Low-Voltage, Single-Supply, SPDT Analog Switch in SC70

General Description

The MAX4599 single-pole/double-throw (SPDT) switch operates from a +2.0 V to +5.5 V single supply. It offers 60Ω max on-resistance (RON) at +5 V and fast switching times (ton $=30$ ns max, tOFF $=25 n s$ max).
The MAX4599 features excellent RON flatness (4Ω max) and matching (1Ω max) between channels. This device also offers 5 pC max charge injection.
The MAX4599 is available in tiny 6-pin SC70 and SOT23 packages.
Available in 6-Pin SC70 Package
60Ω max (40 Ω typ) On-Resistance
1Ω max (0.2Ω typ) RoN Matching Between
Channels
4Ω max (2.5Ω typ) RoN Flatness
Fast Switching: toN = 30ns (max)
toff = 25ns (max)
Guaranteed 5pC max Charge Injection
+2.0V to +5.5V Single-Supply Operation
200MHz -3dB Bandwidth
Low $\mathbf{~} 0.5 n A$ Leakage Current at +25 ${ }^{\circ} \mathrm{C}$
Break-Before-Make Switching
TTL/CMOS-Logic Compatible
-76dB Off-Isolation at 1MHz
0.12\% Total Harmonic Distortion Features

- Available in 6-Pin SC70 Package
- 60Ω max (40Ω typ) On-Resistance
- 1Ω max (0.2Ω typ) Ron Matching Between Channels
- $4 \Omega \max$ (2.5Ω typ) RoN Flatness
- Fast Switching: toN $=30$ ns (max)
tOFF = 25ns (max)
- Guaranteed 5pC max Charge Injection
- +2.0V to +5.5V Single-Supply Operation
- 200MHz -3dB Bandwidth
- Low $\pm 0.5 n A$ Leakage Current at $+25^{\circ} \mathrm{C}$

Applications
Battery-Operated Equipment
Audio and Video Signal Routing
Cellular Phones
Low-Voltage Data-Acquisition Systems
Sample-and-Hold Circuits
Communications Circuits

Ordering Information

PART	TEMP. RANGE	PIN- PACKAGE	TOP MARK
MAX4599EXT-T	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$6 \mathrm{SC} 70-6$	AAF
MAX4599EUT-T	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$6 \mathrm{SOT} 23-6$	AAHC

Pin Configuration/Functional Diagram/Truth Table

For free samples and the latest literature, visit www.maxim-ic.com or phone 1-800-998-8800. For small orders, phone 1-800-835-8769.

Low-Voltage, Single-Supply, SPDT Analog Switch in SC70

ABSOLUTE MAXIMUM RATINGS

Voltage Referenced to GND
V+... 0.3 V to +6 V
IN, COM, NO, NC (Note 1).................. 0.3 V to $(\mathrm{V}++0.3 \mathrm{~V})$
Continuous Current (any terminal)........................... $\pm 20 \mathrm{~mA}$
Peak Current, COM, NO, NC
(pulsed at $1 \mathrm{~ms}, 10 \%$ duty cycle).................................... $\pm 40 \mathrm{~mA}$

Note 1: Signals on NO, NC, COM, or IN exceeding V+ or GND are clamped by internal diodes. Limit forward-diode current to maximum current rating

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS— Single +5V Supply

$\left(\mathrm{V}+=+4.5 \mathrm{~V}\right.$ to $+5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{INH}}=+2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{INL}}=+0.8 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted.) (Notes 2, 3)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
ANALOG SWITCH							
Analog Signal Range	$V_{\text {COM }}$, $\mathrm{V}_{\mathrm{NO}}, \mathrm{V}_{\mathrm{NC}}$			0		V+	V
On-Resistance	Ron	$\begin{aligned} & \mathrm{V}_{+}=4.5 \mathrm{~V}, \mathrm{I} \mathrm{COM}=1 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=3.5 \mathrm{~V} \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		40	60	Ω
			$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$			65	
On-Resistance Match Between Channels (Note 4)	$\triangle \mathrm{RON}$	$\begin{aligned} & \mathrm{V}_{+}=4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{COM}}=1 \mathrm{~A}, \\ & \mathrm{~V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=3.5 \mathrm{~V} \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		0.2	1	Ω
			$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$			2	
On-Resistance Flatness (Note 5)	RFLAt(ON)	$\begin{aligned} & \mathrm{V}_{+}=4.5 \mathrm{~V} ; \mathrm{I}_{\mathrm{COM}}=1 \mathrm{~mA} \text {; } \\ & \mathrm{V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=1 \mathrm{~V}, 2.0 \mathrm{~V} \\ & 3.5 \mathrm{~V} \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		2.5	4	Ω
			$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$			5	
NO, NC Off-Leakage Current (Note 6)	INO(OFF), INC(OFF)	$\begin{aligned} & \mathrm{V}_{+}=5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{COM}}=1 \mathrm{~V}, \\ & 4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=4.5 \mathrm{~V}, \\ & 1 \mathrm{~V} \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-0.5	0.01	0.5	nA
			$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$	-5		5	
COM On-Leakage Current (Note 6)	ICOM(ON)	$\mathrm{V}_{+}=5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{COM}}=1 \mathrm{~V},$ 4.5 V ; V_{NO} or $\mathrm{V}_{\mathrm{NC}}=1 \mathrm{~V}$, 4.5 V , or floating	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-1	0.01	1	nA
			$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$	-10		10	
DIGITAL I/O							
Input Logic High	V_{IH}			2.4			V
Input Logic Low	$\mathrm{V}_{\text {IL }}$					0.8	V
DYNAMIC							
Turn-On Time	ton	$\begin{aligned} & V_{N O}, V_{N C}=3 V \\ & R_{L}=1 \mathrm{k} \Omega ; C_{L}=35 \mathrm{pF} ; \end{aligned}$ Figure 2	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		25	30	ns
			$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$			40	

Low-Voltage, Single-Supply, SPDT Analog Switch in SC70

ELECTRICAL CHARACTERISTICS—Single +5V Supply (continued)

$\left(\mathrm{V}+=+4.5 \mathrm{~V}\right.$ to $+5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{INH}}=+2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{INL}}=+0.8 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted.) (Notes 2, 3)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
Turn-Off Time	toff	$\mathrm{V}_{\mathrm{NO}}, \mathrm{V}_{\mathrm{NC}}=3 \mathrm{~V}$;	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		20	25	ns
		Figure 2	$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$			30	
Break-Before-Make	tBBM	$\begin{aligned} & \mathrm{V}_{\mathrm{NO}}, \mathrm{~V}_{\mathrm{NC}}=3 \mathrm{~V} ; \\ & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega ; \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} ; \\ & \text { Figure 3 } \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		10		ns
			$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$	1			
On-Channel -3dB Bandwidth	BW	Signal $=0 \mathrm{dBm}$, 50Ω in and out, Figure 5	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		200		MHz
Off-Isolation (Note 7)	VISO	$\begin{aligned} & C_{L}=5 \mathrm{pF} ; \mathrm{R}_{\mathrm{L}}=50 \Omega ; \\ & \mathrm{f}=1 \mathrm{MHz} ; \mathrm{V}_{\mathrm{NO}}, \mathrm{~V}_{N C}= \\ & 1 \mathrm{~V}_{\mathrm{RMS}} \text {; Figure } 5 \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		-76		dB
Charge Injection (Note 6)	Q	$\begin{aligned} & V_{G E N}=0, \text { RGEN }=0, \\ & C_{L}=1.0 n F, \text { Figure } 4 \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		3	5	pC
NO, NC Off-Capacitance	CNO(OFF), CNC(OFF)	$\mathrm{V}_{\mathrm{NO}}, \mathrm{V}_{\mathrm{NC}}=\mathrm{GND}$; $\mathrm{f}=1 \mathrm{MHz}$; Figure 6	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		8		pF
COM Off-Capacitance	CCOM(OFF)	$\mathrm{V}_{\mathrm{COM}}=\mathrm{GND}, \mathrm{f}=1 \mathrm{MHz},$ Figure 6	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		8		pF
Switch On-Capacitance	C (ON)	$\begin{aligned} & V_{C O M}=V_{N O}, \\ & V_{N C}=G N D, f=1 \mathrm{MHz}, \\ & \text { Figure } 6 \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		20		pF
Total Harmonic Distortion	THD	$\begin{aligned} & R \mathrm{R}=600 \Omega, \mathrm{~V}_{\mathrm{IN}}=5 \mathrm{Vp}-\mathrm{p}, \\ & \mathrm{f}=20 \mathrm{~Hz} \text { to } 20 \mathrm{kHz} \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		0.12		\%
SUPPLY							
Power-Supply Range	V+			2.0		5.5	V
Positive Supply Current	I+	$\mathrm{V}+=5.5 \mathrm{~V}, \mathrm{~V}$ IN $=0$ or $\mathrm{V}+$		-1	0.001	1	$\mu \mathrm{A}$

ELECTRICAL CHARACTERISTICS-Single +3V Supply

$\left(\mathrm{V}+=+2.7 \mathrm{~V}\right.$ to $+3.6 \mathrm{~V}, \mathrm{~V}_{\text {INH }}=+2.0 \mathrm{~V}, \mathrm{~V}_{\text {INL }}=+0.8 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. $)($ Notes 2,3$)$

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
ANALOG SWITCH							
Analog Signal Range	$V_{\text {COM }}$, $\mathrm{V}_{\mathrm{NO}}, \mathrm{V}_{\mathrm{NC}}$			0		V+	V
On-Resistance	Ron	$\begin{aligned} & \mathrm{V}_{+}=2.7 \mathrm{~V}, \mathrm{ICOM}=1 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=1 \mathrm{~V} \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		60	95	Ω
			$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$			105	
DIGITAL I/O							
Input Logic High	V_{IH}			2.0			V
Input Logic Low	VIL					0.8	V

Low-Voltage, Single-Supply, SPDT Analog Switch in SC70

ELECTRICAL CHARACTERISTICS-Single +3V Supply (continued)
$\left(\mathrm{V}+=+2.7 \mathrm{~V}\right.$ to $+3.6 \mathrm{~V}, \mathrm{~V}_{\text {INH }}=+2.0 \mathrm{~V}, \mathrm{~V}_{\text {INL }}=+0.8 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. $)($ Notes 2,3$)$

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
DYNAMIC							
Turn-On Time	ton	$\begin{aligned} & V_{N O}, V_{N C}=2 \mathrm{~V} ; \\ & R_{L}=1 \mathrm{k} \Omega ; C_{L}=35 \mathrm{pF} ; \end{aligned}$ Figure 2	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		40	45	ns
			$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$			55	
Turn-Off Time	toFF	$\mathrm{V}_{\mathrm{NO}}, \mathrm{V}_{\mathrm{NC}}=2 \mathrm{~V}$; $R_{L}=1 \mathrm{k} \Omega ; C_{L}=35 \mathrm{pF}$; Figure 2	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		30	35	ns
			$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$			40	
Break-Before-Make	tBBM	$\begin{aligned} & \mathrm{V}_{\mathrm{NO}}, \mathrm{~V}_{\mathrm{NC}}=2 \mathrm{~V} ; \\ & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega ; \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} ; \\ & \text { Figure 3 } \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		13		ns
			$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$	1			
Charge Injection (Note 6)	Q	$\begin{aligned} & V_{G E N}=0, R G E N=0, \\ & C L=1.0 n F, \text { Figure } 4 \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		2	5	pC
SUPPLY							
Positive Supply Current	I+	$\mathrm{V}+=3.6 \mathrm{~V}, \mathrm{~V}$ IN $=0$ or V		-1	0.001	1	$\mu \mathrm{A}$

ELECTRICAL CHARACTERISTICS—Single +2.5V Supply

$\left(\mathrm{V}+=+2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{INH}}=+2.0 \mathrm{~V}, \mathrm{~V}_{\text {INL }}=+0.6 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}\right.$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted.) (Notes 2, 3)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
ANALOG SWITCH							
Analog Signal Range	$\mathrm{V}_{\mathrm{COM}}$, $\mathrm{V}_{\mathrm{NO}}, \mathrm{V}_{\mathrm{NC}}$			0		V+	V
On-Resistance	Ron	$\begin{aligned} & \mathrm{V}_{+}=2.5 \mathrm{~V}, \mathrm{ICOM}=1 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=1 \mathrm{~V} \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		65	110	Ω
			$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$			120	
Input Logic High	V_{IH}			2.0			V
Input Logic Low	VIL					0.6	V
DYNAMIC							
Turn-On Time	ton	$\begin{aligned} & V_{N O}, V_{N C}=2 \mathrm{~V}, \\ & R_{L}=1 \mathrm{k} \Omega, C_{L}=35 \mathrm{pF}, \end{aligned}$ Figure 3	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		45	50	ns
			$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$			60	
Turn-Off Time	toff	$\begin{aligned} & \mathrm{V}_{\mathrm{NO}}, \mathrm{~V}_{\mathrm{NC}}=2 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, C_{L}=35 \mathrm{pF} \end{aligned}$ Figure 3	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		30	35	ns
			$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$			45	

Note 2: Parameters are 100% tested at $+25^{\circ} \mathrm{C}$ only and guaranteed by correlation at the full rated temperature.
Note 3: The algebraic convention, where the most negative value is a minimum and the most positive value a maximum, is used in this data sheet.
Note 4: $\Delta \mathrm{RON}_{\mathrm{ON}}=\mathrm{RON}(\mathrm{MAX})-\mathrm{RON(MIN)}$.
Note 5: Flatness is defined as the difference between the maximum and minimum value of on-resistance as measured over the specified analog signal ranges.
Note 6: Guaranteed by design
Note 7: Off-Isolation $=20 \log _{10}\left(\mathrm{~V}_{\mathrm{COM}} / \mathrm{V}_{\mathrm{NO}}\right), \mathrm{V}_{\mathrm{COM}}=$ output, $\mathrm{V}_{\mathrm{NO}}=$ input to off switch.

Low-Voltage, Single-Supply, SPDT Analog Switch in SC70

Typical Operating Characteristics
$\left(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted.)

Low-Voltage, Single-Supply, SPDT Analog Switch in SC70

Typical Operating Characteristics (continued)

($\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

FREQUENCY RESPONSE

Pin Description

PIN	NAME	FUNCTION
1	IN	Digital Control Input
2	V+	Positive Supply Voltage
3	GND	Ground
4	NC	Analog Switch Normally Closed
5	COM	Analog Switch Common
6	NO	Analog Switch Normally Open

Applications Information

Analog Signal Levels

Analog signals can range over the supply voltage (V+ to GND) with on-resistance changing very little over the entire range (see Typical Operating Characteristics). The MAX4599 is bidirectional, so the NO, NC, and COM pins can be used either as inputs or outputs.

Power-Supply Sequencing and Overvoltage Protection

Proper power-supply sequencing is recommended for all CMOS devices. Always apply V+ before applying analog signals or logic inputs, especially if the analog or logic signals are not current limited. If this sequencing is not possible, and if the analog or logic inputs are not current limited to $<20 \mathrm{~mA}$, add a small-signal diode (D1) as shown in Figure 1. If the analog signal can dip below GND, add D2. Adding protection diodes

Figure 1. Overvoltage Protection Using Two External Blocking Diodes
reduces the analog signal range to a diode drop (about 0.7 V) below $\mathrm{V}+$ for D 1 or to a diode drop above ground for D2. The addition of diodes does not affect leakage. On-resistance increases by a small amount at low supply voltages. Maximum supply voltage ($\mathrm{V}+$) must not exceed 6V.

Protection diodes D1 and D2 also protect against some overvoltage situations. A fault voltage up to the absolute maximum rating at an analog signal input does not damage the device, even if the supply voltage is below the signal voltage.

Low-Voltage, Single-Supply, SPDT Analog Switch in SC70

Test Circuits/Timing Diagrams

Figure 2. Switching Time

Figure 3. Break-Before-Make Interval

Figure 4. Charge Injection

Low-Voltage, Single-Supply, SPDT Analog Switch in SC70

Figure 6. Channel On/Off-Capacitance
Chip Information
TRANSISTOR COUNT: 89
Package Information

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

8 \qquad Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600

