## Quad, SPST Analog Switch


#### Abstract

General Description The MAX4613 quad analog switch features on-resistance matching ( $4 \Omega$ max) between switches and guarantees on-resistance flatness over the signal range ( $9 \Omega$ max). This low on-resistance switch conducts equally well in either direction. It guarantees low charge injection (10pC max), low power consumption ( $35 \mu \mathrm{~W}$ max), and an electrostatic discharge (ESD) tolerance of 2000V minimum per Method 3015.7. The new design offers lower off leakage current over temperature (less than 5 nA at $+85^{\circ} \mathrm{C}$ ). The MAX4613 quad, single-pole/single-throw (SPST) analog switch has two normally closed switches and the two normally open switches. Switching times are less than 250ns for toN and less than 70ns for toff. Operation is from a single +4.5 V to +40 V supply or bipolar $\pm 4.5 \mathrm{~V}$ to $\pm 20 \mathrm{~V}$ supplies.


## Applications

| Sample-and-Hold Circuits | Communication Systems |
| :--- | :--- |
| Test Equipment | Battery-Operated Systems |
| Heads-Up Displays | PBX, PABX |
| Guidance and Control Systems | Audio Signal Routing |
| Military Radios | Modems/Faxes |

Pin Compatible with Industry-Standard DG213
Guaranteed RoN Match Between Channels
(4 2 max)
Guaranteed RFLAT(ON) Over Signal Range
(9 max)
Guaranteed Charge Injection (10pC max)

- Low Off Leakage Current Over Temperature ( $<5 \mathrm{nA}$ at $+85^{\circ} \mathrm{C}$ )
- Withstands 2000V min ESD, per Method 3015.7
- Low RdS(ON) (85 $\Omega$ max)
- Single-Supply Operation +4.5 V to +40 V Bipolar-Supply Operation $\pm 4.5 \mathrm{~V}$ to $\pm 20 \mathrm{~V}$
- Low Power Consumption ( $35 \mu \mathrm{~W}$ max)
- Rail-to-Rail ${ }^{\circledR}$ Signal Handling
- TTL/CMOS-Logic Compatible

Pin Configuration/ Functional Diagram/TruthTable


Rail-to-Rail is a registered trademark of Nippon Motorola Ltd.

Ordering Information

| PART | TEMP. RANGE | PIN-PACKAGE |
| :--- | :--- | :--- |
| MAX4613CPE | $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ | 16 Plastic DIP |
| MAX4613CSE | $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ | 16 Narrow SO |
| MAX4613CEE | $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ | 16 QSOP |
| MAX4613CUE | $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ | 16 TSSOP** |
| MAX4613C/D | $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ | Dice* |
| MAX4613EPE | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 16 Plastic DIP |
| MAX4613ESE | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 16 Narrow SO |
| MAX4613EEE | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 16 QSOP |
| MAX4613EUE | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 16 TSSOP** |

*Contact factory for dice specifications.
**Contact factory for availability.

## Quad，SPST Analog Switch

## ABSOLUTE MAXIMUM RATINGS

Voltage Referenced to GND

|  |
| :---: |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |

V
V＋to V－．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 44 V
VL ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．（GND－0．3V）to（V＋＋0．3V） or 30 mA （whichever occurs first）
位
$\qquad$ 100 mA

| Continuous Power Dissipation（ $\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$ ） |  |
| :---: | :---: |
| Plastic DIP（derate $10.53 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$ ） | ． 842 mW |
| Narrow SO（derate $8.70 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$ ） ． | 696 mW |
| QSOP（derate $8.3 \mathrm{~mW} / /^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$ ）． | 667 mW |
| TSSOP（derate $5.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$ ） | ． 457 mW |
| Operating Temperature Ranges |  |
| MAX4613C | $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ |
| MAX4613E | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ |
| Storage Temperature Range | $5^{\circ} \mathrm{C}$ to $+165^{\circ} \mathrm{C}$ |
| Lead Temperature（soldering | $\ldots+300^{\circ} \mathrm{C}$ |

Note 1：Signals on S＿D＿or IN＿exceeding V＋or V－are clamped by internal diodes．Limit forward current to maximum current rating．
Stresses beyond those listed under＂Absolute Maximum Ratings＂may cause permanent damage to the device．These are stress ratings only，and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied．Exposure to absolute maximum rating conditions for extended periods may affect device reliability．

## ELECTRICAL CHARACTERISTICS—Dual Supplies

$\left(\mathrm{V}+=15 \mathrm{~V}, \mathrm{~V}-=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=5 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}, \mathrm{~V}_{I N H}=2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{INL}}=0.8 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}\right.$ to $\mathrm{T}_{\mathrm{MAX}}$ ，unless otherwise noted．$)$

| PARAMETER | SYMBOL | CONDITIONS |  | MIN | $\begin{gathered} \text { TYP } \\ \text { (Note 2) } \end{gathered}$ | MAX | UNITS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SWITCH |  |  |  |  |  |  |  |
| Analog Signal Range | V ${ }_{\text {ANALOG }}$ | （Note 3） |  | －15 |  | 15 | V |
| Drain－Source On－Resistance | RDS（ON） | $\begin{aligned} & V_{D}= \pm 10 \mathrm{~V}, \\ & \mathrm{IS}=1 \mathrm{~mA} \end{aligned}$ | $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ |  | 55 | 70 | $\Omega$ |
|  |  |  | $\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$ |  |  | 85 |  |
| On－Resistance Match Between Channels（Note 4） | $\triangle \mathrm{RDS}(\mathrm{ON})$ | $\begin{aligned} & \mathrm{V}_{\mathrm{D}}= \pm 10 \mathrm{~V}, \\ & \mathrm{IS}=1 \mathrm{~mA} \end{aligned}$ | $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ |  |  | 4 | $\Omega$ |
|  |  |  | $\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$ |  |  | 5 |  |
| On－Resistance Flatness（Note 4） | RFLAT（ON） | $\begin{aligned} & V_{D}= \pm 5 \mathrm{~V}, \\ & \mathrm{IS}=1 \mathrm{~mA} \end{aligned}$ | $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ |  |  | 9 | $\Omega$ |
|  |  |  | $\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$ |  |  | 15 |  |
| Source Leakage Current （Note 5） | IS（OFF） | $\begin{aligned} & V_{D}= \pm 14 V, \\ & V_{S}=\mp 14 V \end{aligned}$ | $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ | －0．50 | 0.01 | 0.50 | nA |
|  |  |  | $\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$ | －5 |  | 5 |  |
| Drain－Off Leakage Current （Note 5） | ID（OFF） | $\begin{aligned} & V_{D}= \pm 14 \mathrm{~V}, \\ & V_{S}=\mp 14 \mathrm{~V} \end{aligned}$ | $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ | －0．50 | 0.01 | 0.50 | nA |
|  |  |  | $\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$ | －5 |  | 5 |  |
| Drain－On Leakage Current （Note 5） | $\begin{aligned} & \text { ID(ON) } \\ & \text { or } \\ & \text { IS(ON) } \end{aligned}$ | $\begin{aligned} & V_{D}= \pm 14 \mathrm{~V}, \\ & V_{S}= \pm 14 \mathrm{~V} \end{aligned}$ | $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ | －0．50 | 0.08 | 0.50 | nA |
|  |  |  | $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$ | －10 |  | 10 |  |
| INPUT |  |  |  |  |  |  |  |
| Input Current with Input Voltage High | IINH | $\mathrm{V}_{\mathrm{IN}}=2.4 \mathrm{~V}$ ，all others $=0.8 \mathrm{~V}$ |  | －0．5 | －0．00001 | 0.5 | $\mu \mathrm{A}$ |
| Input Current with Input Voltage Low | IINL | $\mathrm{V} \mathrm{IN}=0.8 \mathrm{~V}$ ，all others $=2.4 \mathrm{~V}$ |  | －0．5 | －0．00001 | 0.5 | $\mu \mathrm{A}$ |
| SUPPLY |  |  |  |  |  |  |  |
| Power－Supply Range | V＋，V－ |  |  | $\pm 4.5$ |  | $\pm 20.0$ | V |
| Positive Supply Current | I＋ | All channels on or off，$\mathrm{V}_{\mathrm{IN}}=0 \text { or } 5 \mathrm{~V}$ | $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ | －1 | 0.001 | 1 | $\mu \mathrm{A}$ |
|  |  |  | $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$ | －5 |  | 5 |  |
| Negative Supply Current | I－ | All channels on or off，$\mathrm{V} \text { IN }=0 \text { or } 5 \mathrm{~V}$ | $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ | －1 | 0.001 | 1 | $\mu \mathrm{A}$ |
|  |  |  | $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$ | －5 |  | 5 |  |

## Quad, SPST Analog Switch

## ELECTRICAL CHARACTERISTICS—Dual Supplies (continued)

$\left(\mathrm{V}+=15 \mathrm{~V}, \mathrm{~V}-=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=5 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}} \mathrm{NH}=2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{INL}}=0.8 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}\right.$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. $)$

| PARAMETER | SYMBOL | CONDITIONS |  | MIN | $\begin{gathered} \text { TYP } \\ \text { (Note 2) } \end{gathered}$ | MAX | UNITS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Logic Supply Current | IL | All channels on or off,$\mathrm{V} \text { IN }=0 \text { or } 5 \mathrm{~V}$ | $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ | -1 | 0.001 | 1 | $\mu \mathrm{A}$ |
|  |  |  | $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$ | -5 |  | 5 |  |
| Ground Current | IGND | All channels on or off, V IN $=0$ or 5 V | $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ | -1 | -0.0001 | 1 | $\mu \mathrm{A}$ |
|  |  |  | $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$ | -5 |  | 5 |  |
| DYNAMIC |  |  |  |  |  |  |  |
| Turn-On Time (Note 3) | ton | $\mathrm{V}_{\mathrm{S}}= \pm 10 \mathrm{~V}$, Figure 2 | $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ |  | 150 | 250 | ns |
| Turn-Off Time (Note 3) | toff | $\mathrm{V}_{\mathrm{S}}= \pm 10 \mathrm{~V}$, Figure 2 | $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ |  | 90 | 120 | ns |
| Break-Before-Make Time Delay (Note 3) | tD | Figure 3 | $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ | 5 | 20 |  | ns |
| Charge Injection (Note 3) | Q | $\begin{aligned} & C L=1 n F, V G E N=0, \\ & \text { RGEN }=0, \text { Figure } 4 \end{aligned}$ | $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ |  | 5 | 10 | pC |
| Off-Isolation Rejection Ratio (Note 6) | OIRR | $\begin{aligned} & R_{L}=50 \Omega, C_{L}=5 \mathrm{pF}, \\ & f=1 \mathrm{MHz} \text {, Figure } 5 \end{aligned}$ | $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ |  | 60 |  | dB |
| Crosstalk (Note 7) |  | $\begin{aligned} & R_{L}=50 \Omega, C_{L}=5 p F, \\ & f=1 \mathrm{MHz} \text {, Figure } 6 \end{aligned}$ | $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ |  | 100 |  | dB |
| Source-Off Capacitance | $\mathrm{Cs}_{\text {(OFF }}$ | $f=1 \mathrm{MHz}$, Figure 7 | $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ |  | 4 |  | pF |
| Drain-Off Capacitance | $\mathrm{C}_{\text {d(OFF }}$ | $\mathrm{f}=1 \mathrm{MHz}$, Figure 7 | $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ |  | 4 |  | pF |
| Source-On Capacitance | Cs(ON) | $f=1 \mathrm{MHz}$, Figure 8 | $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ |  | 16 |  | pF |
| Drain-On Capacitance | $\mathrm{C}_{\mathrm{D}(\mathrm{ON})}$ | $f=1 \mathrm{MHz}$, Figure 8 | $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ |  | 16 |  | pF |

## ELECTRICAL CHARACTERISTICS-Single Supply

$\left(\mathrm{V}_{+}=12 \mathrm{~V}, \mathrm{~V}-=0 \mathrm{~V}, \mathrm{VL}_{\mathrm{L}}=5 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{INH}}=2.4 \mathrm{~V}, \mathrm{~V} \operatorname{INL}=0.8 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}\right.$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. $)$

| PARAMETER | SYMBOL | CONDITIONS |  | MIN | $\begin{gathered} \text { TYP } \\ \text { (Note 2) } \end{gathered}$ | MAX | UNITS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SWITCH |  |  |  |  |  |  |  |
| Analog Signal Range | VANALOG |  |  | 0 |  | 12 | V |
| Drain-Source On-Resistance | RDS(ON) | $\begin{aligned} & \mathrm{V}_{\mathrm{L}}=5 \mathrm{~V} ; \mathrm{V}_{\mathrm{D}}=3 \mathrm{~V}, 8 \mathrm{~V} ; \\ & \mathrm{IS}=1 \mathrm{~mA} \end{aligned}$ | $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ |  | 100 | 160 | $\Omega$ |
|  |  |  | $\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$ |  |  | 200 |  |
| SUPPLY |  |  |  |  |  |  |  |
| Power-Supply Range | $\mathrm{V}+$, V - |  |  | 4.5 |  | 40 | V |
| Power-Supply Current | $1+$ | All channels on or off,$\mathrm{V}_{\mathrm{IN}}=0 \text { or } 5 \mathrm{~V}$ | $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ | -1 | 0.001 | 1 | $\mu \mathrm{A}$ |
|  |  |  | $\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$ | -5 |  | 5 |  |
| Negative Supply Current | I- | All channels on or off,$\mathrm{V}_{\mathrm{IN}}=0 \text { or } 5 \mathrm{~V}$ | $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ | -1 | -0.0001 | 1 | $\mu \mathrm{A}$ |
|  |  |  | $\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$ | -5 |  | 5 |  |
| Logic Supply Current | IL | All channels on or off,$\mathrm{V}_{\mathrm{IN}}=0 \text { or } 5 \mathrm{~V}$ | $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ | -1 | 0.001 | 1 | $\mu \mathrm{A}$ |
|  |  |  | $\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$ | -5 |  | 5 |  |
| Ground Current | IGND | All channels on or off, V IN $=0$ or 5 V | $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ | -1 | -0.0001 | 1 | $\mu \mathrm{A}$ |
|  |  |  | $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$ | -5 |  | 5 |  |

# Quad, SPST Analog Switch 

## ELECTRICAL CHARACTERISTICS—Single Supply (continued)

$\left(\mathrm{V}_{+}=12 \mathrm{~V}, \mathrm{~V}-=0, \mathrm{~V}_{\mathrm{L}}=5 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{I} N H}=2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{INL}}=0.8 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}\right.$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. $)$

| PARAMETER | SYMBOL | CONDITIONS | MINTYP <br> (Note 2) | MAX | UNITS |  |
| :--- | :---: | :--- | :--- | :---: | :---: | :---: |
| DYNAMIC |  |  |  |  |  |  |
| Turn-On Time (Note 3) | toN | $\mathrm{V}_{\mathrm{S}}=8 \mathrm{~V}$, Figure 2 | $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ | 300 | 400 | ns |
| Turn-Off Time (Note 3) | toFF | $\mathrm{V}_{\mathrm{S}}=8 \mathrm{~V}$, Figure 2 | $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ | 60 | 200 | ns |
| Charge Injection (Note 3) | Q | $\mathrm{C}=1 \mathrm{nF}, \mathrm{V}$ GEN $=0$, <br> R |  |  |  |  |

Note 2: Typical values are for design aid only, are not guaranteed and are not subject to production testing. The algebraic convention, where the most negative value is a minimum and the most positive value a maximum, is used in this data sheet.
Note 3: Guaranteed by design.
Note 4: On-resistance match between channels and flatness are guaranteed only with bipolar-supply operation. Flatness is defined as the difference between the maximum and the minimum value of on-resistance as measured at the extremes of the specified analog signal range.
Note 5: Leakage parameters $\operatorname{IS}(O F F), \operatorname{ID}(O F F), \operatorname{ID}(O N)$, and $\operatorname{IS}(O N)$ are $100 \%$ tested at the maximum rated hot temperature and guaranteed at $+25^{\circ} \mathrm{C}$.
Note 6: Off-Isolation Rejection Ratio = 20log (VD/Vs).
Note 7: Between any two switches.
Typical Operating Characteristics
( $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)


ON-RESISTANCE vs. $V_{D}$ (UNIPOLAR SUPPLY VOLTAGE)



ON-RESISTANCE vs. $V_{D}$ (BIPOLAR SUPPLY VOLTAGE)


SWITCHING THRESHOLD vs. BIPOLAR SUPPLY VOLTAGE


ON-RESISTANCE vs. $\mathrm{V}_{\mathrm{D}}$ (BIPOLAR SUPPLY VOLTAGE AND TEMPERATURE)


# Quad, SPST Analog Switch 

Typical Operating Characteristics (continued)
( $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

ON-RESISTANCE vs. VD (UNIPOLAR SUPPLY VOLTAGE AND TEMPERATURE)


CHARGE INJECTION vs. VD VOLTAGE


Pin Description

| PIN | NAME | FUNCTION |
| :---: | :---: | :--- |
| $1,16,9,8$ | IN1-IN4 | Logic Control Inputs |
| $2,15,10,7$ | D1-D4 | Drain Outputs |
| $3,14,11,6$ | S1-S4 | Source Outputs |
| 4 | V- | Negative Supply-Voltage Input |
| 5 | GND | Ground |
| 12 | VL $^{\text {L }}$ | Logic Supply-Voltage Input |
| 13 | V+ | Positive Supply-Voltage <br> Input-connected to substrate |

## Applic ations Information

## General Operation

1) Switches are open when power is off.
2) $\operatorname{IN}$, $D_{-}$, and $S_{-}$should not exceed $V+$ or $V$-, even with the power off.
3) Switch leakage is from each analog switch terminal to $\mathrm{V}_{+}$or V -, not to other switch terminals.

## Operation with Supply Voltages <br> Other than $\pm 15 \mathrm{~V}$

Using supply voltages less than $\pm 15 \mathrm{~V}$ will reduce the analog signal range. The MAX4613 operates with $\pm 4.5 \mathrm{~V}$ to $\pm 20 \mathrm{~V}$ bipolar supplies or with $\mathrm{a}+4.5 \mathrm{~V}$ to +40 V single

## Quad, SPST Analog Switch

supply; connect V - to GND when operating with a single supply. Also, all device types can operate with unbalanced supplies such as +24 V and -5 V . VL must be connected to +5 V to be $T \mathrm{~L}$ compatible, or to $\mathrm{V}+$ for CMOS-logic level inputs. The Typical Operating Characteristics graphs show typical on-resistance with $\pm 20 \mathrm{~V}, \pm 15 \mathrm{~V}, \pm 10 \mathrm{~V}$, and $\pm 5 \mathrm{~V}$ supplies. (Switching times increase by a factor of two or more for operation at $\pm 5 \mathrm{~V}$.)


Figure 1. Overvoltage Protection Using External Blocking Diodes

## Overvoltage Protection

Proper power-supply sequencing is recommended for all CMOS devices. Do not exceed the absolute maximum ratings because stresses beyond the listed ratings may cause permanent damage to the devices. Always sequence $\mathrm{V}_{+}$on first, followed by $\mathrm{V}_{\mathrm{L}}, \mathrm{V}$-, and logic inputs. If power-supply sequencing is not possible, add two small, external signal diodes in series with supply pins for overvoltage protection (Figure 1). Adding diodes reduces the analog signal range to 1 V below $\mathrm{V}_{+}$and 1 V above V-, but low switch resistance and low leakage characteristics are unaffected. Device operation is unchanged, and the difference between $\mathrm{V}+$ and V should not exceed +44 V .


LOGIC INPUT WAVEFORM IS INVERTED FOR SWITCHES
THAT HAVE THE OPPOSITELOGIC SENSE


Figure 2. Switching Time

Timing Diagrams/Test Circ uits


CL INCLUDES FIXTURE AND STRAY CAPACITANCE. LOGIC 0 INPUT.
Figure 3. Break-Before-Make Test Circuit

## Quad, SPST Analog Switch

Timing Diagrams/Test Circuits (continued)


Figure 4. Charge Injection


Figure 5. Off-Isolation Rejection Ratio


Figure 6. Crosstalk


Figure 7. Source/Drain-Off Capacitance


Figure 8. Source/Drain-On Capacitance

## Quad, SPST Analog Switch



TRANSISTOR COUNT: 126
SUBSTRATE CONNECTED TO ${ }^{+}$


Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

8 $\qquad$ Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600

[^0]Printed USA
MAXINI is a registered trademark of Maxim Integrated Products.


[^0]:    © 1998 Maxim Integrated Products

