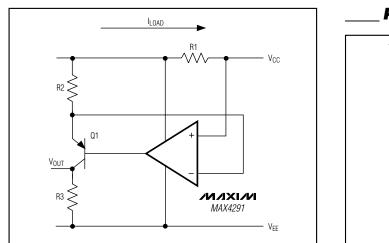
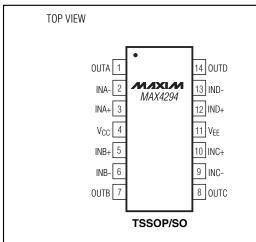
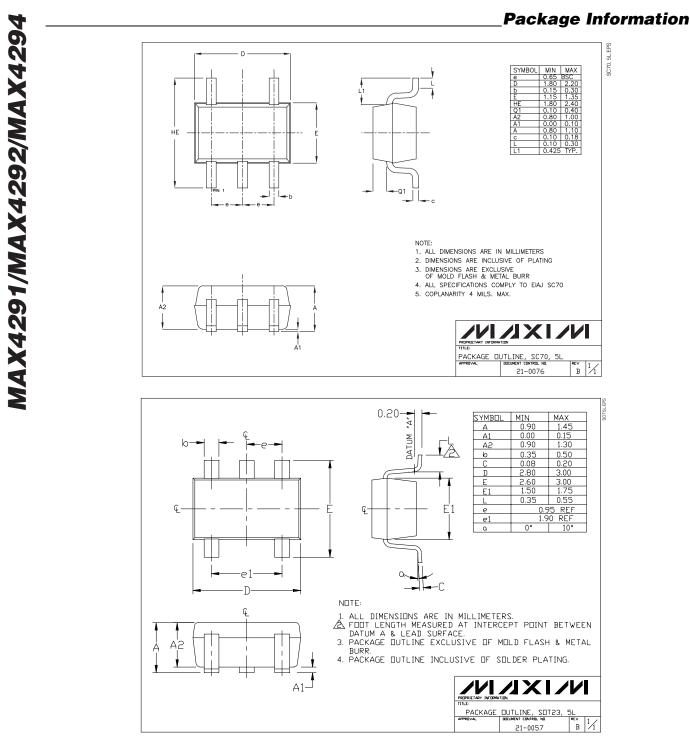


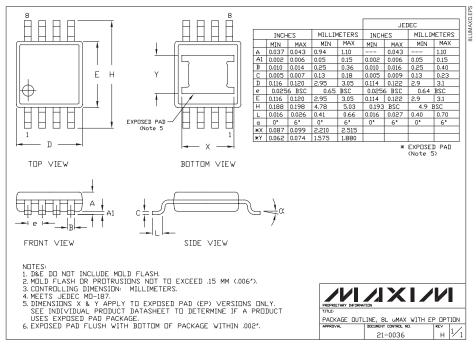
Figure 10. Maximum Supply Current vs. Supply Voltage

M/X/M

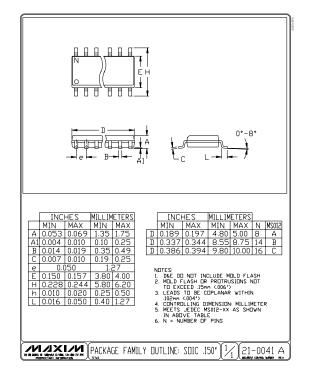



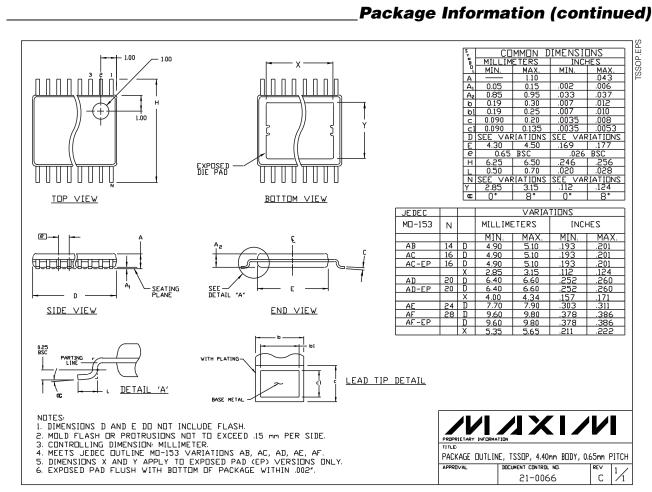

Figure 11. Current Monitor for a 2-Cell Battery Stack

_ Pin Configurations (continued)



_Chip Information


MAX4291 TRANSISTOR COUNT: 149 MAX4292 TRANSISTOR COUNT: 356 MAX4294 TRANSISTOR COUNT: 747



_Package Information (continued)

Note: The MAX4292 does not have an exposed pad.

Note: The MAX4294 does not have an exposed pad.

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

Printed USA

______Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600

© 2000 Maxim Integrated Products

16

is a registered trademark of Maxim Integrated Products.