PRELIMINARY DATA SHEET **53258**

RADIATION TOLERANT 120VDC – 5A SOLID STATE RELAY

Features:	Applications:
 Design for 100 krad(Si) Total Dose Hermetically Sealed in Surface Mount Package Low On-resistance 5A Continuous Output Current Operation over Full Military Temperature Range -55°C to +125°C Optically Coupled Input / Output Isolation Tested to 1000 VDC Shock and Vibration Resistance 	 Satellite/Space Systems Military/High Reliability Systems Power Distribution/Switching Solenoid Driver Stepper Motor Driver Switching Heaters

DESCRIPTION

The 53258 is a SPST, radiation tolerant, DC solid-state relay (SSR) designed for military and space applications. This light-weight device is resistant to damage from severe shock and vibration, and is immune to contact related problems inherent in electro-mechanical relays. The 53258 SSR is enclosed in a hermetic metal package to ensure reliability in harsh environments. Effective isolation of 1000 VDC between control and load circuits is achieved through the use of optical coupling.

Functionally, the device operates as a single-pole single-throw, normally open (1 Form A) DC solid-state relay. The 53258 SSR is actuated by an input current of 5 to 15 mA, which can be supplied from a standard TTL device. Output is provided by a power MOSFET exhibiting very low $R_{DS(ON)}$ and capable of carrying a continuous current of 5 amperes. This device is designed to function with minimal degradation after exposure to 100 krad(Si) total dose. The 53258 SSR is available in a variety of quality levels from COTS to class K including any custom screening requirements. The basic data sheet part is environmentally screened to H level in accordance with Table C-IX of MIL-PRF-38534.

ABSOLUTE MAXIMUM RATINGS

Output Voltage	150 VDC
Continuous Õutput current	5 A
Storage Temperature Range	65°C to +150°C
Operating Junction Temperature	+150°C
Lead Solder Temperature, for 10 seconds	
Continuous Input Current	
Continuous Input Current	100 mA
Reverse Input Voltage	

WEIGHT:	' grams	(typical)
---------	---------	-----------

RECOMMENDED OPERATING CONDITIONS:

Parameter	Symbol	Min.	Max.	Units
Output Voltage ⁽⁵⁾	V _{O (OFF)}		120	VDC
Continuous Output Current	I _{O (ON)}		5	А
Input Current (on)	I _{F (ON)}	5	15	mA
Input Voltage (off)	V _{F (OFF)}	0	1	VDC
Operating Case Temperature	T _c	-55	125	°C

ELECTRICAL SPECIFICATIONS (Pre-Irradiation)

 T_{C} = -55°C to +125°C unless otherwise specified

Parameter	Symbol	Min.	Тур.*	Max.	Unit s	Test Conditions	Notes
Output On-Resistance	R _(ON)		.110	.220	Ω	$I_F = 15 \text{ mA}$ $I_O = 2A$ Pulse width = 10 ms Duty cycle $\leq 10\%$	
Output Leakage Current	I _{O (OFF)}			250	μA	V _F = 1 VDC V _O = 150 VDC	
Input Forward Voltage	V _F			4.20	VDC	I _F = 15 mA	
Input Reverse Breakdown Voltage	V _R	6	40		VDC	I _R = 10 μA	
Input-Output Leakage Current	I _{I-O}			1	μΑ	$\label{eq:RH} \begin{array}{l} RH \leq 45\%, t = 5 \; s \\ V_{\text{I-O}} = 1000 \; VDC \\ T_{\text{C}} = 25^{\circ}C \end{array}$	2, 3
Turn-On Time	t _{on}			8	ms		Figure 3
Turn-Off time	t _{OFF}			2	ms	$I_F = 15 \text{ mA}$ $I_O = 2A$ Pulse width = 10 ms	Figure 3
Rise Time	t _R			6	ms		4,
Fall Time	. t _F			1	ms	Duty cycle ≤ 10%	Figure 3
Thermal Resistance (junction-case)	θ_{JC}		4		°C/W		

* All typical values are at $T_c = 25^{\circ}C$

Notes:

- 1. Non-repetitive, pulse width \leq 100 $\mu s,$ T_{C} = 25°C.
- 2. Input pins shorted together and output pins shorted together.
- 3. Input-output potential applied momentarily, not a steady state operating condition.
- 4. Rise time is measured from 10% to 90% of load current (90% to 10% of V_o). Fall time is measured from 90% to 10% of load current (10% to 90% of V_o).
- 5. The user should apply the appropriate transient suppression technique to the output terminals of the relay when the loads are inductive enough to generate voltage spikes.

INPUT	OUTPUT
ON	ON
OFF	OFF

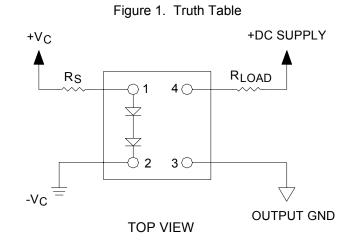
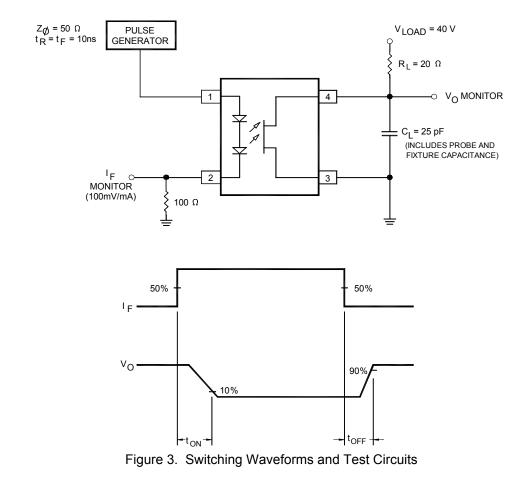
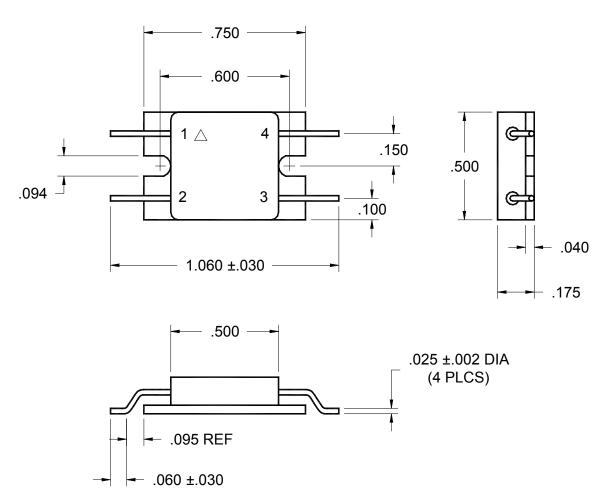




Figure 2. Terminal Connections

CASE OUTLINE