TH7120

Features

- Single chip solution with only a few external components
\square Stand-alone fixed-frequency transceiver operation modes
- Programmable multi-channel transceiver operation modes
\square Low current consumption in active mode and very low standby current
- PLL-stabilized RF VCO (LO) with internal varactor diode
- Lock detection in programmable channel applications
- 3wire bus serial control interface
\square FSK/ASK modulation selection
F FSK for digital data and FM for analog signal reception
\square RSSI allows signal strength indication and ASK detection
- Switchable LNA gain for improved dynamic range
- Automatic PA turn-on after PLL lock
- FM possible with external varactor
- ASK modulation achieved by on/off keying
- AFC option for extended input frequency acceptance range
\square Surface mount package LQFP32

Ordering Information

Part No. (Engineering Samples)
Temperature Code
Package Code
TH7120
(TH7120-03)
$\mathrm{E}\left(-40^{\circ} \mathrm{C}\right.$ to $\left.85^{\circ} \mathrm{C}\right)$
NE (LQFP32)

Application Examples

- General bi-directional half duplex digital data transmission or analog signal transmission
- Low-power telemetry
- Alarm and security systems
- Keyless car and central locking
- Domotics
- Model control

Technical Data Overview

Frequency range: 300 MHz to 930 MHz for programmable channel applications

- $315 \mathrm{MHz}, 433 \mathrm{MHz}, 868 \mathrm{MHz}$ or 915 MHz fixed-frequency single-channel variants
\square Power supply range: 2.5 V to 5.5 V
- Temperature range: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
- Standby current: 50 nA
- Operating current: 6.0 mA in receive mode at low gain
- Operating current 9.0 mA in transmit mode at 0 dBm output power
- Adjustable output power range from -15 dBm to +6 dBm
- Sensitivity: -103 dBm at FSK with 150 kHz IF filter BW
- Sensitivity: - 105 dBm at ASK with 150 kHz IF filter BW
\square Maximum data rate for FSK and ASK: $60 \mathrm{kbit} / \mathrm{s}$ NRZ
- Maximum input level: -10 dBm at FSK and -20 dBm at ASK
- Input frequency acceptance: $\pm 50 \mathrm{kHz}$ (with AFC option)
- Frequency deviation range: $\pm 5 \mathrm{kHz}$ to $\pm 100 \mathrm{kHz}$
\square Maximum analog modulation frequency: 20 kHz
- 3 MHz to 12 MHz crystal reference

General Description

The TH7120 is a single chip FSK/FM/ASK transceiver IC. It is designed to operate in low-power multi-channel programmable or single-channel stand-alone, half-duplex data transmission systems. It can be used for ISM, SRD or any other application operating in the frequency ranging of 300 MHz to 930 MHz .

The TH7120 transceiver IC consists of the following building blocks:

- Low-noise amplifier (LNA) for high-sensitivity RF signal reception with switchable gain
- Mixer (MIX) for RF-to-IF down-conversion
- IF amplifier (IFA) to amplify and limit the IF signal and for RSSI generation
- Phase-coincidence demodulator with external ceramic discriminator (FSK Demodulator)
- Operational amplifier, connected to demodulator output (OA1)
- Operational amplifier, integrator circuit at FSK-AFC mode (OA2)
- Control logic with 3wire bus serial control interface (SCI)
- Reference oscillator (RO) with external crystal
- Reference divider (R counter)
- Programmable divider (N/A counter)
- Phase-frequency detector (PFD)
- Charge pump (CP)
- Voltage control oscillator (VCO) with internal varactor
- Power amplifier (PA) with adjustable output power

The transceiver can be used either as a 3wire-bus-controlled programmable or as a stand-alone fixedfrequency device. After power up, the transceiver is set to fixed-frequency mode. In this mode, pins FS0/SDEN and FS1/LD must be connected to V_{EE} or V_{CC} in order to set the desired frequency of operation. The logic levels at pins FS0/SDEN and FS1/LD must not be changed after power up in order to remain in fixed-frequency mode.

Channel frequency	433.92 MHz	868.3 MHz	315.0 MHz	915.0 MHz
FS0/SDEN	1	0	1	0
FS1/LD	0	0	1	1

After the first logic level change at pin FSO/SDEN, the transceiver enters into programmable mode while pin FS1/LD is now a PLL lock detector output. In this mode, the user can set any PLL frequency or mode of operation by the SCI.

In the fixed-frequency mode, the user can set the transceiver to Standby, Receive, Transmit or Idle (only PLL synthesizer active) mode via control pins RE/SCLK and TE/SDTA.

Operation mode	Standby	Receive	Transmit	Idle
RE/SCLK	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$
TE/SDTA	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$

Block Diagram

Figure 1: TH7120 block diagram

Pin Definition and Description

Pin No.	Name	I/O Type	Functional Schematic	Description
1	IN_IFA	input		IF amplifier input, approx. $2 \mathrm{k} \Omega$ single-ended
2	VCC_IF	supply		positive supply of LNA, MIX, IFA, FSK Demodulator, PA, OA1 and OA2
3	IN_DEM	analog I/O		IF amplifier output and demodulator input, connection to external ceramic discriminator
4	INT2	output		integrator output OA2
8	OUT_DTA	output		output OA1
5	INT1	input		inverting inputs OA1 and OA2
6	OUT_DEM	analog I/O		demodulator output and noninverting input OA1
7	RSSI	output		RSSI output

Pin No.	Name	I/O Type	Functional Schematic	Description
9	VEE_RO	ground		ground of RO
10	RO	analog I/O		RO input, base of bipolar transistor
11	FSK_SW	analog I/O		FSK pulling pin, switch to ground or OPEN
12	IN_DTA	input	$\mathrm{IN}_{12} \mathrm{DTA}$	ASK/FSK modulation data input, pull down resistor $120 \mathrm{k} \Omega$
15	RE/SCLK	input		receiver enable input / clock input for the shift register, pull down resistor $120 \mathrm{k} \Omega$
16	TE/SDTA	input		transmitter enable input / serial data input, pull down resistor $120 \mathrm{k} \Omega$
13	ASK/FSK	input		ASK/FSK mode select input
17	FSO/SDEN	input		frequency select input / serial data enable input
14	VCC_DIG	supply		positive supply of serial port and control logic
18	VEE_DIG	ground		ground of serial port and control logic
19	FS1/LD	input		frequency select input / lock detector output
20	VCC_PLL	supply		positive supply of PLL frequency synthesizer
22	VEE_PLL	ground		ground of PLL frequency synthesizer

Pin No.	Name	I/O Type	Functional Schematic	Description
21	LF	analog I/O		charge pump output, connection to external loop filter
23	TNK_LO	analog I/O		VCO open-collector output, connection to external LC tank
24	PS_PA	analog I/O		power-setting input
25	OUT_PA	output		power amplifier opencollector output
27	VEE_LNA	ground		ground of LNA and PA
28	OUT_LNA	output		LNA open-collector output, connection to external LC tank at RF
26	IN_LNA	input		LNA input, approx. 50Ω single-ended
29	GAIN_LNA	input		LNA gain control input

Pin No.	Name	I/O Type	Functional Schematic	Description	
30	IN_MIX	input		mixer input, approx. 200Ω single-ended	
31	VEE_IF	ground			
32	OUT_MIX	output			

Stand-Alone Fixed-Frequency Operation

After power up the transceiver is set to fixed-frequency mode. In this mode, pins FS0/SDEN and FS1/LD must be connected to V_{EE} or V_{CC} to set the desired frequency of operation. The logic levels at pins $\mathrm{FSO} / \mathrm{SDEN}$ and FS1/LD must not be changed after power up in order to remain in fixed-frequency mode. The default settings of the control word bits in stand-alone mode are described in the frequency selection table.

Frequency Selection

Channel frequency	433.92 MHz	868.3 MHz	315 MHz	915 MHz		
FSO/SDEN	1	0	1	0		
FS1/LD	0	0	1	1		
Reference oscillator frequency						
R counter ratio in RX mode	16	16	18	30		
PFD frequency in RX mode	446.91 kHz	446.91 kHz	397.25 kHz	238.35 kHz		
N/A counter ratio in RX mode	947	1919	766	3794		
VCO frequency in RX mode	423.22 MHz	857.60 MHz	304.30 MHz	904.30 MHz		
RX frequency	433.92 MHz	868.30 MHz	315.00 MHz	915.00 MHz		
R counter ratio in TX mode	16	16	18	30		
PFD frequency in TX mode	446.91 kHz	446.91 kHz	397.25 kHz	238.35 kHz		
N/A counter ratio in TX mode	971	1943	793	3839		
VCO frequency in TX mode	433.92 MHz	868.30 MHz	315.00 MHz	915.00 MHz		
TX frequency	433.92 MHz	868.30 MHz	315.00 MHz	915.00 MHz		
IF frequency in RX mode	10.7 MHz	10.7 MHz	10.7 MHz	10.7 MHz		

Default Register Settings After Power-up

Bits	A-word symbols	$\begin{gathered} \text { Channel } \\ \text { '00' } \\ 868.3 \\ \text { MHz } \end{gathered}$	$\begin{gathered} \text { Channel } \\ \text { '01' } \\ \mathbf{4 3 3 . 9 2} \\ \text { MHz } \end{gathered}$	$\begin{gathered} \text { Channel } \\ \text { '10' } \\ 915.0 \\ \text { MHz } \end{gathered}$	$\begin{gathered} \text { Channel } \\ \text { '11' } \\ 315.0 \\ \text { MHz } \end{gathered}$	B-word symbols	$\begin{aligned} & \text { Channel } \\ & \text { '00' } \\ & 868.3 \\ & \text { MHz } \end{aligned}$	$\begin{aligned} & \text { Channel } \\ & \text { '01' } \\ & 433.92 \\ & \text { MHz } \end{aligned}$	$\begin{gathered} \text { Channel } \\ \text { '10' } \\ 915.0 \\ \text { MHz } \end{gathered}$	$\begin{gathered} \text { Channel } \\ \text { '11' } \\ 315.0 \\ \text { MHz } \end{gathered}$
21	not used	0				not used	0			
20	DI MODE	0				not used	0			
19	MODUL	0				EnDelPLL	1			
18	HighCur	0				LNAHYST	1			
17	LOCK_MODE	0				EnAdj	0			
16	PA_AUTO	0				EnFM	0			
15	Pow1	1				Max2	1			
14	Pow0	1				Max1	1			
13	MIXG	1				Max0	1			
12	LNAG	1				Min2	0			
11	TE	0				Min1	1			
10	RE	0				Min0	1			
9	RR9	0	0	0	0	RT9	0	0	0	0
8	RR8	0	0	0	0	RT8	0	0	0	0
7	RR7	0	0	0	0	RT7	0	0	0	0
6	RR6	0	0	0	0	RT6	0	0	0	0
5	RR5	0	0	0	0	RT5	0	0	0	0
4	RR4	1		1	1	RT4	1	1	1	1
3	RR3	0	0	1	0	RT3	0	0	1	0
2	RR2	0	0		0	RT2	0	0	1	0
1	RR1	0	0	1	1	RT1	0	0	1	1
0	RR0	0	0	0	0	RT0	0	0	0	0

Bits	C-word symbols	$\begin{aligned} & \text { Channel } \\ & \text { '00' } \\ & 868.3 \\ & \text { MHz } \end{aligned}$	$\begin{aligned} & \text { Channel } \\ & \text { '01' } \\ & 433.92 \\ & \text { MHz } \end{aligned}$	$\begin{aligned} & \text { Channel } \\ & \text { '10' } \\ & 915.0 \\ & \text { MHz } \end{aligned}$	$\begin{gathered} \text { Channel } \\ \text { '11' } \\ 315.0 \\ \text { MHz } \end{gathered}$	B-word symbols	$\begin{gathered} \text { Channel } \\ \text { '00' } \\ 868.3 \\ \text { MHz } \end{gathered}$	$\begin{aligned} & \text { Channel } \\ & \text { '01' } \\ & 433.92 \\ & \text { MHz } \end{aligned}$	$\begin{gathered} \text { Channel } \\ \text { '10' } \\ 915.0 \\ \text { MHz } \end{gathered}$	$\begin{gathered} \text { Channel } \\ \text { '11' } \\ 315.0 \\ \text { MHz } \end{gathered}$
21	LNAGI E	0				MODUL_CTR	0			
20	POLAR	0				LD_TM1	1			
19	High2	0	0	0	0	LD_TM0	0			
18	High1	1	1	1	1	ER_TM1	0			
17	UP	1	0	1	0	ER TM0	0			
16	NR16	0	0	0	0	NT16	0	0	0	0
15	NR15	0	0	0	0	NT15	0	0	0	0
14	NR14	0	0	0	0	NT14	0	0	0	0
13	NR13	0	0	0	0	NT13	0	0	0	0
12	NR12	0	0	0	0	NT12	0	0	0	0
11	NR11	0	0	1	0	NT11	0	0	1	0
10	NR10	1	0	1	0	NT10	1	0	1	0
9	NR9	1	1	1	1	NT9	1	1	1	1
8	NR8	1	1	0	0	NT8	1	1	0	1
7	NR7	0	1	1	1	NT7	1	1	1	0
6	NR6	1	0	1	1	NT6	0	1	1	0
5	NR5	1	1	0	1	NT5	0	0	1	0
4	NR4	1	1	1	1	NT4	1	0	1	1
3	NR3	1	0	0	1	NT3	0	1	1	1
2	NR2	1	0	0	1	NT2	1	0	1	0
1	NR1	1	1	1	1	NT1	1	1	1	0
0	NR0	1	1	0	0	NT0	1	1	1	1

Programmable Channel Operation

Serial Control Interface Description

A 3-wire (SCLK, SDTA, SDEN) Serial Control Interface (SCI) is used to program the transceiver in multichannel mode (see Fig. 2). At each rising edge of the SCLK signal, the logic value on the SDTA pin is written into a 24 -bit shift register. The data stored in the shift register are loaded into one of the 4 appropriate latches on the rising edge of SDEN. The control words are 24 bits lengths: 2 address bits and 22 data bits. The first two bits (bit 23 and 22) are latch address bits. As additional leading bits are ignored, only the least significant 24 bits are serial-clocked into the shift register. The first incoming bit is the most significant bit (MSB). To program the transceiver in multi-channel application, four 24 -bit words may be sent: A-word, B-word, C-word and D-word. If individual bits within a word have to be changed, then it is sufficient to program only the appropriate 24 -bit word. The serial data input timing and the structure of the control words are illustrated in Fig. 2 and 3. Table REGISTER SETTINGS describes the function of each bit.

Figure 2: SCI block diagram
Due to the static CMOS design, the SCl consumes virtually no current and it can be programmed in active as well as in standby mode.

Figure 3: Serial data input timing

SCI Words

A-word																						
MSB LSB																						
$23 \quad 22$	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X
ADDR	$\begin{aligned} & \text { ס } \\ & \stackrel{0}{4} \\ & \stackrel{0}{0} \end{aligned}$		$\begin{aligned} & \text { B } \\ & \text { O} \\ & \text { O} \end{aligned}$	$\begin{aligned} & \text { 言 } \\ & \text { 둘 } \\ & \text { In } \end{aligned}$	山 을 단		$\begin{aligned} & \text { 3 } \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { ভ } \\ & \stackrel{x}{\Sigma} \end{aligned}$	$\begin{aligned} & \text { OT } \\ & \underset{Z}{2} \end{aligned}$	$\stackrel{\text { Ш }}{ }$	$\underset{\text { w }}{\text { ¢ }}$	$\stackrel{\underset{\sim}{x}}{\stackrel{x}{x}}$	$\begin{aligned} & \underset{\sim}{\underset{\sim}{x}} \\ & \hline \end{aligned}$	$\underset{\underset{\sim}{\boldsymbol{x}}}{\hat{\sim}}$	$\begin{aligned} & \stackrel{\circ}{\underset{\sim}{x}} \end{aligned}$	$\begin{aligned} & \text { ® } \\ & \\ & \hline \end{aligned}$	$\underset{\sim}{\underset{\sim}{\underset{\sim}{2}}}$		$\underset{\underset{\sim}{\underset{\sim}{x}}}{\substack{\sim}}$	$\overline{\underset{\sim}{x}}$	$\stackrel{\text { ¢ }}{\text { ¢ }}$

B-word

MSB

$\begin{array}{cc} 23 & 22 \\ \mathbf{0} & \mathbf{1} \end{array}$	21 \times	20 \times	19 \times	18 \times	$\begin{gathered} 17 \\ \mathrm{x} \end{gathered}$	16 \times	15 \times	14 \times	13 \times	${ }^{12}$	11 \times	10 \times	9 \times	8	7 \times	6 \times	5 \times	4 \times	3 \times	$\stackrel{2}{2}$	1 \times	0
ADDR	$\begin{aligned} & \text { ס } \\ & \stackrel{0}{2} \\ & \stackrel{\rightharpoonup}{0} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { D} \\ & \stackrel{0}{3} \\ & \stackrel{\rightharpoonup}{0} \end{aligned}$				$\underset{\underset{\sim}{E}}{\underset{\sim}{E}}$	$\begin{aligned} & \text { N } \\ & \stackrel{\text { ® }}{n} \end{aligned}$	$\begin{aligned} & \bar{x} \\ & \stackrel{\rightharpoonup}{\Sigma} \end{aligned}$	$\begin{aligned} & \text { O. } \\ & \text { N } \end{aligned}$	$\underset{\underset{\Sigma}{N}}{\underset{\Sigma}{N}}$	$\bar{\Sigma}$	$\stackrel{\text { 읃 }}{i}$	$\frac{9}{\square}$	$\stackrel{\infty}{\underset{x}{x}}$	$\underset{\sim}{f}$	$\stackrel{\circ}{x}$	$\underset{\sim}{\text { ® }}$	$\underset{\underset{\sim}{x}}{\stackrel{\pi}{2}}$	$\underset{\sim}{\mathrm{m}}$	$\underset{\sim}{\sim}$	$\underset{\sim}{\underset{\sim}{x}}$	

C-word

$\begin{array}{cc} \hline 23 & 22 \\ 1 & 0 \end{array}$	21 X	20 \times	$\begin{gathered} 19 \\ \mathrm{X} \end{gathered}$	18 \times	17 \times	$\begin{gathered} 16 \\ \mathrm{X} \end{gathered}$	15 \times	14 \times	$\begin{gathered} 13 \\ x \end{gathered}$	12 \times	11 \times	$\begin{gathered} 10 \\ x \end{gathered}$	9 \times	8	X	6 \times	5 \times	4 \times	3 \times	2	1 \times	0 \times
ADDR			$\begin{aligned} & \text { N } \\ & \text { 잎 } \end{aligned}$	$\begin{aligned} & \text { 들 } \\ & \text { 흗 } \end{aligned}$	$\stackrel{1}{3}$	$\begin{aligned} & 0 \\ & \frac{0}{\mathbf{x}} \end{aligned}$	$\begin{aligned} & \frac{n}{n} \\ & \frac{1}{z} \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{\dot{x}} \end{aligned}$	$\frac{\underset{\sim}{\mathbf{n}}}{\underset{\sim}{x}}$	$\begin{gathered} \frac{N}{\mathbf{n}} \end{gathered}$	$\underset{\underset{\sim}{x}}{\stackrel{\Gamma}{2}}$	$\begin{aligned} & \text { 을 } \\ & \frac{1}{\mathbf{z}} \end{aligned}$	$\frac{\circ}{2}$	$\stackrel{\infty}{\stackrel{\infty}{z}}$	$\frac{\hat{\sim}}{\mathbf{x}}$	$\frac{\stackrel{\circ}{2}}{2}$	$\frac{\stackrel{\sim}{2}}{2}$	$\frac{\underset{\sim}{\mathbf{~}}}{2}$	$\frac{\tilde{N}}{\mathbf{2}}$	$\frac{\tilde{N}}{\mathbf{\Sigma}}$	$\stackrel{\Gamma}{\mathbf{x}}$	$\stackrel{\text { 잔 }}{ }$

D-word

Microelectronic Integrated Systems

Register Settings

A-word

Symbol	Bits	No.	Description	
Software button				
RR9:RR0	[9:0]	10	Reference divider ratio in RX mode	
RR9:RRO				
TE:RE	[11:10]	2	Select active mode at programmable-channel application:	
OPMODE			$\begin{aligned} & { }^{\prime} 0^{\prime} \\ & ' 11 \\ & ' 10^{\prime} \\ & 01 \\ & \hline \end{aligned}$	Standby mode Idle mode Transmit mode Receive mode
LNAG	[12]	1	Select LNA gain at internal gain contro:	
LNAGAIN			$\begin{aligned} & { }^{\prime}{ }^{\prime} \\ & \prime \prime \end{aligned}$	low LNA gain high LNA gain
MIXG	[13]	1	Select mixer conversion gain at programmable-channel application:	
MIXGAIN			$\begin{aligned} & \prime 0 \\ & \prime \prime \\ & \hline \end{aligned}$	low gain high gain
Pow1:Pow0	[15:14]	2	Select output power at programmable-channel application:	
TXPOWER)		$\begin{aligned} & \prime 00^{\prime} \\ & \hline 01 \\ & ' 10 \\ & ' 10^{\prime} \\ & ' \end{aligned}$	$\begin{aligned} & P_{\max }-20 \mathrm{dBm} \\ & P_{\max }-12 \mathrm{dBm} \\ & P_{\max }-6 \mathrm{dBm} \\ & P_{\max } \end{aligned}$
PA_AUTO	[16]	1	Disable automatic PA turn-on after PLL lock:	
PA_AUTO			$\begin{aligned} & { }^{\prime}{ }^{\prime} \\ & \prime^{\prime} \end{aligned}$	enabled disabled
LOCK_MODE	[17]	1	Select PFD output analyse mode of lock detecting:	
LOCK_MODE			$\begin{aligned} & \prime 0 \\ & ' 1 \end{aligned}$	before lock only before and after lock.
HighCur	[18]	1	Select Charge Pump output current:	
CPCUR			$\begin{aligned} & \prime 0 \\ & \prime \prime \\ & \prime \prime \end{aligned}$	$\begin{aligned} & \pm 260 \mu \mathrm{~A} \\ & \pm 1300 \mu \mathrm{~A} \end{aligned}$
MODUL	[19]	1	Select modulation mode at internal modulation control:	
ASK/FSK			$\begin{aligned} & 0^{\prime} \\ & \prime 1 \end{aligned}$	$\begin{array}{\|l\|l\|} \hline \text { ASK } \\ \text { FSK } \end{array}$
DI_MODE	[20]	1	Select mode for input data:	
DI_MODE			' 0 '	normal
			'0' for space at ASK or $\mathrm{f}_{\text {min }}$ at FSK, ' 1 ' for mark at ASK or $\mathrm{f}_{\text {max }}$ at FSK	
			' 1 '	inverse
			' 1 ' for space at ASK or $\mathrm{f}_{\text {min }}$ at FSK, '0' for mark at ASK or $\mathrm{f}_{\text {max }}$ at FSK	
not used	[21]	1		

B-word

Symbol	Bits	No.	Description	
Software button			Description	
RT9:RT0	[9:0]	10	Reference divider ratio in TX mode	
RT9:RTO				
Min2:Min0	[12:10]	3	Select minimum value of RO active current:	
ROMIN			'000' '001' '010' '011' ' 100 ' '101' '110' '111'	
Max2:Max0	[15:13]	3		Select maximum value of RO active current:
ROMAX				$0 \mu \mathrm{~A}$ (RO is off) $50 \mu \mathrm{~A}$ $100 \mu \mathrm{~A}$ $150 \mu \mathrm{~A}$ $200 \mu \mathrm{~A}$ $250 \mu \mathrm{~A}$ $300 \mu \mathrm{~A}$ $350 \mu \mathrm{~A}$
EnFm	[16]	1	Test bit. F	ed '0' for correct functioning.
EnAdj	[17]	1	Test bit. F	ed '0' for correct functioning.
LNAHYST	[18]	1		Enable LNA hysteresis:
LNAHYST			$\begin{aligned} & '_{1}^{\prime} \\ & 0^{\prime} \end{aligned}$	disabled enabled
EnDeIPLL	[19]	1		Enable delayed start of the PLL:
EnDeIPLL			$\begin{aligned} & \prime \prime \\ & \mathbf{y}^{\prime} \end{aligned}$	disabled enabled.
not used	[20]	1	'X'	
not used	[21]	1	'X'	

TH7120
300 to 930 MHz
Microelectronic Integrated Systems

C-word

Symbol	Bits	No.	Description		
Software button					
NR16:NR0	[16:0]	17	Feedback divider ratio in RX mode		
NR16:NR0					
UP	[17]	1	Select frequency band:		
BAND			$\begin{aligned} & \prime \prime \\ & \prime 0 \\ & \hline 0 \end{aligned}$	up to 500 MHz 500 to 1000 N	
High2:High1	[19:18]	2	Select VCO active current:		
VCOCUR				low current ($250 \mu \mathrm{~A}$) standard current ($350 \mu \mathrm{~A}$) high1 current ($450 \mu \mathrm{~A}$) high2 current ($550 \mu \mathrm{~A}$)	
POLAR	[20]	1	Select Phase Detector polarity:		
PFDPOL			$' 1 \text { ' }$ ' 0 '	positive (1) negative (2)	$\underbrace{\begin{array}{c} \mathrm{VCO} \\ \text { OUTPUT } \\ \text { FREQUENCY } \end{array}}_{\text {VCC }}$
LNAGI_E	[21]	1	Select LNA gain control mode:		
LNACTRL			$\begin{aligned} & 0^{\prime} \\ & \prime 1 \end{aligned}$	external LNA gain control internal LNA gain control	

D-word

Symbol	Bits	No.	Description	
Software button				
NT16:NT0	[16:0]	17	Feedback divider ratio in TX mode	
NT16:NT0				
ER_TM1:ER_TM0	[18:17]	2	Select maximum enabled PFD output error for lock detecting (in reference frequency clocks):	
ER_TM1:ER_TM0				2 clocks 4 clocks 8 clocks 16 clocks
LD_TM1:LD_TM0	[20:19]	2	Select minimum number of PFD reference frequency clocks before lock detecting:	
LD_TM1:LD_TM0			$\begin{aligned} & \prime 00^{\prime} \\ & \hline 01 \\ & ' 10 \\ & ' 10^{\prime} \\ & ' \end{aligned}$	4 clocks 16 clocks 64 clocks 256 clocks
MODUL_CTR	[21]	1	Select mod	of modulation control:
MODCTRL			$\begin{aligned} & 0^{\prime} \\ & \prime 1 \end{aligned}$	external modulation control internal modulation control

Microelectronic Integrated Systems

Technical Data

Absolute Maximum Ratings

Parameter	Symbol	Condition / Note	Min	Max	Unit
Supply voltage	V_{CC}		0	7.0	V
Input voltage	V_{IN}		-0.3	$\mathrm{~V}_{\mathrm{cc}}+0.3$	V
Input current	I_{IN}		-1	1	mA
Input RF level	$\mathrm{P}_{\mathrm{imax}}$	no damage		10	dBm
Storage temperature	$\mathrm{T}_{\mathrm{STG}}$		-40	+125	${ }^{\circ} \mathrm{C}$
Electrostatic discharge	$\mathrm{V}_{\mathrm{ESD} 1}$	human body model, 1)	-1.0	+1.0	kV
Electrostatic discharge	$\mathrm{V}_{\mathrm{ESD2}}$	human body model, 2)	TBD	TBD	kV

1) pins IN_DTA, ASK/FSK, RE/SCLK; TE/SDTA, FSO/SDEN, FS1/LD
2) all pins, exept IN_DTA, ASK/FSK, RE/SCLK; TE/SDTA, FSO/SDEN, FS1/LD

Normal Operating Conditions

Parameter	Symbol	Condition	Min	Max	Unit
Supply voltage	V_{cc}		2.5	5.5	V
Operating temperature	T_{a}		-40	+85	0
Carrier frequency	f_{c}		300	930	MHz
VCO frequency	$\mathrm{f}_{\mathrm{VCO}}$		300	930	MHz
RO frequency	f_{RO}		3	12	MHz
Frequency deviation	$\Delta \mathrm{f}$	at FM or FSK	± 5	± 120	kHz
FSK data rate	$\mathrm{R}_{\mathrm{FSK}}$	NRZ		60	$\mathrm{kbit} / \mathrm{s}$
FM bandwidth	f_{m}			20	kHz
ASK data rate	$\mathrm{R}_{\mathrm{ASK}}$	NRZ		60	$\mathrm{kbit} / \mathrm{s}$

DC Characteristics

all parameters under normal operating conditions, unless otherwise stated;
typical values at $\mathrm{T}_{\mathrm{a}}=23^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{cc}}=3 \mathrm{~V}$

Parameter	Symbol	Condition	Min	Typ	Max	Unit
Standby current	$\mathrm{I}_{\text {SBY }}$	$\begin{aligned} & \text { TE/SDTA=0, } \\ & \text { RE/SCLK=0 } \end{aligned}$		50	100	nA
Idle current	I IDLE	TE/SDTA=1, RE/SCLK=1 @ $\mathrm{f}_{\mathrm{i}}=433.92 \mathrm{MHz}$		2.5	3.2	mA
Total supply current in receive mode at low gain	$\mathrm{I}_{\text {RX_Iow }}$	$\begin{aligned} & \text { TE/SDTA=0, } \\ & \text { RE/SCLK }=1 \\ & \mathrm{~V}_{\text {GAIN_LNA }}>1.4 \mathrm{~V} \\ & @ \mathrm{f}_{\mathrm{i}}=433.92 \mathrm{MHz} \\ & \hline \end{aligned}$		6.0	8.0	mA
Total supply current in receive mode at high gain	IRX_high	$\begin{aligned} & \hline \text { TE/SDTA }=0, \\ & \text { RE/SCLK }=1 \\ & V_{\text {GAIN_LNA }}<0.8 \mathrm{~V} \\ & @ \mathrm{f}_{\mathrm{i}}=433.92 \mathrm{MHz} \\ & \hline \end{aligned}$		7.0	9.0	mA
Total supply current in transmit mode at 0 dBm power	$\mathrm{I}_{\text {TX_0 }}$	$\begin{aligned} & \text { TE/SDTA=1, } \\ & \text { RE/SCLK=0 } \\ & \text { ASK/FSK }=1 \\ & @ f_{i}=433.92 \mathrm{MHz}, \\ & @ P_{0}=0 \mathrm{dBm} \\ & \hline \end{aligned}$		9.0	11.5	mA

AC System Characteristics of the Receiver Part

all parameters under normal operating conditions, unless otherwise stated; all parameters based on test circuits for FSK (Fig. 4 to 5), FM and ASK (Fig. 6 to 7), respectively; RF at 433.92 MHz

Parameter	Symbol	Condition	Min	Typ	Max	Unit
Input sensitivity - FSK	$\mathrm{P}_{\text {min_FSK }}$	$\begin{aligned} & \mathrm{B}_{\mathrm{IF}}=150 \mathrm{kHz} \\ & \Delta \mathrm{f}= \pm 50 \mathrm{kHz}(\mathrm{FSK} / \mathrm{FM}) \\ & \mathrm{BER} \leq 3 \cdot 10^{-3} \\ & \hline \end{aligned}$		-103		dBm
Input sensitivity - ASK	$\mathrm{P}_{\text {min_ASK }}$	$\begin{aligned} & \mathrm{B}_{\text {IF }}=150 \mathrm{kHz} \\ & \mathrm{BER} \leq 3 \cdot 10^{-3} \end{aligned}$		-105		dBm
Maximum input signal - FSK/FM at low gain	$\mathrm{P}_{\text {max_FSK_1 }}$	$\begin{aligned} & \hline \mathrm{BER} \leq 3 \cdot 10^{-3} \\ & \mathrm{~V}_{\text {GAIN_LNA }}>1.4 \mathrm{~V} \end{aligned}$		10		dBm
Maximum input signal - FSK/FM at high gain	$\mathrm{P}_{\text {max_FSK_0 }}$	$\begin{aligned} & \text { BER } \leq 3 \cdot 10^{-3} \\ & \mathrm{~V}_{\text {GAIN_LNA }}<0.8 \mathrm{~V} \end{aligned}$		-10		dBm
Maximum input signal - ASK at low gain	$\mathrm{P}_{\text {max_ASK_1 }}$	$\begin{aligned} & \hline \mathrm{BER} \leq 3.10^{-3} \\ & \mathrm{~V}_{\text {GAIN_LNA }}>1.4 \mathrm{~V} \end{aligned}$		-20		dBm
Maximum input signal - ASK at high gain	$\mathrm{P}_{\text {max_ASK_0 }}$	$\begin{aligned} & \mathrm{BER} \leq 3 \cdot 10^{-3} \\ & \mathrm{~V}_{\text {GAIN LNA }}<0.8 \mathrm{~V} \end{aligned}$		0		dBm
Image rejection	$\Delta \mathrm{P}_{\text {imag }}$			TBD		dB
Blocking immunity	$\Delta \mathrm{P}_{\text {block }}$	$\Delta \mathrm{f}_{\text {block }}> \pm 2 \mathrm{MHz}$, note 1		TBD		dB
Start-up time - FSK/FM	$\mathrm{T}_{\text {FSK }}$	$\begin{array}{\|l\|} \hline \text { TE/SDTA }=0, \\ \text { RE/SCLK=1 } \\ \text { valid data at output } \\ \hline \end{array}$			1	ms
Start-up time - ASK	$\mathrm{T}_{\text {ASK }}$	depends on ASK detector time constant and start-up mode, valid data at output			$\begin{gathered} \mathrm{T}_{\mathrm{FSK}} \\ + \\ + \\ 200 \mathrm{~K} \text { * } \mathrm{C} 6 \end{gathered}$	ms
Spurious emission	$\mathrm{P}_{\text {spur }}$				-70	dBm

Notes: 1. desired signal with FSK/FM or ASK modulation, CW blocking signal

AC System Characteristics of the Transmitter Part

all parameters under normal operating conditions, unless otherwise stated;
typical values at $T_{a}=23^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{cc}}=3 \mathrm{~V}$;
TE/SDTA=1, RE/SCLK=0, ASK/FSK=1, RPS $\geq 15 \mathrm{k} \Omega, \mathrm{f}_{\mathrm{c}}=433.92 \mathrm{MHz}$, test circuit shown in Fig. 4 to 7

Parameter	Symbol	Condition	Min	Typ	Max	Unit
Output power	P_{o}	CW mode	4	6	8	dBm
FSK deviation	Δ_{FSK}	depends on $\mathrm{C}_{\mathrm{x} 1}, \mathrm{C}_{\mathrm{x} 2}$ and crystal parameter	± 5	± 50	± 100	kHz
Data rate FSK	$\mathrm{R}_{\mathrm{FSK}}$			60		$\mathrm{kbit} / \mathrm{s}$
FM deviation	Δ_{FM}	adjustable with varactor and V_{FM}		± 6		kHz
Modulation frequency FM	$\mathrm{f}_{\mathrm{mod}}$			5		kHz
Data rate ASK	$\mathrm{R}_{\mathrm{ASK}}$			60		$\mathrm{kbit} / \mathrm{s}$
PLL spurs emission	$\mathrm{P}_{\text {spur }}$	at all f_{C} and nominal P_{o}			-36	dBm
Harmonic emission	$\mathrm{P}_{\text {harm }}$	at all f_{C} and power steps		-	-36	dBm
VCO gain	$\mathrm{K}_{\mathrm{VCO}}$			35		$\mathrm{MHz} / \mathrm{V}$
Charge pump current	I_{CP}			260		$\mathrm{\mu A}$
Start-up time	T_{TX}	from "standby" to "transmit" mode			1	ms

Output Power Selection

typical values at $\mathrm{T}_{\mathrm{a}}=23^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{cc}}=3 \mathrm{~V}$:
TE/SDTA $=1$, RE/SCLK $=0$, ASK/FSK $=1, \mathrm{f}_{\mathrm{c}}=433.92 \mathrm{MHz}, \mathrm{CW}$ mode

$\mathbf{R P S} / \mathbf{k} \boldsymbol{\Omega}$	$\mathbf{\geq 1 5} \mathbf{k}$	$\mathbf{6 . 8} \mathbf{k}$	$\mathbf{3 . 3} \mathbf{k}$	$\mathbf{1 . 0} \mathbf{k}$
$\mathrm{I}_{\mathrm{CC}} / \mathrm{mA}$	TBD	9.0	TBD	TBD
$\mathrm{P}_{\mathrm{O}} / \mathrm{dBm}$	6	0	-6	-15
$\mathrm{P}_{\text {harm }} / \mathrm{dBm}$	≤-36	≤-36	≤-36	≤-36

Serial Control Interface

Parameter	Symbol	Condition	Min	Max	Unit
Data to clock set up time	f_{CS}		150		ns
Data to clock hold time	t_{CH}		50		ns
Clock pulse width high	$\mathrm{t}_{\mathrm{CWH}}$		100		ns
Clock pulse width low	$\mathrm{t}_{\mathrm{CWL}}$		100		ns
Clock to load enable set up time	t_{ES}		100		

Crystal Parameters

Parameter	Symbol	Condition	Min	Max	Unit
Crystal frequency	$\mathrm{f}_{\text {crystal }}$	fundamental mode, AT	3	12	MHz
Load capacitance	$\mathrm{C}_{\text {load }}$		10	15	pF
Static capacitance	C_{0}			7	pF
Motional resistance	R_{m}			70	Ω

Application Circuit Examples

Programmable Channel FSK Application Circuit

Figure 4: Test circuit for programmable channel FSK operation

Fixed-Frequency FSK Application Circuit

Figure 5: Test circuit for fixed-frequency FSK operation at 433 MHz TH7120
300 to 930 MHz FSK/FM/ASK Transceiver

FSK test circuit component list to Fig. 4 and Fig. 5

Part	Size	Value @ 433.92 MHz	Tolerance	Description
C0	0805	0.68 pF	$\pm 5 \%$	VCO tank capacitor
C1	0603	6.8 pF	$\pm 5 \%$	LNA output tank capacitor
C2	0603	1 pF	$\pm 5 \%$	MIX input matching capacitor
C3	0805	10 nF	$\pm 10 \%$	data slicer capacitor
C4	0805	100 pF	$\pm 10 \%$	demodulator output low-pass capacitor, depending on data rate
C5	0805	330 pF	$\pm 10 \%$	RSSI output low pass capacitor
CB0	0805	100 nF	$\pm 10 \%$	blocking capacitor
CB1 to CB4	$\begin{aligned} & \hline 0805 \\ & 0603 \end{aligned}$	330 pF	$\pm 10 \%$	blocking capacitor
CB5	0603	330 pF	$\pm 10 \%$	blocking capacitor
CB6	0603	10 nF	$\pm 10 \%$	blocking capacitor
CB7	0603	330 pF	$\pm 10 \%$	blocking capacitor
CF1	0805	390 pF	$\pm 5 \%$	loop filter capacitor
CF2	0805	150 pF	$\pm 5 \%$	loop filter capacitor
CX1	0805	18 pF	$\pm 5 \%$	RO capacitor
CX2	0805	68 pF	$\pm 5 \%$	RO capacitor for FSK ($\Delta \mathrm{f}= \pm 20 \mathrm{kHz}$)
CP0	0805	10-12 pF	$\pm 5 \%$	CERRES parallel capacitor
CRX0	0603	100 pF	$\pm 5 \%$	RX coupling capacitor
CTX0	0603	100 pF	$\pm 5 \%$	TX coupling capacitor
RB	0805	10Ω	$\pm 10 \%$	blocking resistor for VCC
RP	0805	$3.9 \mathrm{~K} \Omega$	$\pm 5 \%$	CERFIL parallel resistor
RF	0805	$47 \mathrm{k} \Omega$	$\pm 5 \%$	loop filter resistor
RPS	0805	$82 \mathrm{k} \Omega$	$\pm 5 \%$	power-select resistor, only required at fixed-frequency operation
L0	0805	18 nH	$\pm 5 \%$	VCO tank inductor
L1	0603	15 nH	$\pm 5 \%$	LNA output tank inductor
LTX0	0805	150 nH	$\pm 5 \%$	TX impedance matching inductor
XTAL	HC49-SMD	7.1505 MHz	$\pm 30 \mathrm{ppm}$ calibr. $\pm 30 \mathrm{ppm}$ temp.	fundamental-mode crystal, $\mathrm{C}_{\text {load }}=10 \mathrm{pF}$ to 15 pF , $\mathrm{C}_{0, \max }=7 \mathrm{pF}, \mathrm{R}_{\mathrm{m}, \max }=70 \Omega$
CERFIL	Leaded type	$\begin{gathered} \hline \text { SFE10.7MFP @ } \\ \mathrm{B}_{\text {IF2 }}=40 \mathrm{kHz} \end{gathered}$	TBD	ceramic filter from Murata
	SMD type	SFECV10.7MJS-A @ $\mathrm{B}_{1 \mathrm{~F} 2}=150 \mathrm{kHz}$	$\pm 40 \mathrm{kHz}$	ceramic filter from Murata
CERRES	SMD type	CDACV10.7MG18-A		ceramic demodulator tank from Murata

Notes:

- NIP - not in place, may be used optionally
- Antenna matching network according to Evaluation Board Description EVB7120

Programmable Channel ASK Application Circuit

Figure 6: Test circuit for programmable channel ASK operation

Fixed-Frequency ASK Application Circuit

Figure 7: Test circuit for fixed-frequency ASK operation at 433 MHz TH7120 300 to 930 MHz FSK/FM/ASK Transceiver

Microelectronic Integrated Systems

ASK test circuit component list to Fig. 6 and Fig. 7

Part	Size	Value @ 433.92 MHz	Tolerance	Description
C0	0805	NIP	$\pm 5 \%$	VCO tank capacitor
C1	0603	6.8 pF	$\pm 5 \%$	LNA output tank capacitor
C2	0603	1 pF	$\pm 5 \%$	MIX input matching capacitor
C3	0805	10 nF	$\pm 10 \%$	data slicer capacitor
C5	0805	330 pF	$\pm 10 \%$	RSSI output low pass capacitor
CB0	0805	100 nF	$\pm 10 \%$	blocking capacitor
CB1 to CB3	$\begin{aligned} & \hline 0805 \\ & 0603 \end{aligned}$	330 pF	$\pm 10 \%$	blocking capacitor
CB5	0603	330 pF	$\pm 10 \%$	blocking capacitor
CB6	0603	10 nF	$\pm 10 \%$	blocking capacitor
CB7	0603	330 pF	$\pm 10 \%$	blocking capacitor
CF1	0805	1.5 nF	$\pm 5 \%$	loop filter capacitor
CF2	0805	150 pF	$\pm 5 \%$	loop filter capacitor
CX1	0805	27 pF	$\pm 5 \%$	RO capacitor
CRX0	0603	100 pF	$\pm 5 \%$	RX coupling capacitor
CTX0	0603	100 pF	$\pm 5 \%$	TX coupling capacitor
RB	0805	10Ω	$\pm 10 \%$	blocking resistor for VCC
RF	0805	$47 \mathrm{k} \Omega$	$\pm 5 \%$	loop filter resistor
RPS	0805	$15 \mathrm{k} \Omega$	$\pm 5 \%$	power-select resistor, only required at fixed-frequency operation
L0	0805	18 nH	$\pm 5 \%$	VCO tank inductor
L1	0603	15 nH	$\pm 5 \%$	LNA output tank inductor
LTX0	0805	150 nH	$\pm 5 \%$	TX impedance matching inductor
XTAL	HC49-SMD	7.1505 MHz	$\pm 30 \mathrm{ppm}$ calibr. $\pm 30 \mathrm{ppm}$ temp.	fundamental-mode crystal, $\mathrm{C}_{\text {load }}=10 \mathrm{pF}$ to 15 pF , $\mathrm{C}_{0, \max }=7 \mathrm{pF}, \mathrm{R}_{\mathrm{m}, \max }=70 \Omega$
CERFIL	Leaded type	SFE10.7MFP @ $B_{1 F 2}=40 \mathrm{kHz}$	TBD	ceramic filter from Murata
	$\begin{aligned} & \hline \text { SMD } \\ & \text { type } \\ & \hline \end{aligned}$	SFECV10.7MJS-A @ $B_{\text {IF2 }}=150 \mathrm{kHz}$	$\pm 40 \mathrm{kHz}$	ceramic filter from Murata

Notes:

- NIP - not in place, may be used optionally
- Antenna matching network according to Evaluation Board Description EVB7120

Programmable Channel FSK Application Circuit with AFC

Figure 8: Test circuit for programmable channel FSK operation with AFC

Circuit Features

- Automatic Frequency Control (AFC)
- Increases input frequency acceptance range up to $\mathrm{RF}_{\text {nom }} \pm 50 \mathrm{kHz}$
- Compensation of calibration tolerances of ceramic resonator
- Compensation of temperature tolerances of ceramic resonator

Fixed-Frequency FSK Application Circuit with AFC

Figure 9: Test circuit for fixed-frequency FSK operation at 433 MHz with AFC

Circuit Features

- Automatic Frequency Control (AFC)
\square Increases input frequency acceptance range up to $\mathrm{RF}_{\text {nom }} \pm 50 \mathrm{kHz}$
- Compensation of calibration tolerances of ceramic resonator
- Compensation of temperature tolerances of ceramic resonator

Package Dimensions

Fig. 7: LQFP32 (Low Quad Flat Package)

All Dimension in mm, coplanaríty < 0.1 mm									
	E1, D1	A	A1	A2	e	b	L	E, D	α
min			0.05	1.35		0.30	0.45		0°
max	7.00	1.60	0.15	1.45	0.8	0.45	0.75	9.00	$7{ }^{\circ}$
All Dimension in inch, coplanaríty < 0.004"									
min			0.002	0.053		0.012	0.018		0°
	0.276				0.031			0.354	
max		0.630	0.006	0.057		0.018	0.030		7°

Your Notes

Important Notice

Devices sold by Melexis are covered by the warranty and patent indemnification provisions appearing in its Term of Sale. Melexis makes no warranty, express, statutory, implied, or by description regarding the information set forth herein or regarding the freedom of the described devices from patent infringement. Melexis reserves the right to change specifications and prices at any time and without notice. Therefore, prior to designing this product into a system, it is necessary to check with Melexis for current information. This product is intended for use in normal commercial applications. Applications requiring extended temperature range, unusual environmental requirements, or high reliability applications, such as military, medical life-support or life-sustaining equipment are specifically not recommended without additional processing by Melexis for each application.
The information furnished by Melexis is believed to be correct and accurate. However, Melexis shall not be liable to recipient or any third party for any damages, including but not limited to personal injury, property damage, loss of profits, loss of use, interrupt of business or indirect, special incidental or consequential damages, of any kind, in connection with or arising out of the furnishing, performance or use of the technical data herein. No obligation or liability to recipient or any third party shall arise or flow out of Melexis' rendering of technical or other services.
© 2000 Melexis GmbH . All rights reserved.

For the latest version of this document. Go to our website at

www.melexis.com

Or for additional information contact Melexis Direct:

Europe and Japan:
Phone: +32 13611631

All other locations:
Phone: +1 6032232362

