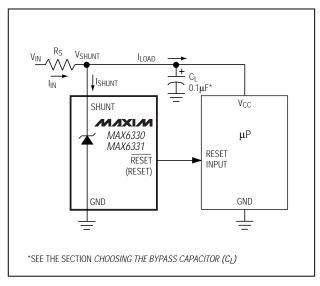


General Description

The MAX6330/MAX6331 combine a precision shunt regulator with a power-on reset function in a single SOT23-3 package. They offer a low-cost method of operating small microprocessor (µP)-based systems from high-voltage sources, while simultaneously protecting µPs from power-up, power-down, and brownout conditions.

Both active-low (MAX6330) and active-high (MAX6331) push/pull output versions are available. The output voltage has ±1.5% tolerance. The MAX6330/MAX6331 operate over a wide shunt current range from 100µA to 50mA, and offer very good transient immunity.


A 3-pin SOT23 package allows for a significant reduction in board space and improves reliability compared to multiple-IC/discrete solutions. These devices have a minimum order increment of 2,500 pieces.

Applications

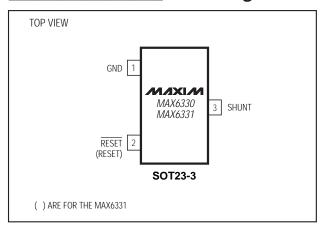
Controllers Household Appliances Intelligent Instruments Critical µP and µC Power Monitoring Portable/Size-Sensitive Equipment

Automotive

Typical Operating Circuit

Features

- ♦ 100µA to 50mA Shunt Current Range
- **♦ Low Cost**
- ♦ 3-Pin SOT23 Package
- **★** ±1.5% Tolerance on Output Voltage
- ♦ Three Shunt Voltages Available: 5V, 3.3V, 3.0V
- **♦ Precision Power-On Reset Threshold:** 1.5% Tolerance Available with Either RESET (MAX6331) or RESET (MAX6330) Outputs
- **♦ 140ms Reset Timeout Period—No External Components Required**


Ordering Information

PART*	TEMP. RANGE	PIN-PACKAGE		
MAX6330_ UR-T	-40°C to +85°C	3 SOT23-3		
MAX6331_ UR-T	-40°C to +85°C	3 SOT23-3		

*Insert the desired suffix letter (from the table below) into the blank to complete the part number. These devices have a minimum order increment of 2,500 pieces.

SHEERY	RESET	SHUNT REGULATOR	SOT TOP MARK		
JUFFIX		VOLTAGE (V)	MAX6330	MAX6331	
L	4.63	5.0	EKAA	ELAA	
Т	3.06	3.3	EMAA	ENAA	
S	2.78	3.0	EDAA	EPAA	

Pin Configuration

MIXIM

Maxim Integrated Products 1

For free samples & the latest literature: http://www.maxim-ic.com, or phone 1-800-998-8800. For small orders, phone 408-737-7600 ext. 3468.

ABSOLUTE MAXIMUM RATINGS

Terminal Voltage (with respect to	GND),
All Pins Except SHUNT	
Input Current (ISHUNT)	60mA
Output Current (RESET/RESET)	20mA
Short-Circuit Duration	Continuous

Continuous Power Dissipation	
SOT23-3 (derate 4mW/°C above +70°C)	320mW
Operating Temperature Range	40°C to +85°C
Storage Temperature Range	
Lead Temperature (soldering, 10sec)	+300°C

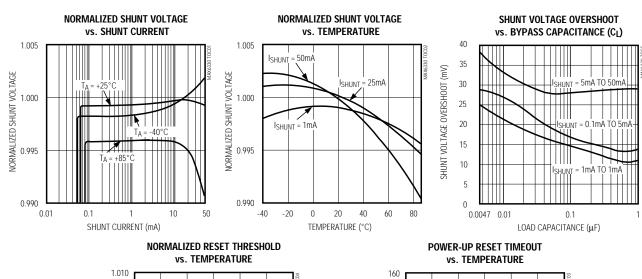
Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

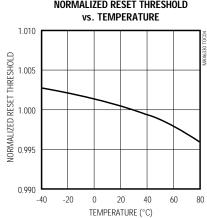
ELECTRICAL CHARACTERISTICS

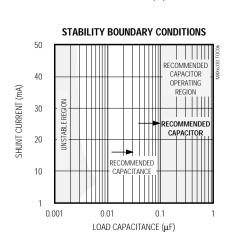
 $(I_{SHUNT} = 1 mA, C_L = 0.1 \mu F, T_A = -40 ^{\circ} C$ to $+85 ^{\circ} C$, unless otherwise noted. Typical values are at $T_A = +25 ^{\circ} C$.)

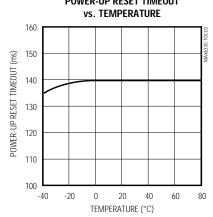
PARAMETER	SYMBOL		CONDIT	TIONS	MIN	TYP	MAX	UNITS
		50mA	T _A = +25°C	4.93	5.0	5.07		
			IVIAX033_L	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$	4.85		5.15	V
V _{SHUNT} Regulation Voltage	VSHUNT		MAX633_T	T _A = +25°C	3.25	3.3	3.35	
(Note 1)	VSHUNI			$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$	3.20		3.40	
			MAX633_S	$T_A = +25^{\circ}C$	2.96	3.0	3.04	
				$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$	2.91		3.09	
Minimum V _{SHUNT} for which		$T_A = 0$ °C to	+70°C		1.0			V
RESET is Valid (MAX6330)		$T_A = -40^{\circ}C$	to +85°C		1.2			V
V _{SHUNT} Tempco						40		ppm/°C
Minimum Shunt Current (Note 2)	ISHUNT(min)				100	60		μΑ
Maximum Shunt Current (Note 3)	ISHUNT(max)						50	mA
		MAX633 L		$T_A = +25^{\circ}C$	4.56	4.63	4.69	
	V _{TH}	T _A		$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$	4.50		4.75	V
Reset Threshold Voltage		I MAX633 I		$T_A = +25^{\circ}C$	3.01	3.06	3.11	
reset miesnoù vollage				$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$	2.97		3.15	
		I MAX633 S		$T_A = +25^{\circ}C$	2.74	2.78	2.82	
				$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$	2.70		2.86	
Reset Threshold Tempco						40		ppm/°C
V _{SHUNT} to Reset Delay		100mV ove	rdrive, C _L =	15pF		20		μs
Reset Pulse Width					100	140	200	ms

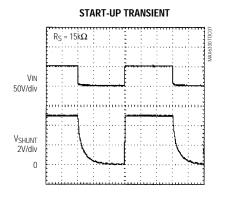
ELECTRICAL CHARACTERISTICS (continued)


 $(I_{SHUNT} = 1 \text{mA}, C_L = 0.1 \mu\text{F}, T_A = -40 ^{\circ}\text{C} \text{ to } +85 ^{\circ}\text{C}, \text{ unless otherwise noted. Typical values are at } T_A = +25 ^{\circ}\text{C}.)$


PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
	VoL	I _{SINK} = 3.2mA	MAX6330L, V _{TH(min)}			0.4	
			MAX6331L, V _{TH(max)}				
		I _{SINK} = 1.2mA	MAX6330T/S, V _{TH(min)}			0.3	
RESET/RESET Output			MAX6331T/S, V _{TH(max)}			0.3	- v
Voltage Low (Note 4)		MAX6330, V _{SHUNT} = 1V, I _{SINK} = 50μA, T _A = 0°C to +70°C				0.3	
		MAX6330, V _{SHUNT} = 1.2V, I _{SINK} = 50μA, T _A = -40°C to +85°C				0.3	
		January 00011A	MAX6331L, V _{TH(min)}	0.9 × 1/0, 11, 12, 17			
	Voн	ISOURCE = 800µA	MAX6330L, V _{TH(max)}	- 0.8 x V _{SHUNT}			
RESET/RESET Output Voltage High (Note 4)		ISOURCE = 500µA	MAX6331T/S, V _{TH(min)}	- 0.8 x V _{SHUNT}			V
			MAX6330T/S, V _{TH(max)}				V
		MAX6331, 1.8V < V _{SHUNT} < V _{TH(min)} , I _{SOURCE} = 150μA		0.8 x V _{SH}	HUNT		


- **Note 1:** It is recommended that the regulation voltage be measured using a 4-wire force-sense technique when operating at high shunt currents. For operating at elevated temperatures, the device must be derated based on a +150°C maximum allowed junction temperature and a maximum thermal resistance of 0.25°C/mW junction to ambient when soldered on a printed circuit board. The T_A = +25°C specification over load is measured using a pulse test at 50mA with less than 5ms on time.
- Note 2: Minimum shunt current required for regulated VSHUNT.
- Note 3: Maximum shunt current required for regulated VSHUNT.
- Note 4: In a typical application where SHUNT serves as the system voltage regulator, note that both ISOURCE for VOH and ISINK for VOL come from VSHUNT (see the *Typical Operating Circuit*).


_Typical Operating Characteristics


(Typical Operating Circuit, $C_L = 0.1 \mu F$, $I_{LOAD} = 0 mA$, $T_A = +25 °C$, unless otherwise noted.)

Pin Description

F	PIN		FUNCTION		
MAX6330	MAX6331	INAIVIE	TONCTION		
1	1	GND	Ground		
2	_	RESET	Inverting Reset Output. RESET remains low while V _{SHUNT} is below the reset threshold and for 140ms after V _{SHUNT} rises above the threshold.		
_	2	RESET	Noninverting Reset Output. RESET remains high while V _{SHUNT} is below the reset threshold and for 140ms after V _{SHUNT} rises above the threshold.		
3	3	SHUNT	Regulated Shunt Voltage (+5V, +3.3V, or +3.0V)		

Detailed Description

Reset Output

A microprocessor's (μ P's) reset input starts the μ P in a known state. The MAX6330/MAX6331 μ P supervisory circuits assert reset to prevent code-execution errors during power-up, power-down, or brownout conditions.

RESET is guaranteed to be a logic low for V_{SHUNT} > 1V. Once V_{SHUNT} exceeds the reset threshold, an internal timer keeps RESET low for the reset timeout period; after this interval, RESET goes high.

If a brownout condition occurs (VSHUNT dips below the reset threshold), $\overline{\text{RESET}}$ goes low. When VSHUNT falls below the reset threshold, the internal timer resets to zero and $\overline{\text{RESET}}$ goes low. The internal timer starts after VSHUNT returns above the reset threshold, and $\overline{\text{RESET}}$ then remains low for the reset timeout period.

The MAX6331 has an active-high RESET output that is the inverse of the MAX6330's RESET output.

Shunt Regulator

The shunt regulator consists of a pass device and a controlling circuit, as illustrated in Figure 1. The pass device allows the regulator to sink current while regulating the desired output voltage within a $\pm 1.5\%$ tolerance. The shunt current range (ISHUNT) is $100\mu\text{A}$ to 50m

The pass transistor in the MAX6330/MAX6331 maintains a constant output voltage (VSHUNT) by sinking the necessary amount of shunt current. When I_{LOAD} (see *Typical Operating Circuit*) is at a maximum, the shunt current is at a minimum, and vice versa:

IIN = ISHUNT + ILOAD = (VIN - VSHUNT) / RS

Consider the following information when choosing the external resistor Rs:

- 1) The input voltage range, (VIN)
- 2) The regulated voltage, (VSHUNT)
- 3) The output current range, (ILOAD)

Choose Rs as follows:

 $(VIN(max) - VSHUNT (min)) / (50mA + ILOAD(min)) \le RS \le (VIN(min) - VSHUNT (max)) / (100\mu A + ILOAD(max))$

Choose the largest nominal resistor value for R_S that gives the lowest current consumption. Provide a safety margin to incorporate the worst-case tolerance of the

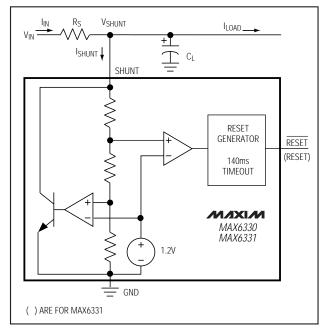


Figure 1. Functional Diagram

resistor used. Ensure that the resistor's power rating is adequate, using the following general power equation:

 $P_R = IIN(VIN(max) - VSHUNT)$

- $= I^2 INRS$
- = $(VIN(max) VSHUNT)^2 / RS$

_Applications Information

Negative-Going VSHUNT Transients

In addition to issuing a reset to the μP during power-up, power-down, and brownout conditions, the MAX6330/MAX6331 are relatively immune to short-duration negative-going V_{SHUNT} transients (glitches). Additional bypass filter capacitance mounted close to the SHUNT pin provides additional transient immunity.

Choosing the Bypass Capacitor, CL

The bypass capacitor (C_L) on the SHUNT pin can significantly affect the device's load-transient response, so choose it carefully. When a load transient occurs, the current for this load is diverted from the shunt regulator.

The maximum load current that can be diverted from the regulator is:

ILOAD (diverted from regulator)

- = |SHUNT(max) |SHUNT(min)
- $= 50 \text{mA} 100 \mu \text{A}$
- = 49.9mA

The shunt regulator has a finite response to this transient. The instantaneous requirements of the load change are met by the charge on C_L, resulting in overshoot/undershoot on V_{SHUNT}. The magnitude of this overshoot/undershoot increases with I_{SHUNT} and decreases with C_L. When V_{SHUNT} undershoots, the shunt current decreases to where it will only draw quiescent current (I_Q), and the shunt element turns off. At this point, V_{SHUNT} will slew toward V_{IN} at the following rate:

$\Delta V_{SHUNT} / \Delta t = (I_{IN} - I_{LOAD} - 60\mu A) / C_{L}$

As V_{SHUNT} rises, it will turn on the shunt regulator when it can sink 100µA of current. A finite response time for the shunt regulator to start up will result in a brief overshoot of V_{SHUNT} before it settles into its regulation voltage. Therefore, I_{LOAD} should always be 100µA or more below I_{IN} , or V_{SHUNT} will not recover to its regulation point. To prevent this condition, be sure to select the correct series-resistor R_S value (see the *Shunt Regulator* section).

Figures 2, 3, and 4 show load-transient responses for different choices of bypass capacitors on V_{SHUNT}. These photos clearly illustrate the benefits and drawbacks of the capacitor options. A smaller bypass

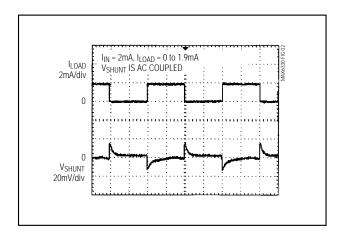


Figure 2. Load-Transient Response with $C_L = 0.22 \mu F$

Figure 3. Load-Transient Response with $C_L = 0.033 \mu F$

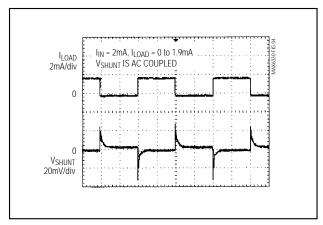


Figure 4. Load-Transient Response with $C_1 = 0.0047 \mu F$

capacitor allows a sharper drop in V_{SHUNT} when the load transient occurs, and will suffer from a steeper overshoot when the device re-enters regulation. On the other hand, the increased compensation on a larger bypass capacitor will lead to a longer recovery time to regulation. The *Typical Operating Characteristics* graph Overshoot vs. Bypass Capacitance (C_L) illustrates this trade-off.

If the compensation of the bypass capacitor chosen is insufficient, the output (V_{SHUNT}) can oscillate. Before choosing a bypass capacitor for the desired shunt current, observe the stability boundary conditions indicated in the *Typical Operating Characteristics*. The minimum output capacitance is $0.03\mu F$ to ensure stability over the full load-current range.

Adding Hysteresis

In certain circumstances, the MAX6330 can be trapped in a state that forces it to enter into and exit from a reset condition indefinitely. This usually occurs in systems where VSHUNT is just below the device's trip threshold and the system draws less quiescent current under reset conditions than when operating out of reset. The difference in supply current when the device is in or out of reset can translate to a significant change in the voltage drop across Rs, which the MAX6330's built-in hysteresis may not overcome. A $100k\Omega$ pull-up resistor will overcome this condition and add hysteresis (Figure 5).

Note that adding this pull-up resistor to the MAX6330 will render \overline{RESET} invalid with $V_{SHUNT} < 1V$, since this output loses sinking capability at this point, and the pull-up resistor would invalidate the signal. This does not present a problem in most applications, since most μPs and other circuitry are inoperative when V_{SHUNT} is below 1V.

Interfacing to µPs with Bidirectional Reset Pins

Microprocessors with bidirectional reset pins (such as the Motorola 68HC11 series) can contend with MAX6330's reset output. If, for example, the MAX6330's RESET output is asserted high and the μP wants to pull it low, indeterminate logic levels may result. To correct this, connect a 4.7k Ω resistor between the RESET output and the μP reset I/O (Figure 6). Buffer the RESET output to other system components. Also, Rs must be sized to compensate for additional current drawn by the μP during the fault condition.

Shunt Current Effects on VSHUNT and VTH

When sinking large shunt currents, power dissipation heats the die to temperatures greater than ambient. This may cause the V_{SHUNT} and V_{TH} tolerances to approach $\pm 3\%$ at high ambient temperatures and high shunt currents. Limit the die temperature to less than ± 150 °C using $\Theta_{JA} = 0.25$ °C/mW.

_Chip Information

TRANSISTOR COUNT: 283

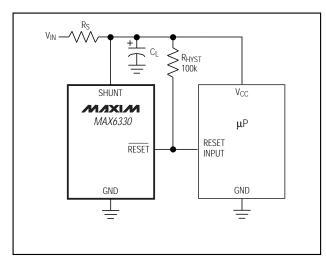


Figure 5. Adding Hysteresis to the MAX6330

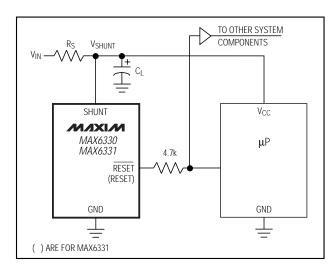
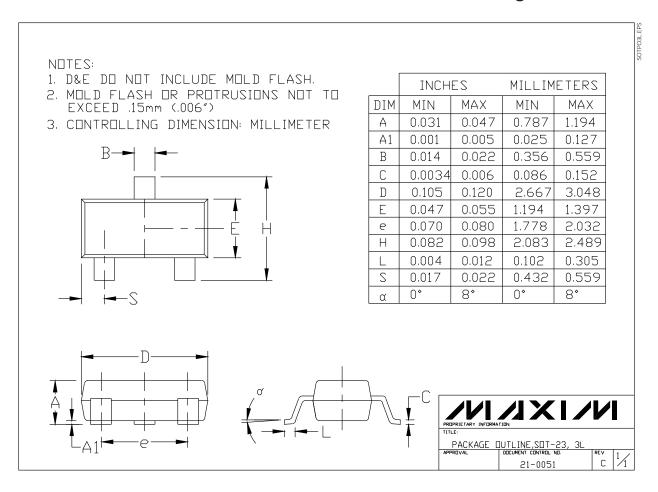



Figure 6. Interfacing to μPs with Bidirectional Reset I/O

Package Information

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.