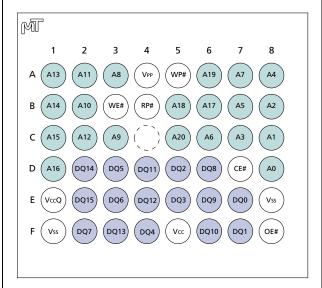


FLASH MEMORY

MT28F320A18


Low Voltage, Extended Temperature 0.15µm Process Technology

FEATURES

- 32Mb block architecture
 Seventy-one erasable blocks:
 Eight 4K-word parameter blocks
 Sixty-three 32K-word main memory blocks
- VCC, VCCQ, VPP voltages*

 1.65V (MIN), 1.95V (MAX) VCC, VCCQ
 0.9V (MIN), 1.95V (MAX) VPP (in-system PROGRAM/ERASE)
 12V ±5% (HV) VPP tolerant (factory programming compatibility)
- Random access time: 70ns @ 1.65V VCC
- Low power consumption (VCC = 1.8V)
 Asynchronous Read < 18mA
 Write/Erase < 40mA (MAX)
 Standby < 50μA (MAX)
 Automatic power saving feature (APS)
- Enhanced write and erase suspend options ERASE-SUSPEND-to-READ PROGRAM-SUSPEND-to-READ ERASE-SUSPEND-to-PROGRAM
- Dual 64-bit chip protection registers for security purposes
- Cross-compatible command support Extended command set Common flash interface
- PROGRAM/ERASE cycle
 100,000 WRITE/ERASE cycles per block
 (VPP = VPP1)

Ball Assignment 48-Ball FBGA

Top View (Ball Down)

Note: See page 6 for Ball Description table. See page 36 for mechanical drawing.

OPTIONS	MARKING
• Timein «	

•	Timing	
	70ns access	-70
•	Configurations	
	2 Meg x 16	MT28F320A18
•	Boot Block Configuration	
	Тор	T
	Bottom	В
•	Package	
	48-ball FBGA (6 x 8 ball grid)	FF
•	Temperature Range	
	Extended (-40°C to +85°C)	ET

Part Number Example:

MT28F320A18FF-70 TET

^{*}An extended voltage range of 1.65V–2.20V for Vcc and VccQ, and 0.9V–2.20V for Vpp is available upon request. A voltage range of 1.42V–1.60V for VccQ is also available upon request.

GENERAL DESCRIPTION

The MT28F320A18 is a nonvolatile electrically block-erasable (Flash) memory containing eight 4K-word parameter blocks and sixty-three 32K-word main blocks.

The MT28F320A18 allows soft protection for blocks, as read only, by configuring soft protection registers with dedicated command sequences. For security purposes, a 128-bit chip protection register is provided.

The embedded WORD WRITE and BLOCK ERASE functions are fully automated by an on-chip write state machine (WSM). An on-chip status register can be used to monitor the WSM status and to determine the progress of the PROGRAM/ERASE task.

The ERASE/PROGRAM SUSPEND functionality allows compatibility with existing EEPROM emulation software packages.

The device is manufactured using 0.15µm process technology.

Please refer to Micron's Web site (www.micron.com/flash) for the latest data sheet.

ARCHITECTURE AND MEMORY ORGANIZATION

The MT28F320A18 contains eight 4K-word parameter blocks and sixty-three 32K-word main blocks.

Figure 2 and Figure 3 show the bottom and top memory organizations for the 32Mb device.

DEVICE MARKING

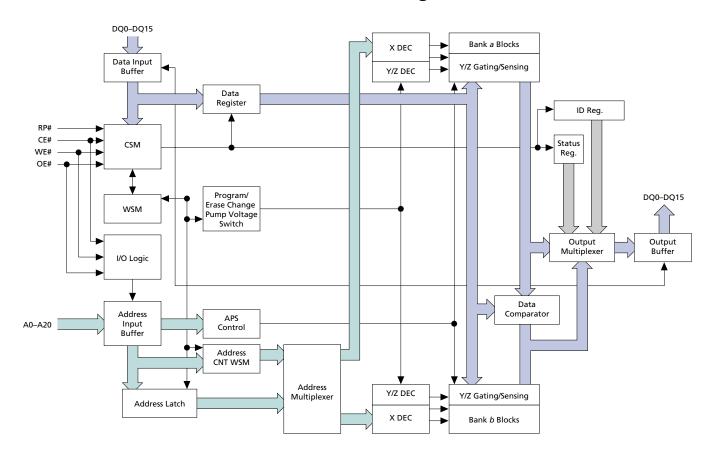
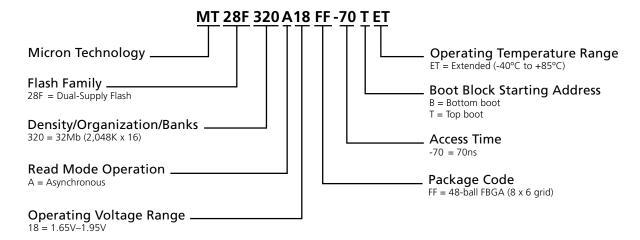

Due to the size of the package, Micron's standard part number is not printed on the top of each device. Instead, an abbreviated device mark comprised of a five-digit alphanumeric code is used. The abbreviated device marks are cross referenced to Micron part numbers in Table 1.

Table 1: Cross Reference for Abbreviated Device Marks

PART NUMBER	PRODUCT MARKING	SAMPLE MARKING	MECHANICAL SAMPLE MARKING
MT28F320A18FF-70 BET	FW722	FX722	FY722
MT28F320A18FF-70 TET	FW723	FX723	FY723

Functional Block Diagram



PART NUMBERING INFORMATION

Micron's low-power devices are available with several different combinations of features (see Figure 1).

Valid combinations of features and their corresponding part numbers are listed in Table 2.

Figure 1: Part Number Chart

Table 2: Valid Part Number Combinations

PART NUMBER	ACCESS TIME (ns)	BOOT BLOCK STARTING ADDRESS	OPERATING TEMPERATURE RANGE
MT28F320A18FF-70 BET	70	Bottom	-40°C to +85°C
MT28F320A18FF-70 TET	70	Тор	-40°C to +85°C

1FFFFFh

1FD000h 1FCFFFh

1FA000h 1F9FFFh

1F8000h

4K-Word Block 0

4K-Word Block 1 4K-Word Block 2

4K-Word Block 3 4K-Word Block 4 4K-Word Block 5

4K-Word Block 6 4K-Word Block 7

2 MEG x 16 1.8V ENHANCED+ BOOT BLOCK FLASH MEMORY

Figure 2: 32Mb Bottom Boot Block **Memory Address Map**

Figure 3: 32Mb Top Boot Block **Memory Address Map**

Blocks

ADDRESS RANGE

ADDRESS RANG	iE .		
1FFFFFh 1F8000h	32K-Word Block	63	
1F7FFFh 1F0000h	32K-Word Block	62	
1EFFFFh 1E8000h	32K-Word Block	61	
1E7FFFh 1E0000h	32K-Word Block	60	
1DFFFFh 1D8000h	32K-Word Block	59	
1D7FFFh 1D0000h	32K-Word Block	58	
1CFFFFh 1C8000h	32K-Word Block	57	
1C7FFFh 1C0000h	32K-Word Block	56	
1BFFFFh 1B8000h	32K-Word Block	55	
1B7FFFh 1B0000h	32K-Word Block	54	
1AFFFFh 1A8000h	32K-Word Block	53	
1A7FFFh 1A0000h	32K-Word Block	52	
19FFFFh 198000h	32K-Word Block	51	
197FFFh 190000h	32K-Word Block	50	
18FFFFh 188000h	32K-Word Block	49	
187FFFh 180000h	32K-Word Block	48	
17FFFFh 178000h	32K-Word Block	47	
177FFFh 170000h	32K-Word Block	46	
16FFFFh 168000h	32K-Word Block	45	
167FFFh 160000h	32K-Word Block	44	
15FFFFh 158000h	32K-Word Block	43	
157FFFh	32K-Word Block	42	
150000h 14FFFFh 148000h	32K-Word Block	41	
147FFFh 140000h	32K-Word Block	40	
13FFFFh 138000h	32K-Word Block	39	
137FFFh 130000h	32K-Word Block	38	
12FFFFh 128000h	32K-Word Block	37	
127FFFh 120000h 11FFFFh	32K-Word Block	36	
118000h	32K-Word Block	35	
117FFFh 110000h	32K-Word Block	34	
10FFFFh 108000h	32K-Word Block	33	
107FFFh 100000h	32K-Word Block	32	
0FFFFFh 0F8000h	32K-Word Block	31	
0F7FFFh 0F0000h 0EFFFFh	32K-Word Block	30	
0E8000h	32K-Word Block	29	
0E7FFFh 0E0000h	32K-Word Block	28	
0DFFFFh 0D8000h	32K-Word Block	27	
0D7FFFh 0D0000h	32K-Word Block	26	
0CFFFFh 0C8000h	32K-Word Block	25	
0C7FFFh 0C0000h 0BFFFFh	32K-Word Block	24	
0B8000h	32K-Word Block	23	
0B7FFFh 0B0000h 0AFFFFh	32K-Word Block	22	
0A8000h 0A7FFFh	32K-Word Block	21	
0A0000h 09FFFFh	32K-Word Block	20	
098000h 097FFFh	32K-Word Block	19	
090000h 08FFFFh	32K-Word Block	18	
088000h 087FFFh	32K-Word Block	17	
080000h 07FFFFh	32K-Word Block	16	
078000h 077FFFh	32K-Word Block	15	
070000h 06FFFFh	32K-Word Block	14	
068000h 067FFFh	32K-Word Block	13	
060000h 05FFFFh	32K-Word Block	12	
058000h 057FFFh	32K-Word Block	11	
050000h 04FFFFh	32K-Word Block	10	
048000h 047FFFh	32K-Word Block	9	
040000h 03FFFFh	32K-Word Block	8	,
038000h 037FFFh	32K-Word Block	7	_ /
030000h 02FFFFh	32K-Word Block	6	/_
028000h 027FFFh	32K-Word Block	5 4	_ /
020000h 01FFFFh	32K-Word Block		_ /
018000h 017FFFh	32K-Word Block	3	_ /
010000h 00FFFFh	32K-Word Block	2	Paramet

1FFFFFh 1F8000h 1F7FFFh 32K-Word Block 32K-Word Block 62

1F7FFFh		-	k 1
1F0000h	32K-Word Block	1	\
1E8000h	32K-Word Block	2	\
1E7FFFh 1E0000h	32K-Word Block	3	
1DFFFFh 1D8000h	32K-Word Block	4	
1D7FFFh	32K-Word Block	5	
1D0000h 1CFFFFh	32K-Word Block	_	
1C8000h 1C7FFFh 1C0000h		6	
1C0000h 1BFFFFh	32K-Word Block	7	
1B8000h 1B7FFFh	32K-Word Block	8	
1R0000h	32K-Word Block	9	
1AFFFFh	32K-Word Block	10	
1A8000h 1A7FFFh	32K-Word Block	11	
1A0000h 19FFFFh			
198000h 197FFFh	32K-Word Block	12	
190000h 18FFFFh	32K-Word Block	13	
188000h 187FFFh	32K-Word Block	14	
180000h	32K-Word Block	15	
17FFFFh 178000h	32K-Word Block	16	
177FFFh 170000h	32K-Word Block	17	
16FFFFh	32K-Word Block	18	
168000h 167FFFh			
160000h	32K-Word Block	19	
15FFFFh 158000h 157FFFh	32K-Word Block	20	
150000h	32K-Word Block	21	
14FFFFh 148000h	32K-Word Block	22	
147FFFh 140000h	32K-Word Block	23	
13FFFFh	32K-Word Block	24	
138000h 137FFFh	32K-Word Block		
130000h 12FFFFh		25	
128000h 127FFFh	32K-Word Block	26	
120000h	32K-Word Block	27	
11FFFFh 118000h 117FFFh	32K-Word Block	28	
117FFFh	32K-Word Block	29	
110000h 10FFFFh	32K-Word Block	30	
108000h 107FFFh			
100000h 0FFFFFh	32K-Word Block	31	
0F8000h 0F7FFFh	32K-Word Block	32	
0F0000h	32K-Word Block	33	
0EFFFFh 0E8000h 0E7FFFh	32K-Word Block	34	
OFOOOD	32K-Word Block	35	
0DFFFFh 0D8000h	32K-Word Block	36	
0D7FFFh 0D0000h	32K-Word Block	37	
0CFFFFh	32K-Word Block	38	
0C8000h 0C7FFFh			
0C7FFFh 0C0000h 0BFFFFh	32K-Word Block	39	
0B8000h	32K-Word Block	40	
0B7FFFh 0B0000h	32K-Word Block	41	
0AFFFFh 0A8000h	32K-Word Block	42	
0A7FFFh 0A0000h	32K-Word Block	43	
09FFFFh	32K-Word Block	44	
098000h 097FFFh		45	
090000h 08FFFFh	32K-Word Block		
088000h 087FFFh	32K-Word Block	46	
080000h	32K-Word Block	47	
07FFFFh 078000h	32K-Word Block	48	
077FFFh 070000h	32K-Word Block	49	
06FFFFh 068000h	32K-Word Block	50	
067FFFh 060000h	32K-Word Block		
05FFFFh		51	
058000h 057FFFh	32K-Word Block	52	
050000h 04FFFFh	32K-Word Block	53	
04FFFFh 048000h 047FFFh	32K-Word Block	54	
040000h	32K-Word Block	55	
03FFFFh 038000h	32K-Word Block	56	
037FFFh 030000h	32K-Word Block	57	
02FFFFh	32K-Word Block	58	
028000h 027FFFh 020000h			
01FFFFh	32K-Word Block	59	
018000h 017FFFh	32K-Word Block	60	
01/FFFh 010000h	32K-Word Block	61	

32K-Word Block 63

32K-Word Blocks

8 x 4K-Word Blocks 0

007FFFh

002000h 001FFFh

4K-Word Block 7 4K-Word Block 6 4K-Word Block 5 4K-Word Block 4 4K-Word Block 3 4K-Word Block 2

4K-Word Block 1

4K-Word Block 0 000000h

BALL DESCRIPTIONS

48-BALL FBGA NUMBERS	SYMBOL	TYPE	DESCRIPTION
D8, C8, B8, A8, C7, B7, A7, C6, B6, A6, C5, B5, C3, A3, C2, B2, A2, D1, C1, B1, A1	A0-A20	Input	Address Inputs: Inputs for the address during READ and WRITE operations. Addresses are internally latched during WRITE and ERASE cycles.
D7	CE#	Input	Chip Enable: Activates the device when LOW. When CE# is HIGH, the device is disabled and goes into standby power mode.
F8	OE#	Input	Output Enable: Enables the outputs buffer when LOW. When OE# is HIGH, the output buffers are disabled.
В3	WE#	Input	Write Enable: Determines if a given cycle is a WRITE cycle. If WE# is LOW, the cycle is either a WRITE to the command state machine (CSM) or to the memory array.
В4	RP#	Input	Reset: When RP# is a logic LOW, the device is in reset mode, which drives the outputs to High-Z and resets the write state machine (WSM). When RP# is at logic HIGH, the device is in standard operation. When RP# transitions from logic LOW to logic HIGH, the device resets all blocks to locked and defaults to the read array mode.
A5	WP#	Input	Write Protect: Controls the lock down function of the flexible locking feature.
E7, F7, D5, E5, F4, D3, E3, F2, D6, E6, F6, D4, E4, F3, D2, E2	DQ0-DQ15	Input/ Output	Data Inputs/Outputs: Inputs array data on the second CE# and WE# cycle during PROGRAM command. Inputs commands to the command user interface when CE# and WE# are active.
A4	VPP	Supply	Block Erase and Program Power Supply: [VPP1 = 0.9V-1.95V or VPP2 = 11.4V-12.6V]. A valid voltage on this contact allows block erase or data programming. Memory contents cannot be altered when VPP \(\leq \text{VPPLK}. \) Block erase and program at invalid VPP voltages should not be attempted. It provides factory programming compatibility when driven to 11.4V-12.6V
F5	Vcc	Supply	Device Power Supply: [1.65V–1.95V] Supplies power for device operation.
E1	VccQ	Supply	I/O Power Supply: [1.65V–1.95V] Supplies power for input/output buffers. This input should be tied directly to Vcc.
E8, F1	Vss	Supply	Do not float any ground ball.
C4	NC	-	Internally not connected.

COMMAND STATE MACHINE

Commands are issued to the command state machine (CSM) using standard microprocessor write timings. The CSM acts as an interface between external microprocessors and the internal write state machine (WSM). The available commands are listed in Table 3, their definitions are given in Table 4 and their descriptions in Table 5. Program and erase algorithms are automated by an on-chip WSM. Table 6 shows the CSM transition states.

Once a valid PROGRAM/ERASE command is entered, the WSM executes the appropriate algorithm, which generates the necessary timing signals to control the device internally and accomplish the requested operation. A command is valid only if the exact sequence of WRITE cycles is completed. After the WSM completes its task, the WSM status bit (SR7) (see Table 8) is set to a logic HIGH level (1), allowing the CSM to respond to the full command set again.

OPERATIONS

Device operations are selected by entering a standard JEDEC 8-bit command code with conventional microprocessor timings into an on-chip CSM through I/Os DQ0–DQ7. The number of bus cycles required to activate a command is typically one or two. The first operation is always a WRITE. Control signals CE# and WE# must be at a logic LOW level (VIL), and OE# and

RP# must be at logic HIGH (VIH). The second operation, when needed, can be a WRITE or a READ depending upon the command. During a READ operation, control signals CE# and OE# must be at a logic LOW level (Vil), and WE# and RP# must be at logic HIGH (VIH).

Table 7 illustrates the bus operations for all the modes: write, read, reset, standby, and output disable.

When the device is powered up, internal reset circuitry initializes the chip to a read array mode of operation. Changing the mode of operation requires that a command code be entered into the CSM. An on-chip status register is available. The status register allows the monitoring of the progress of various operations that can take place on a memory. The status register is interrogated by entering a READ STATUS REGISTER command onto the CSM (cycle 1) and reading the register data on I/Os DQ0–DQ7 (cycle 2). Status register bits SR0–SR7 correspond to DQ0–DQ7 (see Table 8).

Command Definition

Once a specific command code has been entered, the WSM executes an internal algorithm, generating the necessary timing signals to program, erase, and verify data. See Table 4 for the CSM command definitions and data for each of the bus cycles.

Table 3: Command State Machine Codes For Device Mode Selection

COMMAND DQ0-DQ7	CODE ON DEVICE MODE
40h/10h	Program setup/alternate program setup
20h	Block erase setup
50h	Clear status register
60h	Protection configuration setup
70h	Read status register
90h	Read protection configuration register
98h	Read query
B0h	Program/erase suspend
C0h	Protection register program/lock
D0h	Program/erase resume – erase confirm
FFh	Read array

STATUS REGISTER

The status register allows the user to determine whether the state of a PROGRAM/ERASE operation is pending or complete. The status register is monitored by toggling OE# and CE# by reading the resulting status code on I/Os DQ0–DQ7. The high-order I/Os (DQ8–DQ15) are set to 00h internally, so only the low-order I/Os (DQ0–DQ7) need to be interpreted.

Register data is updated and latched on the falling edge of OE# or CE#, whichever occurs last. Latching the data prevents errors from occurring if the register input changes during a status register read.

The status register provides the internal state of the WSM to the external microprocessor. During periods when the WSM is active, the status register can be polled to determine the WSM status. Table 8 defines the status register bits.

After monitoring the status register during a PRO-GRAM/ERASE operation, the data appearing on DQ0–DQ7 remains as status register data until a new command is issued to the CSM. To return the device to other modes of operation, a new command must be issued to the CSM.

COMMAND STATE MACHINE OPERATIONS

The CSM decodes instructions for read array, read protection configuration register, read query, read status register, clear status register, program, erase, erase suspend, erase resume, erase confirm, program setup, alternate program setup, program suspend, program resume, lock block, unlock block and lock down block, chip protection register program, and chip protection register lock. The 8-bit command code is input to the device on DQ0–DQ7 (see Table 3 for CSM codes and Table 4 for command definitions). During a PROGRAM or ERASE cycle, the CSM informs the WSM that a PROGRAM or ERASE cycle has been requested. During a PROGRAM cycle, the WSM controls the program sequences and the CSM responds to a PROGRAM SUS-PEND command only. During an ERASE cycle, the

CSM responds to an ERASE SUSPEND command only. When the WSM has completed its task, the WSM status bit (SR7) is set to a logic HIGH level and the CSM responds to the full command set. The CSM stays in the current command state until the microprocessor issues another command.

The WSM successfully initiates an ERASE or PRO-GRAM operation only when VPP is within its correct voltage range.

CLEAR STATUS REGISTER

The internal circuitry can set, but not clear, the block lock status bit (SR1), the VPP status bit (SR3), the program status bit (SR4), and the erase status bit (SR5) of the status register. The CLEAR STATUS REGISTER command (50h) allows the external microprocessor to clear these status bits and synchronize to the internal operations. When the status bits are cleared, a READ ARRAY command (FFh) must be issued before data can be read from the memory array, or a READ STATUS REGISTER command (70h) must be issued to read status.

READ OPERATIONS

The following READ operations are available: READ ARRAY, READ PROTECTION CONFIGURATION REGISTER, READ QUERY and READ STATUS REGISTER.

Read Array

The array is read by entering the command code FFh on DQ0–DQ7. Control signals CE# and OE# must be at a logic LOW level (VIL), and WE# and RP# must be at logic HIGH level (VIH) to read data from the array. Data is available on DQ0–DQ15. Any valid address within any of the blocks selects that address and allows data to be read from that address. Upon initial power-up or device reset, the device defaults to the read array mode.

Read Chip Protection Configuration Register

The chip identification mode outputs four types of information: the manufacturer/device identifier, the block locking status, the protection register content, and protection register lock. Two bus cycles are required for this operation: the chip identification data is read by entering the command code 90h on DQ0–

DQ7 and the identification code address on the address lines.

Control signals CE# and OE# must be at a logic LOW level (VIL), and WE# and RP# must be at a logic HIGH level (VIH) to read data from the protection configuration register. Data is available on DQ0–DQ15. To return to read array mode, write the read array command code FFh on DQ0–DQ7. See Table 10 for further details.

Table 4: Command Definitions

	FI	RST BUS CYC	LE	SEC	SECOND BUS CYCLE			
COMMAND	OPERATION	ADDRESS	DATA	OPERATION	ADDRESS	DATA		
READ ARRAY	WRITE	Х	FFh	READ	WA	AD		
READ PROTECTION CONFIGURATION REGISTER	WRITE	Х	90h	READ	IA	ID		
READ STATUS REGISTER	WRITE	Х	70h	READ	-	SRD		
CLEAR STATUS REGISTER	WRITE	Х	50h	-	-	-		
READ QUERY	WRITE	Х	98h	READ	QA	QD		
BLOCK ERASE SETUP	WRITE	Х	20h	WRITE	BA	D0h		
PROGRAM SETUP/ALTERNATE PROGRAM SETUP	WRITE	Х	40h/10h	WRITE	WA	WD		
PROGRAM/ERASE SUSPEND	WRITE	Х	B0h	_	-	-		
PROGRAM/ERASE RESUME – ERASE CONFIRM	WRITE	Х	D0h	_	_	-		
LOCK BLOCK	WRITE	Х	60h	WRITE	BA	01h		
UNLOCK BLOCK	WRITE	Х	60h	WRITE	BA	D0h		
LOCK DOWN BLOCK	WRITE	Х	60h	WRITE	BA	2Fh		
PROTECTION REGISTER PROGRAM SETUP	WRITE	Х	C0h	WRITE	PA	PD		
PROTECTION REGISTER LOCK	WRITE	Х	C0h	WRITE	LPA	FFFDh		

WA: Word address of memory location to be written, or read

IA: Identification code addressBA: Address within the blockID: Identification code data

SRD: Data read from the status register

QA: Query code address QD: Query code data

WD: Data to be written at the location WA

PA: Protection register address LPA: Lock protection register address

AD: Array data

PD: Protection register data

X: "Don't Care"

Table 5: Command Descriptions

BUS						
CODE	DEVICE MODE	CYCLE	DESCRIPTION			
10h	Alt. Program Setup	First	Operates the same as a PROGRAM SETUP command.			
20h	Erase Setup	First	Prepares the CSM for an ERASE CONFIRM command. If the next command is not an ERASE CONFIRM command, the command will be ignored, and the device will go to read status mode and wait for another command.			
40h	Program Setup	First	A two-cycle command: The first cycle prepares for a PROGRAM operation, the second cycle latches addresses and data and initiates the WSM to execute the program algorithm. The Flash device outputs status register data on the falling edge of OE# or CE#, whichever occurs first.			
50h	Clear Status Register	First	The WSM can set the block lock status (SR1), VPP Status (SR3), program status (SR4), and erase status (SR5) bits in the status register to "1," but it cannot clear them to "0." Issuing this command clears those bits to "0."			
60h	Protection Configuration Setup	First	Prepares the CSM for changes to the block locking status. If the next command is not BLOCK UNLOCK, BLOCK LOCK, or BLOCK LOCK DOWN the CSM will set both the program and erase status register bits to indicommand sequence error.			
70h	Read Status Register	First	Places the device into read status register mode. Reading the device will output the contents of the status register for the addressed bank. The device will automatically enter this mode for the addressed bank after a PROGRAM or ERASE operation has been initiated.			
90h	Read Protection Configuration Register	First	Puts the device into the read protection configuration register mode so that reading the device will output the manufacturer/device codes, block lock status, protection register, or protection register lock.			
98h	Read Query	First	Puts the device into the read query mode so that reading the device will output common flash interface information.			
B0h	Program/Erase Suspend	First	Suspends the currently executing PROGRAM/ERASE operation. The status register will indicate when the operation has been successfully suspended by setting either the program suspend (SR2) or erase suspend (SR6) and the WSM status bit (SR7) to a "1" (ready). The WSM will continue to idle in the suspend state, regardless of the state of all input control pins except RP#, which will immediately shut down the WSM and the remainder of the chip if RP# is driven to VIL.			
C0h	Program Device Protection Register	First	Writes a specific code into the device protection register.			
	Lock Device Protection Register	First	Locks the device protection register; data can no longer be changed.			
D0h	Erase Confirm	Second	If the previous command was an ERASE SETUP command, then the CSM will close the address and data latches, and it will begin erasing the block indicated on the address pins. During programming/erase, the device will respond only to the READ STATUS REGISTER, PROGRAM/ERASE SUSPEND commands and will output status register data on the falling edge of OE# or CE#, whichever occurs last.			
	Program/Erase Resume	First	If a program or erase operation was previously suspended, this command will resume the operation.			
FFh	Read Array	First	During the read array mode, array data will be output on the data bus.			
01h	Lock Block	Second	If the previous command was PROTECTION CONFIGURATION SETUP, the CSM will latch the address and lock the block indicated on the address bus.			

Table 5: Command Descriptions (continued)

CODE	DEVICE MODE	BUS CYCLE	DESCRIPTION
2Fh	Lock Down	Second	If the previous command was PROTECTION CONFIGURATION SETUP, the CSM will latch the address and lock down the block indicated on the address bus.
D0h	Unlock Block	Second	If the previous command was PROTECTION CONFIGURATION SETUP, the CSM will latch the address and unlock the block indicated on the address bus. If the block had been previously set to lock down, this operation will have no effect.
00h	Invalid/Reserved		Unassigned command that should not be used.

Read Query

The read query mode outputs common flash interface (CFI) data when the device is read (see Table 12). Two bus cycles are required for this operation. It is possible to access the query by writing the read query command code 98h on DQ0–DQ7. Control signals CE# and OE# must be at a logic LOW level (VIL), and WE# and RP# must be at logic HIGH level (VIH) to read data from the query. The CFI data structure contains information such as block size, density, command set, and electrical specifications. To return to read array mode, write the read array command code FFh on DQ0–DQ7.

Read Status Register

The status register is read by entering the command code 70h on DQ0–DQ7. Two bus cycles are required for this operation: one to enter the command code and a second to read the status register. In a READ cycle, the register data is updated on the falling edge of OE# or CE#, whichever occurs last.

PROGRAMMING OPERATIONS

There are two CSM commands for programming: PROGRAM SETUP and ALTERNATE PROGRAM SETUP (see Table 3).

After the desired command code is entered (10h or 40h command code on DQ0-DQ7), the WSM takes over and correctly sequences the device to complete the PROGRAM operation. The WRITE operation may be monitored through the status register (see the Status Register section). During this time, the CSM will only respond to a PROGRAM SUSPEND command until the PROGRAM operation has been completed, after which time all commands to the CSM become valid again. The PROGRAM operation can be suspended by issuing a PROGRAM SUSPEND command (B0h). Once the WSM reaches the suspend state, it allows the CSM to respond only to READ ARRAY, READ STATUS REGISTER, READ PROTECTION CONFIGU-RATION, READ QUERY, and PROGRAM RESUME. During the PROGRAM SUSPEND operation, array data should be read from an address other than the one being programmed. To resume the PROGRAM operation, a PROGRAM RESUME command (D0h) must be issued to cause the CSM to clear the suspend state previously set (see Figure 4 for programming operation and Figure 5 for program suspend and program resume).

During programming, VPP must remain in the appropriate VPP voltage range as shown in the Recommended Operating Conditions table.

ERASE OPERATIONS

An ERASE operation must be used to initialize all bits in an array block to "1". After BLOCK ERASE CONFIRM is issued, the CSM responds only to an ERASE SUSPEND command until the WSM completes its task.

Block erasure inside the memory array sets all bits within the address block to logic "1". Erase is accomplished only by blocks; data at single address locations within the array cannot be erased individually. The block to be erased is selected by using any valid address within that block. Block erasure is initiated by a command sequence to the CSM: BLOCK ERASE SETUP (20h) followed by BLOCK ERASE CONFIRM (D0h) (see Figure 6). A two-command erase sequence protects against accidental erasure of memory contents.

When the BLOCK ERASE CONFIRM command is complete, the WSM automatically executes a sequence of events to complete the block erasure. During this sequence, the block is programmed with logic "0", data is verified, all bits in the block are erased, and finally verification is performed to ensure that all bits are correctly erased. Monitoring the ERASE operation is possible through the status register (see the Status Register section).

During the execution of an ERASE operation the ERASE SUSPEND command (B0h) can be entered to direct the WSM to suspend the ERASE operation. Once the WSM has reached the suspend state, it allows the CSM to respond only to the READ ARRAY, READ STA-TUS REGISTER, READ QUERY, READ CHIP PROTEC-TION CONFIGURATION, **PROGRAM** SETUP, PROGRAM/ERASE RESUME and LOCK SETUP (see the Block Locking section). During the ERASE SUS-PEND operation, array data must be read from a block other than the one being erased. To resume the ERASE operation, an ERASE RESUME command (D0h) must be issued to cause the CSM to clear the suspend state previously set (see Figure 7). It is also possible that an ERASE can be suspended and a write to another block can be initiated. After the completion of a write, an erase can be resumed by writing an ERASE RESUME command.

Table 6: Command State Machine Current/Next States

		COMMAND INPUT AND NEXT STATE						
		DATA WHEN	READ ARRAY	READ CONFIG.	READ STATUS REG.	CLEAR STATUS REG.	READ QUERY	ERASE SETUP
CURRENT STATE	SR7	READ	FF	90	70	50	98	20
Read Array	1	Array	Read Array	Read Configuration	Read Status	Clear Status	Read Query	Erase Setup
Read Status	1	Status	Read Array	Read Configuration	Read Status	Clear Status	Read Query	Erase Setup
Read Configuration	1	Config.	Read Array	Read Configuration	Read Status	Clear Status	Read Query	Erase Setup
Read Query	1	CFI	Read Array	Read Configuration	Read Status	Clear Status	Read Query	Erase Setup
Clear Status	0	Status	Read Array	Read Configuration	Read Status	Clear Status	Read Query	Erase Setup
Program Setup	1	Status			Prog	gram		
Program (not done)	0	Status			Prog	gram		
Program (done)	1	Status	Read Array	Read Configuration	Read Status	Clear Status	Read Query	Erase Setup
Program Suspend Read Array	1	Array	Program Suspend Read Array	Program Suspend Read Configuration	Program Suspend Read Status	Program Suspend Clear Status	Program Suspend Read Query	Program Suspend Read Array
Program Suspend Read Status	1	Status	Program Suspend Read Array	Program Suspend Read Configuration	Program Suspend Read Status	Program Suspend Clear Status	Program Suspend Read Query	Program Suspend Read Array
Program Suspend Read Configuration	1	Config.	Program Suspend Read Array	Program Suspend Read Configuration	Program Suspend Read Status	Program Suspend Clear Status	Program Suspend Read Query	Program Suspend Read Array
Program Suspend Read Query	1	CFI	Program Suspend Read Array	Program Suspend Read Configuration	Program Suspend Read Status	Program Suspend Clear Status	Program Suspend Read Query	Program Suspend Read Array
Erase Setup	1	Status			Erase Com	mand Error		
Erase (Not Done)	0	Status			Er	ase		
Erase (Done)	1	Status	Read Array	Read Configuration	Read Status	Clear Status	Read Query	Erase Setup
Erase Command Error	1	Status	Read Array	Read Configuration	Read Status	Clear Status	Read Query	Erase Setup
Program Setup in Erase Suspend	1	Status			Program in E	rase Suspend		
Erase Suspend Program (Not Done)	1	Status		,	Program in E	rase Suspend	,	,
Erase Suspend (Done)	1	Status	Erase Suspend Read Array	Erase Suspend Read Configuration	Erase Suspend Read Status	Erase Suspend Clear Status	Erase Suspend Read Query	Erase Suspend Read Array
Erase Suspend Read Array	1	Array	Erase Suspend Read Array	Erase Suspend Read Configuration	Erase Suspend Read Status	Erase Suspend Clear Status	Erase Suspend Read Query	Erase Suspend Read Array
Erase Suspend Read Status	1	Status	Erase Suspend Read Array	Erase Suspend Read Configuration	Erase Suspend Read Status	Erase Suspend Clear Status	Erase Suspend Read Query	Erase Suspend Read Array
Erase Suspend Read Configuration	1	Config.	Erase Suspend Read Array	Erase Suspend Read Configuration	Erase Suspend Read Status	Erase Suspend Clear Status	Erase Suspend Read Query	Erase Suspend Read Array
Erase Suspend Read Query	1	CFI	Erase Suspend Read Array	Erase Suspend Read Configuration	Erase Suspend Read Status	Erase Suspend Clear Status	Erase Suspend Read Query	Erase Suspend Read Array
Erase Suspend Lock Setup	1	Status			Erase Susper	nd Lock Error	•	•
Erase Suspend Lock	1	Status	Erase Suspend Read Array	Erase Suspend Read Configuration	Erase Suspend Read Status	Erase Suspend Clear Status	Erase Suspend Read Query	Erase Suspend Read Array
Erase Suspend Lock Down	1	Status	Erase Suspend Read Array	Erase Suspend Read Configuration	Erase Suspend Read Status	Erase Suspend Clear Status	Erase Suspend Read Query	Erase Suspend Read Array

Table 6: Command State Machine Current/Next States (continued)

				COMN	AND INPUT AND	NEXT STATE		
		DATA WHEN	READ ARRAY	READ CONFIG.	READ STATUS REG.	CLEAR STATUS REG.	READ QUERY	ERASE SETUP
CURRENT STATE	SR7	READ	FF	90	70	50	98	20
Erase Suspend Unlock	1	Status	Erase Suspend Read Array	Erase Suspend Read Configuration	Erase Suspend Read Status	Erase Suspend Clear Status	Erase Suspend Read Query	Erase Suspend Read Array
Erase Suspend Lock Error	1	Status	Erase Suspend Read Array	Erase Suspend Read Configuration	Erase Suspend Read Status	Erase Suspend Clear Status	Erase Suspend Read Query	Erase Suspend Read Array
Erase Suspend Program Suspend Read Array	1	Array	Erase Suspend Program Suspend Read Array	Erase Suspend Program Suspend Read Configuration	Erase Suspend Program Suspend Read Status	Erase Suspend Program Suspend Clear Status	Erase Suspend Program Suspend Read Query	Erase Suspend Program Suspend Read Array
Erase Suspend Program Suspend Read Status	1	Status	Erase Suspend Program Suspend Read Array	Erase Suspend Program Suspend Read Configuration	Erase Suspend Program Suspend Read Status	Erase Suspend Program Suspend Clear Status	Erase Suspend Program Suspend Read Query	Erase Suspend Program Suspend Read Array
Erase Suspend Program Suspend Read Configuration	1	Config.	Erase Suspend Program Suspend Read Array	Erase Suspend Program Suspend Read Configuration	Erase Suspend Program Suspend Read Status	Erase Suspend Program Suspend Clear Status	Erase Suspend Program Suspend Read Query	Erase Suspend Program Suspend Read Array
Erase Suspend Program Suspend Read Query	1	CFI	Erase Suspend Program Suspend Read Array	Erase Suspend Program Suspend Read Configuration	Erase Suspend Program Suspend Read Status	Erase Suspend Program Suspend Clear Status	Erase Suspend Program Suspend Read Query	Erase Suspend Program Suspend Read Array
OTP Program Setup	1	Status			OTP P	ogram		
OTP Program (Not Done)	0	Status			OTP Pi	rogram		
OTP Program (Done)	1	Status	Read Array	Read Configuration	Read Status	Clear Status	Read Query	Erase Setup
Lock Setup	1	Status	Lock Error					
Lock	1	Status	Read Array	Read Configuration	Read Status	Clear Status	Read Query	Erase Setup
Lock Down	1	Status	Read Array	Read Configuration	Read Status	Clear Status	Read Query	Erase Setup
Unlock	1	Status	Read Array	Read Configuration	Read Status	Clear Status	Read Query	Erase Setup
Lock Error	1	Status	Read Array	Read Configuration	Read Status	Clear Status	Read Query	Erase Setup

Table 6: Command State Machine Current/Next States (continued)

				COMMAN	D INPUT AND N	EXT TABLE		
		PROGRAM/ ERASE RESUME, UNLOCK	PROGRAM SETUP	PROGRAM/ ERASE SUSPEND	OTP PROGRAM SETUP	LOCK SETUP	LOCK	LOCK DOWN
CURRENT STATE	SR7	D0	10/40	В0	C0	60	01	2F
Read Array	1	Read Array	Program Setup	Read Array	OTP Program Setup	Lock Setup	Read	Array
Read Status	1	Read Array	Program Setup	Read Array	OTP Program Setup	Lock Setup	Read	Array
Read Configuration	1	Read Array	Program Setup	Read Array	OTP Program Setup	Lock Setup	Read	Array
Read Query	1	Read Array	Program Setup	Read Array	OTP Program Setup	Lock Setup	Read	Array
Clear Status	1	Read Array	Program Setup	Read Array	OTP Program Setup	Lock Setup	Read	Array
Program Setup	1				Program			
Program (not done)	0	Prog	gram	Program Suspend Status		Prog	gram	
Program (done)	1	Read Array	Program Setup	Read Array	OTP Program Setup	Lock Setup	Read	Array
Program Suspend Read Array	1	Program			Program Suspe	end Read Array		
Program Suspend Read Status	1	Program			Program Suspe	end Read Array		
Program Suspend Read Configuration	1	Program		Program Suspend Read Array				
Program Suspend Read Query	1	Program	Program Suspend Read Array					
Erase Setup	1	Erase			Erase Com	mand Error		
Erase (Not Done)	0		Erase Suspend Erase Read Status					
Erase (Done)	1	Read Array	Program Setup	Read Array	OTP Program Setup	Lock Setup	Read	Array
Erase Command Error	1	Read Array	Program Setup	Read Array	OTP Program Setup	Lock Setup	Read	Array
Program Setup in Erase Suspend	1			Prog	gram in Erase Susp	pend		
Erase Suspend Program (Not Done)	1	Program in E	rase Suspend	Erase Suspend Program Suspend Read Status		Program in E	rase Suspend	
Erase Suspend (Done)	1	Erase	Program Setup in Erase Suspend	Erase Suspen	d Read Array	Erase Suspend Lock Setup	Erase Suspen	d Read Array
Erase Suspend Read Array	1	Erase	Program Setup in Erase Suspend	Erase Suspen	d Read Array	Erase Suspend Lock Setup	Erase Suspen	d Read Array
Erase Suspend Read Status	1	Erase	Program Setup in Erase Suspend	Erase Suspen	d Read Array	Erase Suspend Lock Setup	Erase Suspen	d Read Array
Erase Suspend Read Configuration	1	Erase	Program Setup in Erase Suspend Read Array Erase Suspend Lock Setup Lock Setup			d Read Array		
Erase Suspend Read Query	1	Erase	Program Setup in Erase Suspend Read Array Erase Suspend Lock Setup Lock Setup		d Read Array			
Erase Suspend Lock Setup	1	Erase Suspend Unlock	Erase Suspend Lock Error Erase Suspend Erase Suspend			Erase Suspend Lock Down		
Erase Suspend Lock	1	Erase	Program Setup in Erase Suspend	Erase Suspen	d Read Array	Erase Suspend Lock Setup	Erase Suspen	d Read Array
Erase Suspend Lock Down	1	Erase	Program Setup in Erase Suspend	Erase Suspen	d Read Array	Erase Suspend Lock Setup	Erase Suspen	d Read Array

Table 6: Command State Machine Current/Next States (continued)

				COMMAN	D INPUT AND N	EXT TABLE		
		PROGRAM/ ERASE RESUME, UNLOCK	PROGRAM SETUP	PROGRAM/ ERASE SUSPEND	OTP PROGRAM SETUP	LOCK SETUP	LOCK	LOCK DOWN
CURRENT STATE	SR7	D0	10/40	В0	CO	60	01	2F
Erase Suspend Unlock	1	Erase	Program Setup in Erase Suspend	Erase Suspen	d Read Array	Erase Suspend Lock Setup	Erase Suspen	d Read Array
Erase Suspend Lock Error	1	Erase	Program Setup in Erase Suspend	in Erase Lock Setup			d Read Array	
Erase Suspend Program Suspend Read Array	1	Erase Suspend Program		Erase Suspend Program Suspend Read Array				
Erase Suspend Program Suspend Read Status	1	Erase Suspend Program	Erase Suspend Program Suspend Read Array					
Erase Suspend Program Susp. Read Configuration	1	Erase Suspend Program	Erase Suspend Program Suspend Read Array					
Erase Suspend Program Suspend Read Query	1	Erase Suspend Program		Eras	e Suspend Progra	m Suspend Read A	Array	
OTP Program Setup	1							
OTP Program (Not Done)	0							
OTP Program (Done)	1	Read Array	Program Setup	Read Array	OTP Program Setup	Lock Setup	Read	Array
Lock Setup	1	Unlock		Lock	Error		Lock	Lock Down
Lock	1	Read Array	Program Setup Read Array OTP Program Lock Setup Read Setup		Array			
Lock Down	1	Read Array	Program Setup	Read Array	OTP Program Setup	Lock Setup	Read Array	
Unlock	1	Read Array	Program Setup	Read Array	OTP Program Setup	Lock Setup	Read Array	
Lock Error	1	Read Array	Program Setup	Read Array	OTP Program Setup	Lock Setup	Read	Array

BLOCK LOCKING

The MT28F320A18 Flash memory provides a flexible locking scheme that allows each block to be individually locked or unlocked with no latency.

The device offers two-level protection for the blocks. The first level allows software-only control of block locking (for data that needs to be changed frequently), while the second level requires hardware interaction before locking can be changed (code that does not require frequent updates). Control pins WP#, DQ1, and DQ0 define the state of a block; for example, state [001] means WP# = 0, DQ1 = 0 and DQ0 = 1. Table 9 defines all of the possible locking states.

Note: All blocks are software-locked upon power-up sequence completion.

Locking operation

The following summarizes the locking operation.

- All blocks are locked on power-up. They can then be unlocked or locked down with the UNLOCK and LOCK DOWN commands.
- 2. The LOCK DOWN command locks a block and prevents it from being unlocked when WP# = 0.
 - When WP# = 1, lock down is overridden. Commands can then unlock/lock locked down blocks.
 - When WP# returns to 0, locked down blocks return to lock down.
 - Lock down is cleared only when the device is reset or powered down.

Locked State

After a power-up sequence completion, or after a reset sequence, all blocks are locked (states [001] or [101]). This means full protection from alteration. Any PROGRAM or ERASE operations attempted on a locked block will return an error on bit SR1 of the status register. The status of a locked block can be changed to unlocked or lock down using the appropriate software commands. Writing the lock command sequence, 60h followed by 01h, can lock an unlocked block.

Unlocked State

Unlocked blocks (states [000], [100], [110]) can be programmed or erased. All unlocked blocks return to the locked state when the device is reset or powered down. An unlocked block can be locked or locked down using the appropriate software command sequence (see Table 4).

Locked Down State

Blocks that are locked down (state [011]) are protected from PROGRAM and ERASE operations, but their protection status cannot be changed using software commands alone. A locked or unlocked block can be locked down by writing the lock down command sequence, 60h followed by 2Fh. Locked down blocks revert to the locked state when the device is reset or powered down.

The lock down function is dependent on the WP# input pin. When WP# = 0, blocks in lock down [011] are protected from program, erase and lock status changes. When WP# = 1, the lock down function is disabled ([111]) and locked down blocks can be individually unlocked by a software command to the [110] state, where they can be erased and programmed. These blocks can then be relocked [111] and unlocked [110] as desired as long as WP# remains HIGH. When WP# goes LOW, blocks that were previously locked down return to the locked down state [011] regardless of any changes made while WP# was HIGH. Device reset or power-down resets all locked blocks, including those in lock down, to locked state (see Table 9).

Reading a Block's Lock Status

The lock status of every block can be read in the read device identification mode. To enter this mode, write 90h to the device. Subsequent READs at block address + 00002h will output the lock status of that block. The lowest two outputs, DQ0 and DQ1, represent the lock status. DQ0 indicates the block lock/unlock status and is set by the LOCK command and cleared by the UNLOCK command. It is also automatically set when entering lock down. DQ1 indicates lock down status and is set by the LOCK DOWN command. It can only be cleared by reset or power-down, not by software. Table 9 shows the locking state transition scheme.

Locking Operations during Erase Suspend

Changes to block lock status can be performed during an ERASE SUSPEND by using the standard locking command sequences to unlock, lock, or lock down. This is useful in the case when another block needs to be updated while an ERASE operation is in progress.

To change block locking during an ERASE operation, first write the ERASE SUSPEND command (B0h), then check the status register until it indicates that the ERASE operation has been suspended. Next, write the desired lock command sequence to block lock, and the

lock status will be changed. After completing LOCK, READ or PROGRAM operations, resume the ERASE operation with the ERASE RESUME command (D0h).

If a block is locked or locked down during a suspend erase of the same block, the locking status bits will change immediately. But, when resumed, the erase operation will complete.

A locking operation cannot be performed during a PROGRAM SUSPEND.

Status Register Error checking

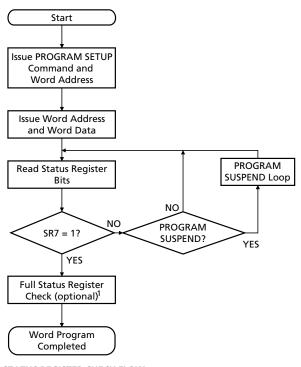
Using nested locking or program command sequences during ERASE SUSPEND can introduce ambiguity into status register results.

Following protection configuration setup (60h), an invalid command will produce a lock command error (SR4 and SR5 will be set to "1") in the status register. If a lock command error occurs during an ERASE SUSPEND, SR4 and SR5 will be set to "1" and will remain at "1" after the ERASE SUSPEND is resumed. When the ERASE is complete, any possible error during the ERASE cannot be detected via the status register because of the previous locking command error.

A similar situation happens if an error occurs during a program operation error nested within an ERASE SUSPEND.

Table 7: Bus Operations

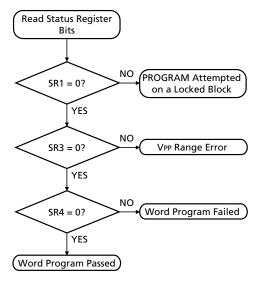
MODE	RP#	CE#	OE#	WE#	ADDRESS	DQ0-DQ15
Read (array, status registers, device identification register, or query)	VIH	VIL	VIL	VIH	Х	Dout
Standby	ViH	ViH	Х	Х	Х	High-Z
Output Disable	ViH	VIL	ViH	Х	Х	High-Z
Reset	VIL	Х	Х	Х	Х	High-Z
Write	ViH	VIL	ViH	VIL	Х	Din


Table 8: Status Register Bit Definition

	WSMS	ESS	ES	PS	VPPS	PSS	BLS	R
Ī	7	6	5	4	3	2	1	0

STATUS BIT	STATUS DESISTED DIT	DESCRIPTION
#	STATUS REGISTER BIT	DESCRIPTION
SR7	WRITE STATE MACHINE STATUS (WSMS)	Check write state machine bit first to determine word program
	1 = Ready	or block erase completion, before checking program or erase
	0 = Busy	status bits.
SR6	ERASE SUSPEND STATUS (ESS)	When ERASE SUSPEND is issued, WSM halts execution and sets
	1 = BLOCK ERASE Suspended	both WSMS and ESS bits to "1." ESS bit remains set to "1" until
	0 = BLOCK ERASE in Progress/Completed	an ERASE RESUME command is issued.
SR5	ERASE STATUS (ES)	When this bit is set to "1," WSM has applied the maximum
	1 = Error in Block Erasure	number of erase pulses to the block and is still unable to verify
	0 = Successful BLOCK ERASE	successful block erasure.
SR4	PROGRAM STATUS (PS)	When this bit is set to "1," WSM has attempted but failed to
	1 = Error in PROGRAM	program a word.
	0 = Successful PROGRAM	
SR3	VPP STATUS (VPPS)	The VPP status bit does not provide continuous indication of the
	1 = VPP Low Detect, Operation Abort	VPP level. The WSM interrogates the VPP level only after the
	0 = VPP = OK	program or erase command sequences have been entered. The
		WSM informs the system if VPP < 0.9V. The VPP level is also
		checked before the PROGRAM/ERASE operation is verified by
		the WSM.
SR2	PROGRAM SUSPEND STATUS (PSS)	When PROGRAM SUSPEND is issued, WSM halts execution and
	1 = Program Suspended	sets both WSMS and PSS bits to "1." PSS bit remains set to "1"
	0 = Program in Progress/Completed	until a PROGRAM RESUME command is issued.
SR1	BLOCK LOCK STATUS (BLS)	If a PROGRAM or ERASE operation is attempted to one of the
	1 = PROGRAM/ERASE Attempted on a	locked blocks, this is set by the WSM. The operation specified is
	Locked Block; Operation Aborted	aborted and the device is returned to read status mode.
	0 = No operation to locked blocks	
SR0	RESERVED FOR FUTURE ENHANCEMENTS	This bit is reserved for future enhancements.

Figure 4: Automated Word Programming Flowchart

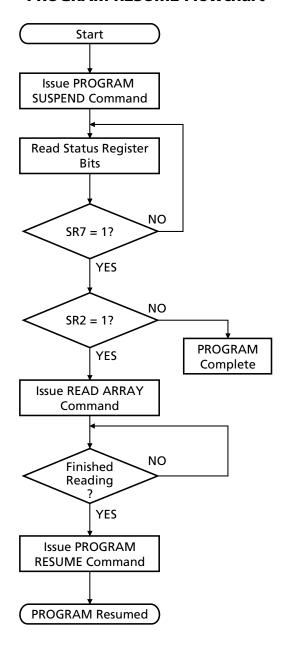


BUS OPERATION	COMMAND	COMMENTS
WRITE	WRITE PROGRAM SETUP	Data = 40h or 10h Addr = Address of word to be programmed
WRITE	WRITE DATA	Data = Word to be programmed Addr = Address of word to be programmed
READ		Status register data Toggle OE# or CE# to update status register.
Standby		Check SR7 1 = Ready, 0 = Busy

Repeat for subsequent words.

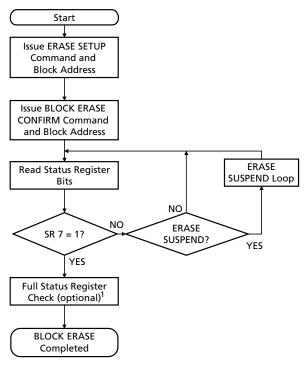
Write FFh after the last word programming operation to return the device to read array mode.

FULL STATUS REGISTER CHECK FLOW


COMMAND	COMMENTS
	Check SR1
	1 = Detect locked block
	Check SR3
	1 = Detect VPP LOW
	Check SR4 ³
	1 = Word program error
	COMMAND

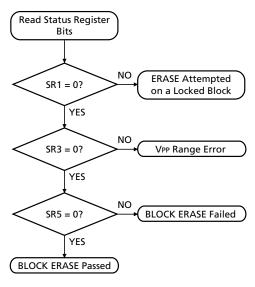
Notes: 1. Full status register check can be done after each word or after a sequence of words.

- **2.** SR3 must be cleared before attempting additional PROGRAM/ERASE operations.
- **3.** SR5 is cleared only by the CLEAR STATUS REGISTER command in cases where multiple blocks are erased before full status is checked.


Figure 5: PROGRAM SUSPEND/ PROGRAM RESUME Flowchart

BUS OPERATION	COMMAND	COMMENTS
WRITE	PROGRAM SUSPEND	Data = B0h
READ		Status register data Toggle OE# or CE# to update status register.
Standby		Check SR7 1 = Ready
Standby		Check SR2 1 = Suspended
WRITE	READ MEMORY	Data = FFh
READ		Read data from block other than that being programmed.
WRITE	PROGRAM RESUME	Data = D0h

Figure 6: BLOCK ERASE Flowchart

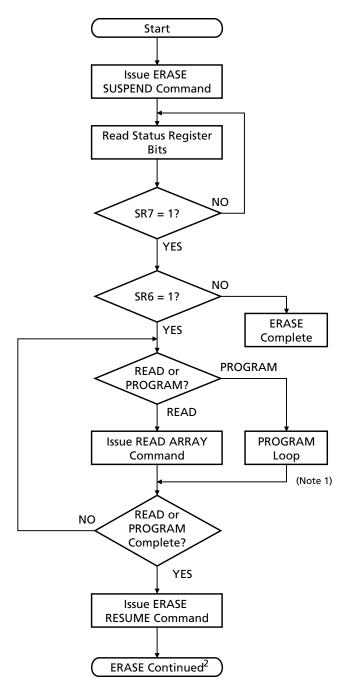


BUS OPERATION	COMMAND	COMMENTS
WRITE	WRITE ERASE SETUP	Data = 20h Block Addr = Address within block to be erased
WRITE	ERASE	Data = D0h Block Addr = Address within block to be erased
READ		Status register data Toggle OE# or CE# to update status register.
Standby		Check SR7 1 = Ready, 0 = Busy

Repeat for subsequent blocks.

Write FFh after the last BLOCK ERASE operation to return the device to read array mode.

FULL STATUS REGISTER CHECK FLOW


BUS OPERATION	COMMAND	COMMENTS
Standby		Check SR1 1 = Detect locked block
Standby		Check SR3 ² 1 = Detect Vpp block
Standby		Check SR4 and SR5 1 = Block erase command error
Standby		Check SR5 ³ 1 = Block erase error

Notes: 1. Full status register check can be done after each block or after a sequence of blocks.

- 2. SR3 must be cleared before attempting additional PROGRAM/ERASE operations.
- **3.** SR5 is cleared only by the CLEAR STATUS REGISTER command in cases where multiple blocks are erased before full status is checked.

Figure 7: ERASE SUSPEND/ERASE RESUME Flowchart

BUS OPERATION	COMMAND	COMMENTS
Write	ERASE SUSPEND	Data = B0h
READ		Status register data Toggle OE# or CE# to update status register.
Standby		Check SR7 1 = Ready
Standby		Check SR6 1 = Suspended
WRITE	READ MEMORY	Data = FFh
READ		Read data from block other than that being erased.
WRITE	ERASE RESUME	Data = D0h

Notes: 1. See Word Programming Flowchart for complete programming procedure.

 $\textbf{2.} \ \ \textbf{See BLOCK ERASE Flow} \textbf{chart for complete erasure procedure}.$

Table 9: Block Locking State Transition

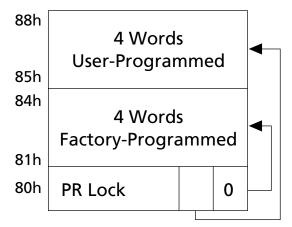
WP#	DQ1	DQ0	NAME	ERASE/ PROGRAM ALLOWED	LOCK	UNLOCK	LOCK DOWN
0	0	0	Unlocked	Yes	To [001]	No Change	To [011]
0	0	1	Locked (Default)	No	No Change	To [000]	To [011]
0	1	1	Lock down	No	No Change	No Change	No Change
1	0	0	Unlocked	Yes	To [101]	No Change	To [111]
1	0	1	Locked	No	No Change	To [100]	To [111]
1	1	0	Lock down disabled	Yes	To [111]	No Change	To [111]
1	1	1	Lock down disabled	No	No Change	To [110]	No Change
0	1	0	Invalid	No	No Change	No Change	No Change

Table 10: Chip Configuration Addressing¹

ITEM	ADDRESS ²	DATA	
Manufacturer Code (x16)	000000h	002Ch	
Device Code	000001h	32Mb	
Top boot configuration		00C2h	
Bottom boot configuration		00C3h	
Block Lock Configuration Block is unlocked Block is locked Block is locked down	BA + 000002h	Lock DQ0 = 0 DQ0 = 1 DQ1 = 1	
Chip Protection Register Lock	80h	PR-Lock DQ1 = 0 locked DQ1 = 1 unlocked	
Chip Protection Register 1	81h–84h	Factory Data	
Chip Protection Register 2	85h–88h	User Data	

Notes: 1. Other locations within the configuration address space are reserved by Micron for future use.

2. "XX" specifies the block address of lock configuration.



CHIP PROTECTION REGISTER

A 128-bit protection register can be used to fulfill the security considerations in the system (preventing the device substitution).

The 128-bit security area is divided into two 64-bit segments. The first 64 bits are programmed at the manufacturing site with a unique 64-bit unchangeable number. The other segment is left blank for customers to program as desired. (See Figure 8).

Figure 8: Protection Register Memory Map

Reading the Chip Protection Register

The chip protection register is read in the device identification mode, loading the 90h command to the bank containing address 00h. Once in this mode, READ cycles from addresses shown in Table 10 retrieve the specified information. To return to the read array mode, write the READ ARRAY command (FFh).

Programming the Chip Protection Register

Executing the PROTECTION PROGRAM command enables the customer to program the user portion of the protection register. First, write the PROTECTION PROGRAM SETUP command, C0h; then write address and data to program.

Attempts should not be made to address PROTEC-TION PROGRAM commands outside the defined protection register address space. Attempting to program to a previously locked protection register segment will result in a status register error (program error bit SR4 and lock error bit SR1 = 1)

Locking the Chip Protection Register

The customer-programmable segment of the protection register can be locked by programming bit 1 of the PR lock location to "0". Bit 0 of this location is programmed to a "0" at the Micron factory to protect the unique device number. Bit 1 is set using the PROTECTION PROGRAM command to program FFFDh to the PR lock location. After these bits have been programmed, no further changes can be made to the values stored in the protection register. PROTECTION PROGRAM commands to a locked section will result in a status register error program error bit SR4 and lock error bit SR1 will be set to 1. Protection register lockout is not reversible.

VPP/Vcc Program and Erase Voltages

The MT28F320A18 Flash memory provides in-system programming and erase with VPP in the 0.9V-1.95V (VPP1) range. The 12V VPP (VPP2) mode programming is offered for compatibility with existing programming equipment. The fast programming algorithm is enabled at VPP = VPP2.

The device can withstand 100,000 WRITE/ERASE operations when VPP = VPP1 or 100 WRITE/ERASE operations and 10 cumulative hours when VPP = VPP2.

In addition to the flexible block locking, the VPP programming voltage can be held LOW for absolute hardware write protection of all blocks in the Flash device. When VPP is below VPPLK, any PROGRAM or ERASE operation will result in an error, prompting the corresponding status register bit (SR3) to be set.

During WRITE and ERASE operations, the WSM monitors the VPP voltage level. WRITE/ERASE operations are allowed only when VPP is within the range specified in TABLE 11.

When VCC is below VLKO or below VPPLK, any WRITE/ERASE operation will be disabled.

Table 11: VPP Range (V)

	MIN	МАХ
In-System (VPP1)	0.9	1.95
In-Factory (VPP2)	11.4	12.6

READ CYCLE

Addresses can be accessed in a random order with an access time given by ^tAA = 70ns.

When CE# and OE# are LOW, the data is placed on the data bus and the processor can read the data.

STANDBY MODE

ICC supply current is reduced by applying a logic HIGH level on CE# and RP# to enter the standby mode. In the standby mode, the outputs are placed in High-Z. Applying a CMOS logic HIGH level on CE# and RP# reduces the current to ICC2 (MAX). If the device is deselected during an ERASE operation or during programming, the device continues to draw current until the operation is complete.

AUTOMATIC POWER SAVE MODE (APS)

Substantial power savings are realized during periods when the array is not being read and the device is in the active mode. During this time, the device switches to the automatic power saving mode. When the device switches to this mode, ICC is reduced to ICC2. The low level of power is maintained until another operation is initiated. In this mode, the I/O pins retain the data from the last memory address read until a new address is initiated. This mode is entered automatically if no address or control signal toggles.

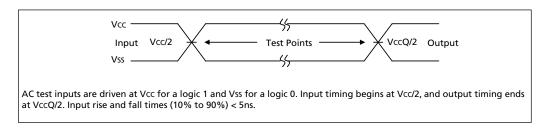
POWER-UP SEQUENCE

The following power-up sequence is recommended to properly initialize internal chip operations:

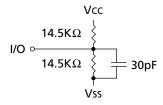
- At power-up, RST# should be kept at VIL for 2µs after VCC reaches VCC (MIN).
- VccQ should not come up before Vcc.
- VPP should be kept at VIL to maximize data integrity.

When the power-up sequence is completed, RST# should be brought to VIH. To ensure proper power-up, the rise time of RST# (10%-90%) should be $< 10\mu$ S.

ABSOLUTE MAXIMUM RATINGS*


 *Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

RECOMMENDED OPERATING CONDITIONS


PARAMETER/CONDITION		SYMBOL	MIN	MAX	UNITS	NOTES
Operating temperature		^t A	-40	+85	°C	
Vcc supply voltage		Vcc	1.65	1.95	V	
I/O supply voltage (Vcc = 1.65V–1.95V)		VccQ1	1.65	1.95	V	
Supply voltage, when used as logic control		VPP1	0.9	1.95	V	
VPP in-factory programming voltage		VPP2	11.4	12.6	V	
Block erase cycling VPP = VPP1		VPP1	100,000	_	Cycles	
	VPP = VPP2	VPP2	_	100	Cycles	1

Notes: 1. VPP = VPP2 is a maximum of 10 cumulative hours.

Figure 9: AC Input/Output Reference Waveform

Figure 10: Output Load Circuit

DC CHARACTERISTICS

		Vc	c = 1.65V-1.9	5V	
		Vcc	95V		
PARAMETER	SYMBOL	MIN	TYP	MAX	UNIT
Input Low Voltage	VIL	-0.2	_	0.2	V
Input High Voltage	VIH	VccQ - 0.2	-	VccQ + 0.2	V
Output Low Voltage IoL = 100µA	VoL	-	-	0.1	V
Output High Voltage Ιοн = 100μΑ	Voн	VccQ - 0.1	-	_	V
VPP Lock Out Voltage	VPPLK	_	-	0.4	V
VPP During Program/Erase Operations	VPP1	0.9	_	1.95	V
	VPP2	11.4	_	12.6	V
Vcc Program/Erase Lock Voltage	VLKO	1	_	-	V
Input Leakage Current	lL	-1	_	1	μΑ
Output Leakage Current	loz	-1	_	1	μΑ
Vcc Read Current	lcc1	_	9	18	mA
Vcc Standby Current ¹	lcc2	-	15	50	μΑ
Program Current VPP = VPP1 VPP = VPP2	ICC3		25 12	40 40	mA mA
Erase Current VPP = VPP1 VPP = VPP2	ICC4	- -	25 25	40 40	mA mA
VCC Erase Suspend Current VPP = VPP1	Icc5	_	5	50	μΑ
VCC Program Suspend Current VPP = VPP1	Icc6	-	5	50	μΑ
VPP Read Current VPP ≤ VCC	IPP1	-	0.5	15	μА
VPP Standby Current VPP = VPP1	IPP2	_	0.5	5	μΑ
VPP Erase Suspend Current VPP = VPP1	IPP5	_	0.5	5	μΑ
VPP Program Suspend Current VPP = VPP1	IPP6	-	0.5	5	μΑ

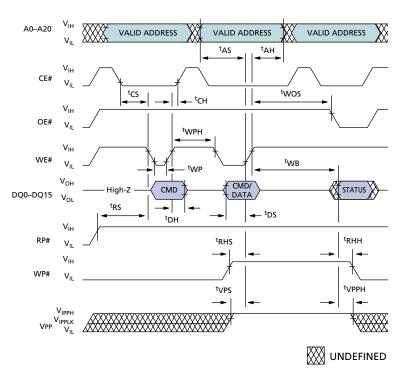
Notes: 1. RP# = VIH or VIL.

READ CYCLE TIMING REQUIREMENTS¹

		-70		
		Vcc = 1.65V-1.95V		
PARAMETER	SYMBOL	MIN	MAX	UNITS
Address to output delay	^t AA		70	ns
CE# LOW to output delay	^t ACE		70	ns
OE# LOW to output delay	^t AOE		20	ns
RP# HIGH to output delay	^t RWH		150	ns
CE# or OE# HIGH to output High-Z	^t OD		15	ns
Output hold from address, CE#, or OE# change	^t OH	0		ns
READ cycle time	^t RC	70		ns

Notes: 1. See Figures 11 and 12 for timing requirements and output load configuration.

WRITE CYCLE TIMING REQUIREMENTS

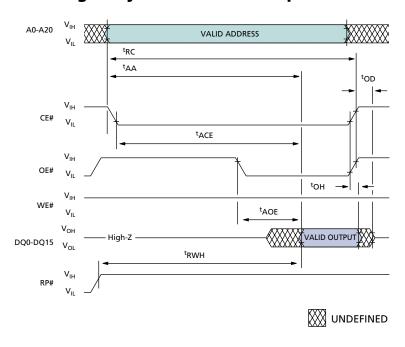

		-70 Vcc = 1.65V-1.95V		
PARAMETER	SYMBOL	MIN	MAX	UNITS
RP# HIGH recovery to WE# going LOW	^t RS	150		ns
CE# setup to WE# going LOW	^t CS	0		ns
Write pulse width	^t WP	70		ns
Data setup to WE# going HIGH	^t DS	70		ns
Address setup to WE# going HIGH	^t AS	70		ns
CE# hold from WE# HIGH	^t CH	0		ns
Data hold from WE# HIGH	^t DH	0		ns
Address hold from WE# HIGH	^t AH	0		ns
Write pulse width HIGH	^t WPH	30		ns
RP# pulse width	^t RP	100		ns
WP# setup to WE# going HIGH	^t RHS	200		ns
VPP setup to WE# going HIGH	^t VPS	200		ns
Write recovery before READ	^t WOS	50		ns
WP# hold from valid SRD	^t RHH	0		ns
VPP hold from valid SRD	^t VPPH	0		ns
WE# HIGH to data valid	^t WB		tAA+50	ns

ERASE AND PROGRAM CYCLE TIMING REQUIREMENTS

		VPP = 1.65V-1.95V		VPP = 1.65V-1.95V		2V ±5%	
		Vcc = 1.6	5V-1.95V	Vcc = 1.65V-1.95V			
PARAMETER	SYMBOL	TYP	MAX	TYP	MAX	UNITS	
4KW block program time	^t BWPB	0.1	0.3			S	
32KW block program time	^t BWMB	0.8	2.4			S	
Word program time	^t WHQV1/ ^t EHQV1	8	150	5	130	μs	
4KW block erase time	^t WHQV2/ ^t EHQV2	0.3	2.5	0.03	2.5	S	
32KW block erase time	^t WHQV3/ ^t EHQV3	1	4	0.3	4	S	
Program suspend latency	^t WHRH1/ ^t EHRH1	2.5	5			μs	
Erase suspend latency	^t WHRH2/ ^t EHRH2	2.5	5			μs	

Two-Cycle Programming/ERASE Operation

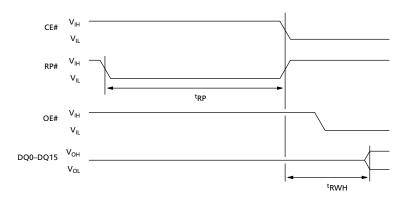
WRITE TIMING PARAMETERS


	-7	-70		
	Vcc = 1.6	Vcc = 1.65V-1.95V		
SYMBOL	MIN	MAX	UNITS	
^t RS	150		ns	
tcs	0		ns	
^t WP	70		ns	
^t DS	70		ns	
^t AS	70		ns	
^t CH	0		ns	
^t DH	0		ns	
^t AH	0		ns	

	-70		
	Vcc = 1.6		
SYMBOL	MIN	MAX	UNITS
^t WPH	30		ns
^t RHS	200		ns
^t VPS	200		ns
twos	50		ns
^t RHH	0		ns
^t VPPH	0		ns
^t WB		^t AA+50	ns

Notes: 1. The WRITE cycles for the WORD PROGRAMMING command are followed by a READ ARRAY DATA cycle.

Single Asynchronous READ Operation


READ TIMING PARAMETERS

	-7		
	Vcc = 1.6		
SYMBOL	MIN	MAX	UNITS
^t AA		70	ns
^t ACE		70	ns
^t AOE		20	ns
^t RWH		150	ns

	-7		
	Vcc = 1.6		
SYMBOL	MIN	MAX	UNITS
^t RC		70	ns
^t OD		15	ns
^t OH	0		ns

Reset Operation

READ AND WRITE TIMING PARAMETERS

	-70		
	Vcc = 1.65V-1.95V		
SYMBOL	MIN	MAX	UNITS
^t RWH		150	ns
^t RP	100		ns

Table 12: CFI

OFFSET	DATA	DESCRIPTION
00	2Ch	Manufacturer Code
01	C2h/C3h	32Mb Top /Bottom Boot Block Device Code
03 - 0F	reserved	Reserved
10, 11	0051, 0052	"QR"
12	0059	"Υ"
13, 14	0003, 0000	,
15, 16	0035, 0000	•
17, 18	0000, 0000	Alternate OEM Command Set
19, 1A	0000, 0000	
1B	0017	Vcc MIN for Erase/Write; Bit7–Bit4 Volts in BCD; Bit3–Bit0 100mV in BCD
1C	0019	Vcc MAX for Erase/Write; Bit7–Bit4 Volts in BCD; Bit3–Bit0 100mV in BCD
1D	00B4	VPP MIN for Erase/Write; Bit7–Bit4 Volts in Hex; Bit3–Bit0 100mV in BCD, 0000 = VPP input
1E	00C6	VPP MAX for Erase/Write; Bit7–Bit4 Volts in Hex; Bit3–Bit0 100mV in BCD, 0000 = VPP input
1F	0003	Typical timeout for single byte/word program, $2^n \mu s$, $0000 = not supported$
20	0000	Typical timeout for maximum size multiple byte/word program, 2 ⁿ µs, 0000 = not supported
21	0009	Typical timeout for individual block erase, 2 ⁿ ms, 0000 = not supported
22	0000	Typical timeout for full chip erase, 2 ⁿ ms, 0000 = not supported
23	000C	Maximum timeout for single byte/word program, 2 ⁿ μs, 0000 = not supported
24	0000	Maximum timeout for maximum size multiple byte/word program, $2^n \mu s$, $0000 = not supported$
25	000C	Maximum timeout for individual block erase, 2 ⁿ ms, 0000 = not supported
26	0000	Maximum timeout for full chip erase, 2 ⁿ ms, 0000 = not supported
27	0016	Device size, 2 ⁿ bytes; 0016 for 32Mb
28	0001	Bus Interface x8 = 0, x16 = 1, x8/x16 = 2
29	0000	Flash device interface description 0000 = async
2A, 2B	0000, 0000	Maximum number of bytes in multi-byte program or page, 2 ⁿ
2C	0002	Number of erase block regions within device (4K words and 32K words)
2D, 2E	0007, 0000	
2F, 30	0020, 0000	
31, 32	001E, 0000	63 = 3Eh for 32Mb
33, 34	0000, 0001	64KB
35, 36	0050, 0052	"PR"
37	0049	min Minor Variance and ASCH
38	0030	Major Version number ASCII
39	0031	Minor version number, ASCII
3A 3B	0066 0000	Optional Feature and Command Support Bit 0 Chip erase supported no = 0
3C	0000	Bit 1 Suspend erase supported = yes = 1
3D	0000	Bit 2 Suspend program supported = yes = 1
		Bit 3 Chip lock/unlock supported = no = 0
		Bit 4 Queued erase supported = no = 0
		Bit 5 Instant individual block locking supported = yes = 1 Bit 6 Protection bits supported = yes = 1
		Bit 7 Page mode read supported = no = 0
		Bit 8 Synchronous read supported = no = 0
		Bit 9 Simultaneous operation supported = no = 0

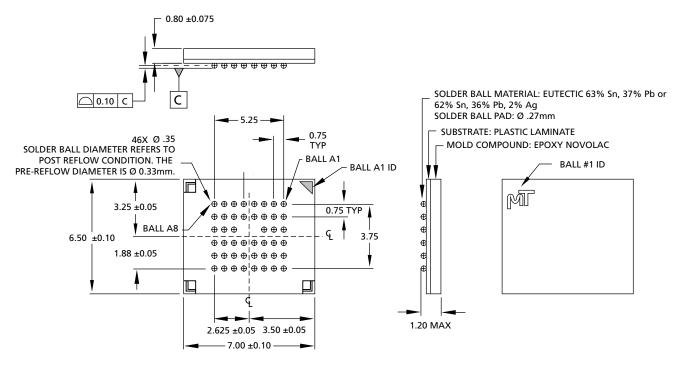


Table 12: CFI (continued)

OFFSET	DATA	DESCRIPTION		
3E	0001	Program supported after erase suspend = yes		
3F, 40	0003, 0000			
		Bit 1 block lock down active = yes		
41	0018	Vcc supply optimum, 00 = not supported, Bit7–Bit4 Volts in BCD; Bit3–Bit0 100mV in BCD		
42	00C0	VPP supply optimum, 00 = not supported, Bit7–Bit4 Volts in BCD; Bit3–Bit0 100mV in BCD		
43	0001	Number of protection register fields in JEDEC ID space		
44, 45	0080, 0000	Lock bytes LOW address, lock bytes HIGH address		
46, 47	0003, 0003	2 ⁿ factory programmed bytes, 2 ⁿ user programmable bytes		
48	0000	Background Operation		
		0000 = Not used		
		0001 = 4% block split		
		0002 = 12% block split		
		0003 = 25% block split		
		00004 = 50% block split		
49	0000	Burst Mode Type		
		0000 = No burst mode		
		00x1 = 4 words max		
		00x2 = 8 words max		
		00x13 = 16 words max		
		001x = Linear burst, and/or 002x = Interleaved burst, and/or		
		004x = Continuous burst		
4A	0000			
4A	0000	Page Mode Type 0000 = No page mode		
		0001 = 4-word page		
		0002 = 8-word page		
		0003 = 16-word page		
		0004 = 32-word page		
4B	0000	Not used		

48-BALL FBGA

Notes: 1. All dimensions in millimeters.

- 2. Package width and length do not include mold protrusion; allowable mold protrusion is 0.27mm per side.
- **3.** Micron recommends a one-to-one ratio between the solder ball pad and the PCB. For more information, see Micron Technical Note, TN-00-11, "SMT Recommendations for BGA Assembly."

DATA SHEET DESIGNATIONS

Preliminary This data sheet contains initial characterization limits that are subject to change upon full characterization of production devices.

8000 S. Federal Way, P.O. Box 6, Boise, ID 83707-0006, Tel: 208-368-3900
E-mail: prodmktg@micron.com, Internet: http://www.micron.com, Customer Comment Line: 800-932-4992
Micron and the M logo are registered trademarks and the Micron logo is a trademark of Micron Technology, Inc.