FEATURES

■ 750ps max. LEN to output
\square Extended 100E Vee range of -4.2 V to -5.5 V

- 700ps max. D to output

■ Single-ended outputs
■ Asynchronous Master Reset

- Dual latch-enables

■ Fully compatible with industry standard 10KH, 100K ECL levels
■ Internal $75 \mathrm{~K} \Omega$ input pulldown resistors
■ Fully compatible with Motorola MC10E/100E155

- Available in 28-pin PLCC package

BLOCK DIAGRAM

DESCRIPTION

The SY10/100E155 offer six 2:1 multiplexers followed by latches with single-ended outputs, designed for use in new, high-performance ECL systems. The two external latch-enable signals (LEN1 and LEN2) are gated through a logical OR operation before use as control for the six latches. When both LEN1 and LEN2 are at a logic LOW, the latches are transparent, thus presenting the data from the multiplexers at the output pins. If either LEN1 or LEN2 (or both) are at a logic HIGH, the outputs are latched.

The multiplexer operation is controlled by the SEL (Select) signal which selects one of the two bits of input data at each mux to be passed through.

The MR (Master Reset) signal operates asynchronously to take all outputs to a logic LOW.

PIN CONFIGURATION

PIN NAMES

Pin	Function
D0a-D5a	Input Data a
Dob-D5b	Input Data b
SEL	Data Select Input
LEN1, LEN2	Latch Enables
MR	Master Reset
Q0-Q5	Outputs
Vcco	Vcc to Output

TRUTH TABLES

SEL	Data
H	a
L	b

LEN 1 1	LEN 2 Latch	
L	L	Transparent
H	X	Latched
X	H	Latched

DC ELECTRICAL CHARACTERISTICS

$\mathrm{VEE}=\mathrm{VEE}$ (Min.) to Vee (Max.); $\mathrm{Vcc}=\mathrm{Vcco}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{TA}^{\prime}=0^{\circ} \mathrm{C}$			$\mathrm{TA}=+25^{\circ} \mathrm{C}$			$\mathrm{TA}=+85^{\circ} \mathrm{C}$			Unit	Condition
		Min.	Typ.	Max.	Min.	Typ.	Max.	Min.	Typ.	Max.		
IIH	Input HIGH Current	-	-	150	-	-	150	-	-	150	$\mu \mathrm{A}$	-
IEE	Power Supply Current $\begin{array}{r} 10 \mathrm{E} \\ 100 \mathrm{E} \end{array}$	-	$\begin{aligned} & 85 \\ & 85 \\ & \hline \end{aligned}$	$\begin{aligned} & 102 \\ & 102 \\ & \hline \end{aligned}$	-	$\begin{aligned} & 85 \\ & 85 \\ & \hline \end{aligned}$	$\begin{aligned} & 102 \\ & 102 \\ & \hline \end{aligned}$	-	85 98	$\begin{aligned} & 102 \\ & 117 \end{aligned}$	mA	-

AC ELECTRICAL CHARACTERISTICS

$\mathrm{VEE}=\mathrm{VEE}$ (Min.) to Vee (Max.); Vcc = Vcco = GND

Symbol	Parameter	$\mathrm{TA}=0^{\circ} \mathrm{C}$			$\mathrm{TA}=+25^{\circ} \mathrm{C}$			TA $=+85^{\circ} \mathrm{C}$			Unit	Condition
		Min.	Typ.	Max.	Min.	Typ.	Max.	Min.	Typ.	Max.		
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay to Output									$\begin{aligned} & 700 \\ & 925 \\ & 750 \\ & 850 \\ & \hline \end{aligned}$	ps	-
	D	325	500	700	325	500	700	325	500			
	SEL	475	675	925	475	675	925	475	675			
	LEN	350	500	750	350	500	750	350	500			
	MR	450	600	850	450	600	850	450	600			
ts	Set-up Time D	300	100	-	300	100	-	300	100	-	ps	-
	SEL	500	250	-	500	250	-	500	250			
tH	Hold Time D	300	-100	-	300	-100	-	300	-100	-	ps	-
	SEL	0	-250	-	0	-250	-	0	-250			
tRR	Reset Recovery Time	800	650	-	800	650	-	800	650	-	ps	-
tPW	Minimum Pulse Width, MR	400	-	-	400	-	-	400	-	-	ps	-
tskew	Within-Device Skew	-	75	-	-	75	-	-	75	-	ps	1
tr tf	Rise/Fall Time 20\% to 80\%	300	450	800	300	450	800	300	450	800	ps	-

NOTE:

1. Within-device skew is defined as identical transitions on similar paths through a device.

PRODUCT ORDERING CODE

Ordering Code	Package Type	Operating Range
SY10E155JC	$\mathrm{J} 28-1$	Commercial
SY10E155JCTR	$\mathrm{J} 28-1$	Commercial
SY100E155JC	$\mathrm{J} 28-1$	Commercial
SY100E155JCTR	$\mathrm{J} 28-1$	Commercial

28 LEAD PLCC (J28-1)

Rev. 03

MICREL-SYNERGY 3250 SCOTT BOULEVARD SANTA CLARA CA 95054 USA

TEL + 1 (408) 980-9191 FAX + 1 (408) 914-7878 wEB http://www.micrel.com
This information is believed to be accurate and reliable, however no responsibility is assumed by Micrel for its use nor for any infringement of patents or other rights of third parties resulting from its use. No license is granted by implication or otherwise under any patent or patent right of Micrel Inc.

