Low-Power Digital Potentiometers

General Description

The MAX5160/MAX5161 linear-taper digital potentiometers perform the same function as a mechanical potentiometer or a variable resistor. They consist of a fixed resistor and a wiper contact with 32 tap points that are digitally controlled by three lines for the 8 -pin MAX5160 or by two lines for the 6-pin MAX5161.
These parts are ideal for applications requiring digitally controlled resistors. Three resistance values are available for each part type: $50 \mathrm{k} \Omega, 100 \mathrm{k} \Omega$, and $200 \mathrm{k} \Omega$. A nominal resistor temperature coefficient of $50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ end-to-end and only $5 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ ratiometric makes the MAX5160 ideal for applications requiring a low-temper-ature-coefficient variable resistor, such as low-tempco, adjustable-gain circuit configurations.
The MAX5160 is available in an 8-pin μ MAX package, and the MAX5161 is available in a 6 -pin SOT23 package. Both devices are guaranteed over the extendedindustrial temperature range $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$.

Applications
LCD Screen Adjustment
Volume Control
Mechanical Potentiometer Replacement

Functional Diagram

- Small-Footprint Packages

6-Pin SOT23 (MAX5161)
8 -Pin μ MAX (MAX5160)

- Glitchless Switching Between the Resistor Taps

Ordering Information

PART	TEMP. RANGE	PIN- PACKAGE	R (k Ω
MAX5160NEUA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$8 \mu \mathrm{MAX}$	200
MAX5160MEUA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$8 \mu \mathrm{MAX}$	100
MAX5160LEUA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$8 \mu \mathrm{MAX}$	50
MAX5161NEUT	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	6 SOT23-6	200
MAX5161MEUT	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	6 SOT23- 6	100
MAX5161LEUT	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	6 SOT23-6	50

Pin Configurations

Low-Power Digital Potentiometers

ABSOLUTE MAXIMUM RATINGS

VDD to GND
-0.3 V to +6 V
$\overline{\mathrm{CS}}, \overline{\mathrm{INC}}, \mathrm{U} / \overline{\mathrm{D}}$ to GND -0.3 V to +6 V
H, L, W to GND.. -0.3V to (VDD +0.3 V)
Input and Output Latchup Immunity $\pm 200 \mathrm{~mA}$
Maximum Continuous Current into H, L, and W
MAX516__E
E
.... \qquad $\pm 1 \mathrm{~mA}$

Continuous Power Dissipation ($\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$)
6 -Pin SOT23 (derate $8.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$)............. 696 mW 8-Pin μ MAX (derate $4.1 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$) 330 mW
Operating Temperature Range \qquad $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10sec) $+300^{\circ} \mathrm{C}$

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

$\left(\mathrm{V}_{\mathrm{DD}}=+2.7 \mathrm{~V}\right.$ to $+5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{H}}=\mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{\mathrm{L}}=0, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$. Typical values are at $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted. .

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
DC PERFORMANCE							
Resolution					3		\%
Integral Nonlinearity (Note 1)	INL					$\pm 1 / 2$	LSB
Differential Nonlinearity (Note 1)	DNL					± 1	LSB
End-to-End Resistor Tempco	TCR				50		ppm $/{ }^{\circ} \mathrm{C}$
Ratiometric Resistor Tempco					5		ppm $/{ }^{\circ} \mathrm{C}$
Full-Scale Error						-0.1	LSB
Zero-Scale Error						+0.1	LSB
Wiper Resistance	Rw				400	1700	Ω
Wiper Capacitance	Cw				10		pF
End-to-End Resistance	HL	MAX516_NE_-		150	200	250	$\mathrm{k} \Omega$
		MAX516_ME__		75	100	125	
		MAX516_LE_-		37.5	50	62.5	
DIGITAL INPUTS							
Input High Voltage	VIH			$0.7 \cdot V_{\text {DD }}$			V
Input Low Voltage	VIL					- VDD	V
Input Leakage Current						± 1	$\mu \mathrm{A}$
Input Capacitance					5		pF
TIMING CHARACTERISTICS (Figure 6)							
$\overline{\mathrm{CS}}$ to $\overline{\mathrm{INC}}$ Setup Time	tcl			25			ns
$\overline{\mathrm{CS}}$ to $\overline{\mathrm{NNC}}$ Hold Time	tıc			0			ns
$\overline{\text { INC Low Period }}$	tIL			25			ns
$\overline{\text { INC High Period }}$	$\mathrm{tIH}^{\text {H }}$			25			ns
U/ $\overline{\mathrm{D}}$ to $\overline{\mathrm{INC}}$ Hold	tid			0			ns
U/ $\overline{\mathrm{D}}$ to INC Setup	tDI			50			ns
Wiper-Settling Time	tiw				1		$\mu \mathrm{s}$
$\overline{\text { INC Frequency }}$	flmax					7	MHz
POWER SUPPLIES							
Supply Voltage	VDD			2.7		5.5	V
Supply Current	IDD	$\begin{aligned} & \overline{\mathrm{CS}}=\overline{\mathrm{INC}}=\mathrm{U} / \overline{\mathrm{D}}= \\ & \mathrm{V} \mathrm{DD} \text { or } \mathrm{GND} \end{aligned}$	$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$		0.6	10	$\mu \mathrm{A}$
			$V_{D D}=2.7 \mathrm{~V}$		135		nA

Note 1: For the MAX5160, linearity is defined in terms of H to L code-dependent resistance.

Low-Power Digital Potentiometers

Typical Operating Characteristics

$\left(\mathrm{V}_{\mathrm{DD}}=+5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted. $)$

END-TO-END RESISTANCE
vs. TAP POSITION

END-TO-END RESISTANCE

Low-Power Digital Potentiometers

$\left(\mathrm{V} D \mathrm{DD}=+5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted. $)$

Pin Description

PIN		NAME	FUNCTION
MAX5160	MAX5161		
1	5	$\overline{\text { INC }}$	Wiper Increment Control Input. With $\overline{\mathrm{CS}}$ low, a high-to-low transition increments (U/D high) or decrements (U/D low) the wiper position.
2	4	U/D	Up/Down Control Input. With $\overline{\mathrm{CS}}$ low, a high-to-low $\overline{\mathrm{INC}}$ transition increments (U/D high) or decrements (U/D low) the wiper position.
3	2	H	High Terminal of Resistor
4	3	GND	Ground
5	-	W	Wiper Terminal of Resistor
6	1	L	Low Terminal of Resistor
7	-	$\overline{\mathrm{CS}}$	Chip-Select Input. Drive low to change the wiper position via $\overline{I N C}$ and U/ $\overline{\mathrm{D}}$.
8	6	VDD	Power Supply

Low-Power Digital Potentiometers

Detailed Description

The MAX5160/MAX5161 consist of resistor arrays with 31 resistive elements. Thirty-two tap points are accessible to the wiper along the resistor string between H and L. Logic inputs $\overline{\mathrm{CS}}, \mathrm{U} / \overline{\mathrm{D}}$, and $\overline{\mathrm{INC}}$ determine the position of the wiper. With $\overline{\mathrm{CS}}$ low and U / \bar{D} high, a high-tolow transition on $\overline{\mathrm{NNC}}$ increments the internal counter, increasing the resistance between W and L . When both $\overline{\mathrm{CS}}$ and $\mathrm{U} / \overline{\mathrm{D}}$ are low, a high-to-low $\overline{\mathrm{INC}}$ transition decrements the internal counter, decreasing the resistance between W and L. At either end (maximum or minimum positions), additional transitions in the direction of the end points will not change the counter value (the counter will not wrap around).
The H and L terminals of the MAX5160 are similar to the two end terminals of a mechanical potentiometer. The tap W is equivalent to the variable tap (wiper) of the potentiometer.
The MAX5161 is similar to the MAX5160 except that $\overline{\mathrm{CS}}$ internally connects to ground and the wiper terminal (W) is shorted to the high terminal (H). The MAX5161 acts as
a variable resistor (a potentiometer with the wiper and one end terminal shorted together).
The MAX5160/MAX5161 feature power-on reset circuitry that sets the wiper position to midscale at power-up.

Applications Information

The MAX5160/MAX5161 are intended for circuits requiring digitally controlled adjustable voltage or adjustable gain, such as LCD contrast control, where voltage biasing adjusts the display contrast.

Controlling a Switc h-Mode LCD Bias Generator

Figure 1 shows an application where the MAX5161 is used with a MAX1771 to make an adjustable positive LCD-bias circuit. The output of the MAX1771 is a positive voltage that is digitally controlled through the MAX5160/MAX5161. Similarly, Figure 2 shows the application of the MAX5161 in a digitally controlled negative LCD-bias circuit along with the MAX774/

MAX775/MAX776.

$$
\begin{aligned}
& \frac{V_{\text {OUT(MAX) }}}{V_{\text {REF }}}=\frac{R 2}{R 1}, \frac{V_{\text {OUT(MIN })}}{V_{\text {REF }}}=\frac{R 2}{R 1+R_{V A R}} \\
& \frac{V_{\text {REF }}-V_{\text {FB }}}{R_{1}+\text { RVAR }} 5 \mu \mathrm{~A} \text { (FOR 2\% GAIN-SEITING ACCURACY) }
\end{aligned}
$$

Figure 2. Adjustable Negative LCD Bias

Figure 1. Adjustable Positive LCD Bias

Low-Power Digital Potentiometers

Alternative Positive LCD Bias Control

Alternatively, use an op amp to provide buffering and gain to the output of the MAX5160/MAX5161. Connect the MAX5160 to the positive input of a noninverting op amp (Figure 3) to select a portion of the input signal by digitally controlling the wiper terminal. Figure 4 shows a similar circuit for the MAX5161.

Figure 3. MAX5160 Positive LCD Bias Control

Adjustable Gain
Figure 5 shows how to use the MAX5161 to digitally adjust the gain of a noninverting op amp configuration. Connect the MAX5161 in series with a resistor to ground to form the adjustable gain control of a noninverting amplifier. The MAX5160/MAX5161 have a low 5ppm/ ${ }^{\circ} \mathrm{C}$ ratiometric tempco that allows for a very stable adjustable gain configuration over temperature.

Serial Interface
Figure 6 is the serial-interface timing diagram.

Figure 4. MAX5161 Positive LCD Bias Control

a)

b)

Figure 5. Adjustable Gain Circuit: a) MAX5161; b) MAX5160

Low-Power Digital Potentiometers

Figure 6. Serial-Interface Timing Diagram

Truth Table

$\overline{\mathbf{C S}}$	$\mathbf{U / \overline { D }}$	$\overline{\mathbf{I N C}}$	Rw
H	$\mathrm{xx}-\mathrm{X}$	X	O
L	L	\uparrow	O
L	H	\uparrow	O
L	L	\downarrow	-
L	H	\downarrow	+

X = Don't care
$\mathrm{O}=$ Previous state

+ = Increment
- = Decrement
$\downarrow=$ High-to-Low Transition
$\uparrow=$ Low-to-High Transition

Low-Power Digital Potentiometers

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

8 \qquad Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600
© 1999 Maxim Integrated Products
Printed USA
MノXINI is a registered trademark of Maxim Integrated Products.

