6500V/us, Wideband, High-Output-Current, Single-Ended-to-Differential Line Drivers with Enable

Abstract

General Description The MAX4447/MAX4448/MAX4449 single-ended-todifferential line drivers are designed for high-speed communications. Using current feedback for greater bandwidth, these devices deliver full-power bandwidths up to 405 MHz and feature slew rates as high as $6500 \mathrm{~V} / \mathrm{\mu s}$. The MAX4447 has a fixed gain of +2V/V and a small-signal bandwidth of 430 MHz . The MAX4448/ MAX4449 have small-signal bandwidths of 330 MHz and 400 MHz , respectively, and are internally compensated for minimum gain configurations of $+2 \mathrm{~V} / \mathrm{V}$ and $+5 \mathrm{~V} / \mathrm{V}$, respectively. For greater design flexibility, the MAX4448/MAX4449 allow for variable gain selection using external gain-setting resistors. A low-power enable mode reduces current consumption below 5.5 mA and places the outputs in a high-impedance state. The MAX4447/MAX4448/MAX4449 can deliver differential output swings of $\pm 6.2 \mathrm{~V}$ from $\pm 5 \mathrm{~V}$ supplies with a 50Ω load. Excellent differential gain/phase and noise specifications make these amplifiers ideal for a wide variety of video and RF signal-processing and transmission applications.

Applications
Differential Line Driver
Single-Ended-to-Differential Conversion
High-Speed Differential Transmitter
Coaxial to Twisted-Pair Converter
Differential Pulse Amplifier
Differential ADC Driver
xDSL Applications
Video and RF Signal Processing and Transmission
Pin Configuration

(Max449)

- 6500V/us Slew Rate (MAX4449)
- Small-Signal Bandwidth

430MHz (MAX4447)
330MHz (MAX4448)
400MHz (MAX4449)

- 200MHz 0.1dB Gain Flatness (MAX4447)
- 130mA Output Drive Current
- +2V/V Internally Fixed Gain (MAX4447)
- External Gain Selection
$\geq+2 \mathrm{~V} / \mathrm{V}$ (MAX4448)
$\geq+5 \mathrm{~V} / \mathrm{V}$ (MAX4449)
- -78dB SFDR at 100 kHz
- Low Differential Gain/Phase: 0.01\%/0.02 ${ }^{\circ}$
- Ultra-Low Noise: $23 n \mathrm{~V} / \sqrt{\mathrm{Hz}}$ at $\mathrm{f} \mathrm{N}=1 \mathrm{MHz}$
- 8ns Settling Time to 0.1\%

Ordering Information

PART	TEMP. RANGE	PIN-PACKAGE
MAX4447ESE	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 Narrow SO
MAX4448ESE	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 Narrow SO
MAX4449ESE	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 Narrow SO

Typical Operating Circuit

6500V/us, Wideband, High-Output-Current, Single-Ended-to-Differential Line Drivers with Enable

ABSOLUTE MAXIMUM RATINGS

VCC to VEE
Voltage on IN, EN, OUT + , OUT-, RG(VEE - 0.3 V) to (VCC +0.3 V)
Voltage on IN, EN, OUT + , OUT-, RG(VEE -0.3 V) to ($\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}$)
Output Short-Circuit Duration to GNDIndefinite
Continuous Power Dissipation ($\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$)
16-Pin Narrow SO (derate $20 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$) ... 1600 mW

Operating Temperature Range
$40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10sec) $+300^{\circ} \mathrm{C}$

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC ELECTRICAL CHARACTERISTICS

$\left(V_{C C}=+5 \mathrm{~V}, \mathrm{~V}_{E E}=-5 \mathrm{~V}, \mathrm{~V}_{E N} \geq 2 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=\mathrm{V}_{\text {OUT }}+-\mathrm{V}_{\text {OUT- }}, \mathrm{R}_{\mathrm{L}}=\infty, \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}\right.$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.)

6500V/us, Wideband, High-Output-Current, Single-Ended-to-Differential Line Drivers with Enable

AC ELECTRICAL CHARACTERISTICS

$\left(\mathrm{VCC}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-5 \mathrm{~V}, \mathrm{RL}=100 \Omega\right.$ between OUT+ and OUT-, AvCL $=+2 \mathrm{~V} / \mathrm{V}$ for MAX4447/MAX4448, AvCL $=+5 \mathrm{~V} / \mathrm{V}$ for MAX4449, VOUT $=$ VOUT +- VOUT,$- T_{A}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS		MIN TYP	MAX	UNITS
Small-Signal -3dB Bandwidth	BWSS	VOUT $=100 \mathrm{mVp}-\mathrm{p}$	MAX4447	430		MHz
			MAX4448	330		
			MAX4449	400		
Large-Signal -3dB Bandwidth	BWLS	Vout $=8 \mathrm{Vp}$-p	MAX4449	250		MHz
		Vout $=4 \mathrm{Vp}-\mathrm{p}$	MAX4447	250		
			MAX4448	260		
			MAX4449	320		
		VOUT $=2 \mathrm{Vp}-\mathrm{p}$	MAX4447	285		
			MAX4448	310		
			MAX4449	405		
0.1 dB Gain Flatness		Vout $=100 \mathrm{mVp}-\mathrm{p}$	MAX4447	200		MHz
			MAX4448	40		
			MAX4449	140		
Slew Rate (Note 2)	SR	Vout $=8 \mathrm{~V}$ step	MAX4447	5700		V/us
			MAX4448	4300		
			MAX4449	6500		
		VOUT $=4 \mathrm{~V}$ step	MAX4447	3000		
			MAX4448	3000		
			MAX4449	3700		
		Vout $=2 \mathrm{~V}$ step	MAX4447	1700		
			MAX4448	1900		
			MAX4449	1800		
Rise Time (Note 2)	trise	VOUT $=8 \mathrm{~V}$ step	MAX4447	670		ps
			MAX4448	1030		
			MAX4449	850		
		VOUT $=4 \mathrm{~V}$ step	MAX4447	720		
			MAX4448	820		
			MAX4449	660		
		Vout = 2V step	MAX4447	720		
			MAX4448	520		
			MAX4449	740		

6500V/us, Wideband, High-Output-Current, Single-Ended-to-Differential Line Drivers with Enable

AC ELECTRICAL CHARACTERISTICS (continued)
$\left(V C C=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-5 \mathrm{~V}, \mathrm{RL}=100 \Omega\right.$ between OUT+ and OUT-, AvCL $=+2 \mathrm{~V} / \mathrm{V}$ for MAX4447/MAX4448, AvCL $=+5 \mathrm{~V} / \mathrm{V}$ for MAX4449, VOUT $=$ VOUT +- VOUT,$- T_{A}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS		MIN TYP	MAX	UNITS
Fall Time (Note 2)	tFALL	Vout $=8 \mathrm{~V}$ step	MAX4447	1100		ps
			MAX4448	900		
			MAX4449	900		
		Vout $=4 \mathrm{~V}$ step	MAX4447	900		
			MAX4448	810		
			MAX4449	780		
		Vout $=2 \mathrm{~V}$ step	MAX4447	800		
			MAX4448	770		
			MAX4449	660		
Settling Time				8		ns
Spurious-Free Dynamic Range	SFDR	VOUT $=2 \mathrm{Vp}-\mathrm{p}$	$\mathrm{fc}=100 \mathrm{kHz}$	-78		dBc
			$\mathrm{f}_{\mathrm{C}}=5 \mathrm{MHz}$	-78		
			$\mathrm{f}_{\mathrm{C}}=20 \mathrm{MHz}$	-62		
			$\mathrm{f}_{\mathrm{C}}=100 \mathrm{MHz}$	-46		
2nd Harmonic Distortion		VOUT $=2 \mathrm{Vp}-\mathrm{p}$	$\mathrm{f}_{\mathrm{C}}=100 \mathrm{kHz}$	-78		dBc
			$\mathrm{f}_{\mathrm{C}}=5 \mathrm{MHz}$	-78		
			$\mathrm{f}_{\mathrm{C}}=20 \mathrm{MHz}$	-62		
			$\mathrm{f}_{\mathrm{C}}=100 \mathrm{MHz}$	-46		
3rd Harmonic Distortion		VOUT $=2 \mathrm{Vp}-\mathrm{p}$	$\mathrm{fc}=100 \mathrm{kHz}$	-86		dBc
			$\mathrm{fc}^{\text {c }}=5 \mathrm{MHz}$	-86		
			$\mathrm{fC}_{\mathrm{C}}=20 \mathrm{MHz}$	-71		
			$\mathrm{fC}=100 \mathrm{MHz}$	-54		
Differential Phase Error	DP	NTSC, RL = 150 ${ }^{\text {a }}$		0.02		degrees
Differential Gain Error	DG	NTSC, RL = 150 ${ }^{\text {a }}$		0.01		\%
Input Noise Voltage Density	eN	$\mathrm{f}=1 \mathrm{MHz}$ (Note 3)		24		$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
Input Noise Current Density	iN	$\mathrm{f}=1 \mathrm{MHz}$		1.8		$\mathrm{pA} / \sqrt{\mathrm{Hz}}$
Output Impedance	ZOUT \pm	$\mathrm{f}=10 \mathrm{MHz}$, each output to ground		1.0		Ω
Enable Time		V IN $=1 \mathrm{~V}$, V OUT settle to within 1%		55		ns
Disable Time		V IN $=1 \mathrm{~V}$, V OUT settle to within 1%		0.4		$\mu \mathrm{s}$
Power-Up Time	ton	V IN $=1 \mathrm{~V}$, Vout settle to within 1%		0.08		$\mu \mathrm{s}$
Power-Down Time	toff	V IN $=1 \mathrm{~V}$, V OUT settle to within 1%		0.5		$\mu \mathrm{s}$

Note 1: RG_{G} is the gain resistor. See Figure 1.
Note 2: Input step voltage has <100ps rise (fall) time. Measured at the output from 10% to 90% (90% to 10%) levels.
Note 3: Includes the current noise contribution through the on-die feedback resistor.

6500V/us, Wideband, High-Output-Current, Single-Ended-to-Differential Line Drivers with Enable

Typical Operating Characteristics

$\left(\mathrm{VCC}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EN}}=+5 \mathrm{~V}\right.$, VOUT $=\mathrm{VOUT}_{+}-\mathrm{VOUT}^{2}, \mathrm{R}_{\mathrm{L}}=100 \Omega$ between OUT + and OUT-, $\mathrm{AV}=+2 \mathrm{~V} / \mathrm{V}$ for MAX4447/MAX4448, $A V=+5 \mathrm{~V} / \mathrm{V}$ for MAX4449, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

MAX4447
GAIN FLATNESS vs. FREQUENCY

MAX4447
LARGE-SIGNAL GAIN vs. FREQUENCY
($\mathbf{V}_{\text {OUT }}=\mathbf{2 V p - p}$)

MAX4448
GAIN FLATNESS vs. FREQUENCY
(VOUT $=100 \mathrm{mVp}$-p)

MAX4448
LARGE-SIGNAL GAIN vs. FREQUENCY
($\mathbf{V O U T}^{\mathbf{2}}=\mathbf{2 V p - p}$)

MAX4449
SMALL-SIGNAL GAIN vs. FREQUENCY (VOUT $=100 \mathrm{mVp}$-p)

MAX4449
GAIN FLATNESS vs. FREQUENCY
(VOUT $=100 \mathrm{mVp}-\mathrm{p}$)

MAX4449
LARGE-SIGNAL GAIN vs. FREQUENCY
(VOUT = 2Vp-p)

6500V/us, Wideband, High-Output-Current, Single-Ended-to-Differential Line Drivers with Enable

$(\mathrm{VCC}=+5 \mathrm{~V}, \mathrm{VEE}=-5 \mathrm{~V}, \mathrm{VEN}=+5 \mathrm{~V}, \mathrm{VOUT}=\mathrm{VOUT}+-\mathrm{VOUT}-, \mathrm{RL}=100 \Omega$ between OUT + and OUT-, $\mathrm{AV}=+2 \mathrm{~V} / \mathrm{V}$ for MAX4447/MAX4448, $\mathrm{AV}=+5 \mathrm{~V} / \mathrm{V}$ for MAX4449, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

SMALL-SIGNAL PULSE RESPONSE

(5ns/div)

(5ns/div)

(5ns/div)
MAX4448
LARGE-SIGNAL PULSE RESPONSE

(5ns/div)
MAX4449
SMALL-SIGNAL PULSE RESPONSE

MAX4449 LARGE-SIGNAL PULSE RESPONSE

6500V/us, Wideband, High-Output-Current, Single-Ended-to-Differential Line Drivers with Enable

Typical Operating Characteristics (continued)

$\left(\mathrm{VCC}=+5 \mathrm{~V}, \mathrm{~V}_{E E}=-5 \mathrm{~V}, \mathrm{~V}_{E N}=+5 \mathrm{~V}\right.$, VOUT $=$ VOUT $+-\mathrm{VOUT}-, \mathrm{RL}=100 \Omega$ between OUT + and OUT-, $\mathrm{AV}=+2 \mathrm{~V} / \mathrm{V}$ for MAX4447/MAX4448, $\mathrm{AV}=+5 \mathrm{~V} / \mathrm{V}$ for MAX4449, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

6500V/us, Wideband, High-Output-Current, Single-Ended-to-Differential Line Drivers with Enable

Typical Operating Characteristics (continued)
$\left(\mathrm{VCC}=+5 \mathrm{~V}, \mathrm{VEE}=-5 \mathrm{~V}, \mathrm{VEN}_{\mathrm{EN}}=+5 \mathrm{~V}, \mathrm{VOUT}_{\mathrm{C}}=\mathrm{VOUT}_{+}-\mathrm{VOUT}_{-}, \mathrm{R}_{\mathrm{L}}=100 \Omega\right.$ between OUT+ and OUT-, $\mathrm{AV}=+2 \mathrm{~V} / \mathrm{V}$ for MAX4447/MAX4448, $A \mathrm{~V}=+5 \mathrm{~V} / \mathrm{V}$ for MAX4449, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

6500V/us, Wideband, High-Output-Current, Single-Ended-to-Differential Line Drivers with Enable

Typical Operating Characteristics (continued)
$\left(V_{C C}=+5 \mathrm{~V}, \mathrm{~V}_{E E}=-5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EN}}=+5 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=\mathrm{V}_{\text {OUT }}+-\mathrm{V}_{\mathrm{OUT}}-, \mathrm{R}_{\mathrm{L}}=100 \Omega\right.$ between OUT + and OUT-, $\mathrm{AV}=+2 \mathrm{~V} / \mathrm{V}$ for MAX4447/MAX4448, $A V=+5 \mathrm{~V} / \mathrm{V}$ for MAX4449, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

Pin Description

PIN		NAME	
MAX4447	MAX4448 MAX4449		
1,2	1,2	VCC	Positive Power Supply. Bypass with a 0.1 μ F capacitor to GND.
$3,4,6$	3,6	N.C.	No Connection. Not internally connected. Connect to GND for best AC perfor- mance.
-	4	RG	Gain-Set Resistor. Connect gain-setting resistor from RG to GND.
5	5	IN	Amplifier Noninverting Input
$7,8,11,12$, 13,14	$7,8,11,12$, 13,14	VEE	Negative Power-Supply Input. Bypass with a 0.1 μ F capacitor to GND.
9	9	EN	Active-High, TTL-Compatible, Enable Input. Connect to VCC for normal operation. Connect to GND for low-power operation.
10	10	OUT+	Positive Polarity Output
15	15	OUT-	Negative Polarity Output
16	16	GND	Ground

6500V/us, Wideband, High-Output-Current, Single-Ended-to-Differential Line Drivers with Enable

Detailed Description

The MAX4447/MAX4448/MAX4449 single-ended-to-differential converters are capable of transmitting highspeed signals such as T1 or xDSL over twisted-pair cable. Excellent gain and phase characteristics, along with low distortion, make these devices suitable for video and RF signal processing and transmission. These converters can be interfaced directly to some of Maxim's wireless products, such as the MAX2450/ MAX2451.
The MAX4447/MAX4448/MAX4449 offer wide small-signal bandwidths of $430 \mathrm{MHz}, 330 \mathrm{MHz}$, and 400 MHz , respectively. Internally trimmed resistors minimize gain errors to under 2% over the full output range. Other features include a high slew rate up to $6500 \mathrm{~V} / \mathrm{\mu s}$ and high output current (130 mA), which allow these amplifiers to be used in numerous high-speed communications applications.

Applications Information

Grounding and Bypassing

Use high-frequency design techniques when designing the PC board for the MAX4447/MAX4448/MAX4449:

- Use a multilayer board with one layer dedicated as the ground plane.
- Do not wire-wrap or use breadboards, due to high inductance.
- Avoid IC sockets, due to high parasitic capacitance and inductance.
- Bypass supplies with 0.1μ F. Use surface-mount capacitors to minimize lead inductance.
- Keep signal lines as short and straight as possible. Do not make 90° turns; round all corners. Do not cross signals if possible.
- Ensure that the ground plane is free from voids.

Output Short-Circuit Protection

Output short-circuit protection typically limits the current to 140 mA when shorted to GND, thereby keeping the power dissipation under the absolute maximum power dissipating rating. However, when shorted to either supply, the short-circuit current can be significantly higher and cause damage to the device.

Low-Power Enable Mode

The MAX4447/MAX4448/MAX4449 are disabled when EN goes low. This reduces supply current to only 3.2 mA and places the outputs into a higher impedance.

Figure 1. Setting the Amplifier Gain

Figure 2. Using an Isolation Resistor for High Capacitive Loads

6500V/us, Wideband, High-Output-Current, Single-Ended-to-Differential Line Drivers with Enable

Figure 3. Capacitive-Loaded Output Step Response Without Isolation Resistor

Setting Gain

The MAX4448/MAX4449 are stable with minimum gain of $+2 \mathrm{~V} / \mathrm{V}$ and $+5 \mathrm{~V} / \mathrm{V}$, respectively. An external resistor, RGain, connected between RG and GND sets the gain of these devices. Calculate the gain as follows:

$$
\text { Gain }=2(1+300 / \text { RGAIN })
$$

RGAIN for the MAX4449 must be $\leq 200 \Omega$.

Driving Capacitive Loads

The MAX4447/MAX4448/MAX4449 are designed to drive capacitive loads. However, excessive capacitive loads may cause ringing or instability at the output as phase margin is reduced. Adding a small series isolation resistor at the output helps reduce the ringing but slightly increases gain error.

Figure 4. Capacitive-Loaded Output Step Response with 14Ω Isolation Resistor

Twisted-Pair Line Driver
The MAX4447/MAX4448/MAX4449 are well-suited to drive twisted-pair cables. The 24AWG telephone wire widely used produces losses at the higher frequencies. Compensate for these losses by increasing the gain slightly.

Chip Information
TRANSISTOR COUNT: 291

6500V/us, Wideband, High-Output-Current, Single-Ended-to-Differential Line Drivers with Enable

\qquad

	INCHES		MILLIMETERS					
	MIN	MAX	MIN	MAX	N	MSO12		
D	0.189	0.197	4.80	5.00	8	A		
D	0.337	0.344	8.55	8.75	14	B		
D	0.386	0.394	9.80	10.00	16	C		

NOTES

1. D\&E DZ NUT INCLUDE MULD FLASH
2. MDLD FLASH IR PRDTRUSIUNS NIT

TI EXCEED .15 mm (.006")
3. LEADS TI BE CIPLANAR WITHIN .102 mm (.004")
4. CDNTRILLING DIMENSIDN: MILLIMETER
5. MEETS JEDEC MSO12-XX AS SHEWN

IN ABLVE TABLE
6. $N=$ NUMBER $\square F$ PINS
\square $21-0041 A$

