FEATURES

■ Max. propagation delay of 1200 ps
■ lee min. of -92mA
■ Industry standard 100K ECL levels
■ Extended supply voltage option:
VEE $=-4.2 \mathrm{~V}$ to -5.5 V

- Voltage and temperature compensation for improved noise immunity
- Internal $75 \mathrm{~K} \Omega$ input pull-down resistors
- 60\% faster than National or Signetics

■ Approximately 40\% lower power than Fairchild

- Function and pinout compatible with Fairchild F100K

■ Available in 24-pin CERPACK and 28-pin PLCC packages

DESCRIPTION

The SY100S370 is a universal demultiplexer/decoder that can be used as either a dual 1-of-4 decoder or as a single 1-of-8 decoder and is designed for use in highperformance ECL systems. The Mode control (M) input determines the function. In the dual 1-of-4 mode, each 4input group has a pair of active-LOW Enable (E) inputs. The Enable pins are assigned such that in the single 1 -of8 mode they can be tied together in pairs to result in two active-LOW Enable inputs. E1a will be tied to $\bar{E}_{1 b}$ and $\bar{E}_{2 a}$ to E2b.

The auxiliary inputs (Hn) are used to determine whether the outputs are active-HIGH or active-LOW. The address inputs for the dual 1 -of- 4 mode are A0a, A1a, A0b. A2a is unused. In the 1 -of- 8 mode, the address inputs are Aoa, A1a, A2a. The inputs on the device have $75 \mathrm{~K} \Omega$ pull-down resistors.

PIN CONFIGURATIONS

PIN NAMES

Pin	Function
Ana, Anb	Address Inputs ($\mathrm{n}=0,1,2$)
Ena, $\bar{E}_{\text {nb }}$	Enable Inputs ($\mathrm{n}=1,2$)
M	Mode Control Input
Ha	Z $0-\mathrm{Z}_{3}\left(\bar{Z}_{0} \mathrm{a}-\overline{\mathrm{Z}}_{3} \mathrm{a}\right)$ Polarity Select Input
Hb	$\mathrm{Z}_{4}-\mathrm{Z} 7$ ($\left.\overline{\mathrm{Z}} 0 \mathrm{~b}-\overline{\mathrm{Z}}_{3 \mathrm{~b}}\right)$ Polarity Select Input
Hc_{c}	Common Polarity Select Input
Z0-Z7	Single 1-of-8 Data Outputs
Zna, Znb	Dual 1-of-4 Data Outputs ($\mathrm{n}=1 . . .4$)
Vees	Vee Substrate
Vcca	Vcco for ECL Outputs

BLOCK DIAGRAM

TRUTH TABLES(1)

Dual 1-of-4 Mode ($\mathrm{M}=\mathrm{A} 2 \mathrm{a}=\mathrm{Hc}=$ LOW)											
Inputs				Active HIGH Outputs (Ha and Hb Inputs HIGH)				Active LOW Outputs (Ha and Hb Inputs LOW)			
$\bar{E}_{1 a}, \bar{E}_{1 b}$	$\bar{E}_{2 a,} \bar{E}_{2 b}$	A1a,A1b	A0a,A0b	Z0a, ${ }^{\text {Obb }}$	$\mathbf{Z 1 a ,} \mathbf{Z}_{1} \mathrm{~b}$	Z2a,Z2b	\mathbf{Z}_{3}, \mathbf{Z}_{3} b	Zoa, ${ }_{\text {Ob }}$	$\mathbf{Z 1 a ,} \mathbf{Z}_{1 \mathrm{~b}}$	Z2a, $\mathbf{Z}_{2 b}$	Z3a, \mathbf{Z}_{3} b
$\begin{aligned} & \mathrm{H} \\ & \mathrm{X} \\ & \mathrm{~L} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \text { X } \\ & \text { H } \\ & \text { L } \\ & \text { L } \end{aligned}$	$\begin{aligned} & X \\ & X \\ & \text { X } \\ & L \end{aligned}$	$\begin{aligned} & X \\ & X \\ & \text { X } \\ & \text { H } \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \\ & \mathrm{H} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \\ & \mathrm{~L} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & L \\ & L \\ & L \\ & L \end{aligned}$	$\begin{aligned} & L \\ & L \\ & L \\ & L \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{~L} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \end{aligned}$
$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & L \\ & L \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \end{aligned}$	$\begin{gathered} H \\ L \end{gathered}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$	$\begin{gathered} \mathrm{H} \\ \mathrm{~L} \end{gathered}$

Single 1-of-8 Mode ($M=$ HIGH; $A 0 b=A 1 b=H a=H b=L O W$)												
Inputs					Active HIGH Outputs* (Hc Input HIGH)							
$\overline{\mathrm{E}} 1$	E2	A2a	A1a	A0a	Z0	Z1	Z2	Z3	Z4	Z5	Z6	Z7
$\begin{aligned} & \mathrm{H} \\ & \mathrm{X} \end{aligned}$	$\begin{aligned} & \mathrm{X} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & X \\ & X \\ & \hline \end{aligned}$	$\begin{aligned} & X \\ & X \end{aligned}$	$\begin{aligned} & X \\ & X \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \end{aligned}$	L	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \end{aligned}$	L	L	L
$\begin{aligned} & L \\ & L \\ & L \\ & L \end{aligned}$	$\begin{aligned} & L \\ & L \\ & L \\ & L \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \\ & \mathrm{~L} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \\ & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \\ & \mathrm{~L} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{~L} \\ & \mathrm{~L} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \\ & \mathrm{~L} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \\ & \mathrm{H} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \\ & \mathrm{~L} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \\ & \mathrm{~L} \\ & \mathrm{~L} \end{aligned}$	L L L L	L L L L	L L L L
L L L L	L L L L	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \\ & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \\ & \mathrm{~L} \\ & \mathrm{H} \end{aligned}$	L L L L	L L L L	L L L L	L L L L	H L L L	L H L L	L L H L	L L L H

NOTE:

1. $\mathrm{H}=\mathrm{HIGH}$ Voltage Level

L = LOW Voltage Level
X = Don't Care

* for $\mathrm{Hc}=$ LOW, output states are complemented
$\bar{E}_{1}=E_{1} a$ and $E_{1 b}$ wired; $E_{2}=E_{2 a}$ and $E_{2 b}$ wired

DC ELECTRICAL CHARACTERISTICS

$\mathrm{VEE}=-4.2 \mathrm{~V}$ to -5.5 V unless otherwise specified; $\mathrm{VCC}=\mathrm{VCCA}=\mathrm{GND}$

Symbol	Parameter	Min.	Typ.	Max.	Unit	Condition
IIH	Input HIGH Current				$\mu \mathrm{A}$	VIN = VIH (Max.)
	Hc, AOa, A1a, A2a	-	-	310		
	All Others	-	-	250		
IEE	Power Supply Current	-92	-73	-46	mA	Inputs Open

AC ELECTRICAL CHARACTERISTICS

CERPACK

$\mathrm{VEE}=-4.2 \mathrm{~V}$ to -5.5 V unless otherwise specified; $\mathrm{VCC}=\mathrm{VCCA}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{TA}=0^{\circ} \mathrm{C}$		TA $=+25^{\circ} \mathrm{C}$		TA $=+85^{\circ} \mathrm{C}$		Unit	Condition
		Min.	Max.	Min.	Max.	Min.	Max.		
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay Ena, Enb to Output	300	1300	300	1300	300	1300	ps	
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay Ana, Anb to Output	500	1600	500	1600	500	1600	ps	
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay $\mathrm{Ha}, \mathrm{Hb}, \mathrm{H}$ c to Output	500	1600	500	1600	500	1600	ps	
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay M to Output	600	2100	600	2100	600	2100	ps	
$\begin{aligned} & \text { tTLH } \\ & \text { tTHL } \end{aligned}$	Transition Time 20% to $80 \%, 80 \%$ to 20%	300	900	300	900	300	900	ps	

PLCC

$\mathrm{VEE}=-4.2 \mathrm{~V}$ to -5.5 V unless otherwise specified; $\mathrm{VCC}=\mathrm{VCCA}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{TA}=0^{\circ} \mathrm{C}$		$\mathrm{TA}=+25^{\circ} \mathrm{C}$		TA $=+85^{\circ} \mathrm{C}$		Unit	Condition
		Min.	Max.	Min.	Max.	Min.	Max.		
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay Ena, Enb to Output	300	1200	300	1200	300	1200	ps	
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay Ana, Anb to Output	500	1500	500	1500	500	1500	ps	
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay $\mathrm{Ha}, \mathrm{Hb}, \mathrm{Hc}$ to Output	500	1500	500	1500	500	1500	ps	
$\begin{aligned} & \hline \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay M to Output	600	2100	600	2100	600	2100	ps	
$\begin{aligned} & \text { tTLH } \\ & \text { tTHL } \end{aligned}$	Transition Time 20% to $80 \%, 80 \%$ to 20%	300	900	300	900	300	900	ps	

TIMING DIAGRAM

Propagation Delay and Transition Times

NOTE:

$\mathrm{VEE}=-4.2 \mathrm{~V}$ to -5.5 V unless otherwise specified; $\mathrm{VCC}=\mathrm{VCCA}=\mathrm{GND}$

Ordering Code	Package Type	Operating Range
SY100S370FC	F24-1	Commercial
SY100S370JC	J28-1	Commercial
SY100S370JCTR	J28-1	Commercial

24 LEAD CERPACK (F24-1)

NOTES:

1. DIMENSIONS ARE IN INCHES[MM].
2. THIS DIMENSION INCLUDES GLASS PROTRUSION AND CAP TO BASE ALIGNMENT TOLERANCES
3. DIMENSIONS SHOWN ARE MAX/MIN,

WHERE NOTED.

28 LEAD PLCC (J28-1)

SIDE VIEW

1. DIMENSIONS ARE IN INCHES[MM].

DETAIL "A"

This information is believed to be accurate and reliable, however no responsibility is assumed by Micrel for its use nor for any infringement of patents or other rights of third parties resulting from its use. No license is granted by implication or otherwise under any patent or patent right of Micrel Inc.

