MT90863
3V Rate Conversion Digital Switch

SEMICONDUCTOR

Features

- $2,048 \times 512$ and 512×512 switching among backplane and local streams
- Rate conversion between 2.048, 4.096 and 8.192Mb/s
- Optioal sub-rate switch configuration for $2.048 \mathrm{Mb} / \mathrm{s}$ streams
- Per-channel variable or constant throughput delay
- Compatible to HMVIP and H. 100 specifications
- Automatic frame offset delay measurement
- Per-stream frame delay offset programming
- Per-channel message mode
- Per-channel direction control
- Per-channel high impedance output control
- Non-multiplexed microprocessor interface
- Connection memory block programming
- 3.3V local I/O with 5 V tolerant inputs and TTL-compatible outputs
- IEEE-1149.1 (JTAG) Test Port

Applications

- Medium and large switching platforms
- CTI application
- Voice/data multiplexer
- Support ST-BUS, HMVIP and H. 100 interfaces

DS5034
Ordering Information

MT90863AL1	128 Pin MQFP
MT90863AG1	144 Pin BGA

-40 to +85 C

Description

The MT90863 Rate Conversion Switch provides switching capacities of $2,048 \times 512$ channels between backplane and local streams, and $512 \times$ 512 channels for local streams. The connected serial inputs and outputs may have 32,64 and $12864 \mathrm{~kb} / \mathrm{s}$ channels per frame with data rates of $2.048 \mathrm{Mb} / \mathrm{s}$, $4.096 \mathrm{Mb} / \mathrm{s}$ and $8.192 \mathrm{Mb} / \mathrm{s}$ respectively.

The MT90863 also offers a sub-rate switching configuration which allows 2-bit wide $16 \mathrm{~kb} / \mathrm{s}$ data channels to be switched within the device.

The device has features (such as: message mode; input and output offset delay; direction control; and, high impedance output control) that are programmable on per-stream or per-channel basis.

Figure 1 - Functional Block Diagram

Figure 2 - MQFP Pin Connections

- A1 corner is identified by metallized markings.

Figure 3-BGA Pin Connections

Pin Description

$\underset{\text { Pin\# }}{128 \text { MQFP }}$	144 BGA Pin\#	Name	Description
$\begin{array}{\|c\|} \hline 30,50,67, \\ 79,97,107, \\ 117,127 \end{array}$	$\begin{array}{\|c} \hline \text { C5,C9,D5,D7, } \\ \text { D9,E10,F4,G10 } \\ \text {,G11,H4, } \\ \text { K3,K4,K6,K8 } \\ \text { K10,K11,L8 } \end{array}$	$V_{D D}$	+3.3 Volt Power Supply
$\begin{array}{\|c\|} \hline 8,17,29,39, \\ 49,68,78,8 \\ 8,90,93,96, \\ 106, \\ 116,126 \end{array}$	$\begin{gathered} \text { C6,C10,D4,D6, } \\ \text { D8,D10,E3,E4, } \\ \text { F10,F11,G2, } \\ \text { G4,H10,J4, } \\ \text { J10,J11,K5 } \\ \text { K7,K9,L3,L7 } \end{gathered}$	$\mathrm{V}_{\text {ss }}$	Ground
89	D12	C16i	Master Clock (5V Tolerant Input): Serial clock for shifting data in/out on the serial streams. This pin accepts a 16.384 MHz clock.
91	D11	$\overline{\mathrm{FO}}$	Master Frame Pulse (5V Tolerant Input): In ST-BUS mode, this input accepts a 61 ns wide negative frame pulse. In CT Bus mode, it accepts a 122ns wide negative frame pulse. In HMVIP mode, it accepts a 244 ns wide negative frame pulse.

Pin Description (continued)

128 MQFP Pin\#	144 BGA Pin\#	Name	Description
92	B13	C4i/C8i	HMVIP/CT Bus Clock (5V Tolerant Input): When HMVIP mode is enabled, this pin accepts a 4.096 MHz clock for HMVIP frame pulse alignment. When CT Bus mode is enabled, it accepts a 8.192 MHz clock for CT frame pulse alignment.
94	A13	F00	Frame Pulse (5V Tolerant Output): A 244 ns wide negative frame pulse that is phase locked to the master frame pulse (F0i).
95	C12	C40	C4 Clock (5V Tolerant Output): A 4.096 MHz clock that is phase locked to the master clock (C16i).
$\begin{aligned} & 98-105, \\ & 108-115 \end{aligned}$	C11, B12, B11, A12, A11, B10, A10, B9, A9, C8, B8, A8, C7, B7, A7, A6,	$\begin{aligned} & \hline \text { STio0 - } 15 \\ & \text { FEiO - } 15 \end{aligned}$	Serial Input Streams 0 to 15 / Frame Evaluation Inputs 0 to 15 (5V Tolerant I/O). In 2Mb/s and HMVIP modes, these pins accept serial TDM data streams at $2.048 \mathrm{Mb} / \mathrm{s}$ with 32 channels per stream. In $4 \mathrm{Mb} /$ s or $8 \mathrm{Mb} /$ s mode, these pins accept serial TDM data streams at 4.096 or $8.192 \mathrm{Mb} / \mathrm{s}$ with 64 or 128 channels per stream respectively. In Frame Evaluation Mode (FEM), they are frame evaluation inputs.
118-125	$\begin{aligned} & \mathrm{B6}, \mathrm{~A} 5, \mathrm{~B}, \mathrm{~A} 4, \\ & \mathrm{B4}, \mathrm{C} 4, \mathrm{A3}, \mathrm{B3} \end{aligned}$	$\begin{aligned} & \hline \text { STio16-23 } \\ & \text { FEi16-23 } \end{aligned}$	Serial Input Streams 16 to 23 (5V Tolerant I/0). In $2 \mathrm{Mb} / \mathrm{s}$ or $4 \mathrm{Mb} / \mathrm{s}$ mode, these pins accept serial TDM data streams at 2.048 or 4.096 Mb / s with 32 or 64 channels per stream respectively. In HMVIP mode, these pins have a data rate of $8.192 \mathrm{Mb} / \mathrm{s}$ with 128 channels per stream. In Frame Evaluation Mode (FEM), they are frame evaluation inputs.
$\begin{gathered} 128, \\ 1-7 \end{gathered}$	$\begin{aligned} & \mathrm{A} 2, \mathrm{~B} 2, \mathrm{~A} 1, \mathrm{C} 3, \\ & \mathrm{C} 2, \mathrm{~B} 1, \mathrm{D} 3, \mathrm{D} 2 \end{aligned}$	STio24-31	Serial Input Streams 24 to 31 (5V Tolerant I/O). These pins are only used for $2 \mathrm{Mb} /$ s or $4 \mathrm{Mb} / \mathrm{s}$ mode. They accept serial TDM data streams at 2.048 or $4.096 \mathrm{Mb} / \mathrm{s}$ with 32 or 64 channels per stream respectively.
9	C1	TMS	Test Mode Select (3.3V Input with internal pull-up): JTAG signal that controls the state transitions of the TAP controller.
10	D1	TDI	Test Serial Data In (3.3V Input with internal pull-up): JTAG serial test instructions and data are shifted in on this pin.
11	E2	TDO	Test Serial Data Out (3.3V Output): JTAG serial data is output on this pin on the falling edge of TCK. This pin is held in a high impedance state when JTAG scan is not enabled.
12	E1	TCK	Test Clock (5V Tolerant Input): Provides the clock to the JTAG test logic.
13	F2	TRST	Test Reset (3.3 V Input with internal pull-up): Asynchronously initializes the JTAG TAP controller by putting it in the Test-Logic-Reset state. This pin should be pulsed low on power-up, or held low continuously, to ensure that the MT90863 is in the normal operation mode.
14	F3	IC1	Internal Connection 1 (3.3V Input with internal pull-down): Connect to V_{SS} for normal operation.
15	F1	RESET	Device Reset (5V Tolerant Input): This input (active LOW) puts the MT90863 in its reset state. This clears the device's internal counters and registers. It also brings microport data bus STio0-31 and STo015 to a high impedance state.
16	G3	IC2	Internal Connection 2 (3.3V Input): Connect to V_{SS} for normal operation.

Pin Description (continued)

$\underset{\text { Pin\# }}{128 \text { MQFP }}$	$\underset{\text { Pin\# }}{144 \text { BGA }}$	Name	Description
18-25	$\begin{gathered} \text { G1, H1, H2, } \\ \text { H3, J2, J1, J3, } \\ \text { K1 } \end{gathered}$	A0-A7	Address 0-7 (5V Tolerant Input): These lines provide the A0 to A7 address lines to the internal memories.
26	K2	DS	Data Strobe (5V Tolerant Input): This active low input works in conjunction with $\overline{\mathrm{CS}}$ to enable the read and write operations.
27	L2	$\mathrm{R} / \overline{\mathrm{W}}$	Read/Write (5V Tolerant Input): This input controls the direction of the data bus lines (D0-D15) during a microprocessor access.
28	L1	CS	Chip Select (5V Tolerant Input): Active low input used by a microprocessor to activate the microprocessor port.
$\begin{aligned} & 31-38, \\ & 40-47 \end{aligned}$	M1, N1, M2, N2, M3, L4, N3, L5, M4, N4, M5, L6, M6, N5, N6, M7,	$\begin{gathered} \hline \text { D0-7, } \\ \text { D8-D15 } \end{gathered}$	Data Bus 0-15 (5V Tolerant I/O): These pins form the 16-bit data bus of the microprocessor port.
48	N7	DTA	Data Transfer Acknowledgment (5V Tolerant Three-state Output): This active low output indicates that a data bus transfer is complete. A pull-up resistor is required to hold a HIGH level when the pin is tristated.
51-54	$\begin{gathered} \text { N8, M8, N9, } \\ \text { N10 } \end{gathered}$	STiO-3	Serial Input Streams 0 to 3 (5 V Tolerant Inputs): $\ln 2 \mathrm{Mb} / \mathrm{s}$ or Subrate Switching mode, these inputs accept data rates of $2.048 \mathrm{Mb} / \mathrm{s}$ with 32 channels per stream. In $8 \mathrm{Mb} /$ s mode, these inputs accept data rates of $8.192 \mathrm{Mb} / \mathrm{s}$ with 128 channels per stream.
55-62	$\begin{gathered} \text { M9, N11, L9, } \\ \text { M10, L10, N12, } \\ \text { M11, N13 } \end{gathered}$	STi4-11	Serial Input Streams 4 to 11 (5 V Tolerant Inputs): In 2Mb/s or Subrate Switching mode, these inputs accept data rates of $2.048 \mathrm{Mb} / \mathrm{s}$ with 32 channels per stream.
63	L11	STi12	Serial Input Streams 12 (5V Tolerant Input): In $2 \mathrm{Mb} / \mathrm{s}$ mode, this input accepts data rate of $2.048 \mathrm{Mb} / \mathrm{s}$ with 32 channels per stream respectively. In Sub-rate Switching mode, this pin accepts $2.048 \mathrm{Mb} / \mathrm{s}$ with 128 channels per stream for Sub-rate switching application.
64-66	M12, M13, L12	STi13-15	Serial Input Streams 13 to 15 (5 V Tolerant Inputs): In 2Mb/s mode, these inputs accept a data rate of $2.048 \mathrm{Mb} / \mathrm{s}$ with 32 channels per stream.
69	L13	ODE	Output Drive Enable (5V Tolerant Input): This is the output enable control for the STo0 to STo15 serial outputs and STio0 to STio31 serial bidirectional outputs.
70-73	$\begin{gathered} \mathrm{K} 13, \mathrm{~K} 12, \mathrm{~J} 13, \\ \mathrm{~J} 12 \end{gathered}$	STo0-3	Serial Output Streams 0 to 3 (5V Tolerant Three-state Outputs): In $2 \mathrm{Mb} / \mathrm{s}$ or Sub-rate Switching mode, these outputs have data rates of $2.048 \mathrm{Mb} / \mathrm{s}$ with 32 channels per stream respectively. In $8 \mathrm{Mb} / \mathrm{s}$ mode, these outputs have data rates of $8.192 \mathrm{Mb} / \mathrm{s}$ with 128 channels per stream
$\begin{aligned} & \hline 74-77, \\ & 80-83 \end{aligned}$	$\begin{gathered} \text { H11, H13, H12, } \\ \text { G13, G12, F13, } \\ \text { F12, E13 } \end{gathered}$	$\begin{aligned} & \hline \text { STo4-7, } \\ & \text { STo8-11 } \end{aligned}$	Serial Output Streams 4 to 11 (5V Tolerant Three-state Outputs): In $2 \mathrm{Mb} / \mathrm{s}$ or Sub-rate Switching mode, these outputs have data rates of $2.048 \mathrm{Mb} / \mathrm{s}$ with 32 channels per stream

Pin Description (continued)

128 MQFP Pin\#	144 BGA Pin\#	Name	Description
84	E12	STo12	Serial Output Streams 12 (5V Tolerant Three-state Output): In 2Mb/s mode, this output has data rate of 2.048Mb/s with 32 channels per stream. In Sub-rate Switching mode, this pin has data rate of 2.048Mb/s with 128 channels per stream for Sub-rate switching application.
$85-87$	D13, E11, C13	STo13-15	Serial Output Streams 13 to 15 (5V Tolerant Three-state Outputs): In 2Mb/s mode, these outputs have a data rate of 2.048Mb/s with 32 channels per stream.

Device Overview

The Rate conversion Switch (MT90863) can switch up to $2,048 \times 512$ channels while also providing a rate conversion capability. It is designed to switch 64 kb / s PCM or $\mathrm{N} X 64 \mathrm{~kb} / \mathrm{s}$ data between the backplane and local interfaces. When the device is in the sub-rate switching mode, 2 -bit wide $16 \mathrm{~kb} / \mathrm{s}$ data channels can be switched within the device. The device maintains frame integrity in data applications and minimum throughput delay for voice application on a per channel basis.

The backplane interface can operate at 2.048, 4.096 or $8.192 \mathrm{Mb} / \mathrm{s}$, arranged in $125 \mu \mathrm{~s}$ wide frames that contain 32, 64 or 128 channels, respectively. A builtin rate conversion circuit allows users to interface between backplane interface and the local interface which operates at $2.048 \mathrm{Mb} / \mathrm{s}$ or $8.192 \mathrm{Mb} / \mathrm{s}$.

By using Mitel's message mode capability, the microprocessor can access input and output timeslots on a per channel basis. This feature is useful for transferring control and status information for external circuits or other ST-Bus devices.

The frame offset calibration function allows users to measure the frame offset delay for streams STio 0 to STio23. The offset calibration is activated by a frame evaluation bit in the frame evaluation register. The evaluation result is stored in the frame evaluation registers and can be used to programme the input offset delay for individual streams using internal frame input offset registers.

Functional Description

A functional Block Diagram of the MT90863 is shown in Figure 1. One end of the MT90863 is used to interface with backplane applications, such as HMVIP or H. 100 environments, while the other end supports the local switching environments.

Frame Alignment Timing

The Device Mode Selection (DMS) register allows users to select three different frame alignment timing modes. In ST-BUS modes, the master clock ($\overline{\mathrm{C} 16 \mathrm{i})}$ is always at 16.384 MHz . The frame pulse ($\overline{\mathrm{FOi}}$) input accepts a negative frame pulse at 8 kHz . The frame pulse goes low at the frame boundary for 61 ns . The frame pulse output $\overline{\mathrm{FO}}$ provides a 244 ns wide negative frame pulse and the C40 output provides a 4.094 MHz clock. These two signals are used to support local switching applications. See Figure 4 for the ST-BUS timings.

In CT Bus mode, the $\overline{\mathrm{C4i}} / \mathrm{C} 8 \mathrm{i}$ pin accepts 8.192 MHz clock for the CT Bus frame pulse alignment. The FOi is the CT bus frame pulse input. The CT frame pulse goes low at the frame boundary for 122 ns . See Figure 5 for the CT Bus timing.

In HMVIP mode, the $\overline{\mathrm{C4i}} / \mathrm{C} 8 \mathrm{i}$ pin accepts 4.096 MHz clock for the HMVIP frame pulse alignment. The FOi is the HMVIP frame pulse input. The HMVIP frame pulse goes low at the frame boundary for 244 ns . See Figure 6 for the HMVIP timing.

Table 1 describes the input timing requirements for ST-BUS, CT Bus and HMVIP modes.

Switching Configuration

The device has four operation modes for the backplane interface and three operation modes for the local interface. These modes can be programmed via the Device Mode Selection (DMS) register. Mode selections between the backplane and local interfaces are independent. See Table 2 and Table 3 for the selection of various operation modes via the programming of the DMS register.

Figure 4 - ST-BUS Timing for 2, 4 and $8 \mathrm{Mb} / \mathrm{s}$ Data Streams

Figure 5 - CT Bus Mode Timing for 2, 4 and 8 Mb/s Data Streams

Figure 6- HMVIP Mode Timing for 2 and $8 \mathrm{Mb} / \mathrm{s}$ Data Streams

Backplane Interface

The backplane interface can be programmed to accept data streams of $2 \mathrm{Mb} / \mathrm{s}, 4 \mathrm{Mb} / \mathrm{s}$ or $8 \mathrm{Mb} / \mathrm{s}$. When $2 \mathrm{Mb} / \mathrm{s}$ mode is enabled, STio0 to STio31 have a data rate of $2.048 \mathrm{Mb} / \mathrm{s}$. When $4 \mathrm{Mb} / \mathrm{s}$ mode is enabled, STio0 to STio31 have a data rate of $4.096 \mathrm{Mb} / \mathrm{s}$. When $8 \mathrm{Mb} / \mathrm{s}$ mode is enabled, STio0 to STio15 have a data rate of $8.192 \mathrm{Mb} / \mathrm{s}$. When HMVIP mode is enabled, STio0 to STio15 have a data rate of $2.048 \mathrm{Mb} / \mathrm{s}$ and STio16 to STio23 have a data rate of $8.192 \mathrm{Mb} / \mathrm{s}$.

Table 2 describes the data rates and mode selection for the backplane interface.

Local Interface

Three operation modes, $2 \mathrm{Mb} / \mathrm{s}, 8 \mathrm{Mb} / \mathrm{s}$ and Sub-rate Switching mode, can be selected for the local interface. When $2 \mathrm{Mb} / \mathrm{s}$ mode is selected, STiO to STi15 and SToO to STo15 have a $2.048 \mathrm{Mb} / \mathrm{s}$ data rate. When $8 \mathrm{Mb} / \mathrm{s}$ mode is selected, STiO to STi3 and STo0 to STo3 have an $8.192 \mathrm{Mb} / \mathrm{s}$ data rate. When Sub-rate Switching mode is selected, STiO to STi11 and SToO to STo11 have $2.048 \mathrm{Mb} / \mathrm{s}$ data with $64 \mathrm{~kb} / \mathrm{s}$ data channels and STi12 and STo12 have a $2.048 \mathrm{Mb} / \mathrm{s}$ data rate with $16 \mathrm{~kb} / \mathrm{s}$ data channels. Table 3 describes the data rates and mode selection for the local interface.

Input Frame Offset Selection

Input frame offset selection allows the channel alignment of individual backplane input streams, that
operate at $8.192 \mathrm{Mb} / \mathrm{s}$ (STio0-23), to be shifted against the input frame pulse ($\overline{\mathrm{FOi}}$). This feature compensates for the variable path delays caused by serial backplanes of variable length. Such delays can be occur in large centralized and distributed switching systems.

Each backplane input stream can have its own delay offset value by programming the input delay offset registers (DOS0 to DOS5). Possible adjustment can range up to +4 master clock ($\overline{\mathrm{C} 16 \mathrm{i}}$) periods forward with resolution of half master clock period. See Table 10 and Table 11, and Figure 9, for frame input delay offset programming.

Output Advance Offset Selection

The MT90863 allows users to advance individual backplane output streams which operate at $8.192 \mathrm{Mb} /$ s (STio0-23) by half a master clock ($\overline{\mathrm{C} 16 \mathrm{i}}$) cycle. This feature is useful in compensating for variable output delays caused by various output loading conditions. The frame output offset registers (FORO \& FOR1) control the output offset delays for each backplane output stream via the OFn bit programming. Table 12 and Figure 10 detail frame output offset programming.

Serial Input Frame Alignment Evaluation

The MT90863 provides the frame evaluation inputs, FEiO to FEi 23 , to determine different data input delays with respect to the frame pulse F0i. By using the frame evaluation input select bits (FEO to FE4) of

Timing Signals	ST-BUS Mode	CT Bus Mode	HMVIP Mode
$\overline{\mathrm{FOi}}$ Width	61 ns	122 ns	244 ns
$\overline{\mathrm{C} 4 \mathrm{i}} / \mathrm{C} 8 \mathrm{i}$	Not Required	8.192 MHz	4.096 MHz
$\overline{\mathrm{C} 16 \mathrm{i}}$		16.384 MHz	
$\overline{\mathrm{FOo}}$ Width		244 ns	
$\overline{\mathrm{C} 40}$		4.096 MHz	

Table 1 - Timing Signals Requirements for Various Operation Modes

DMS Register Bits			Modes	Backplane Interface	Data Rate
BMS2	BMS1	BMSO			
0	0	0	2Mb/s, ST-BUS Mode	STio0-31	$2.048 \mathrm{Mb} / \mathrm{s}$
0	0	1	$2 \mathrm{Mb} / \mathrm{s}$, CT Bus Mode	STio0-31	$2.048 \mathrm{Mb} / \mathrm{s}$
0	1	0	4Mb/s, ST-BUS Mode	STio0-31	$4.096 \mathrm{Mb} / \mathrm{s}$
0	1	1	4Mb/s, CT Bus Mode	STio0-31	$4.096 \mathrm{Mb} / \mathrm{s}$
1	0	0	8Mb/s, ST-BUS Mode	STio0-15	$8.192 \mathrm{Mb} / \mathrm{s}$
				STio16-31	Not available
1	0	1	8Mb/s, CT Bus Mode	STio0-15	$8.192 \mathrm{Mb} / \mathrm{s}$
				STio16-31	Not available
1	1	0	HMVIP Mode	STio0-15	$2.048 \mathrm{Mb} / \mathrm{s}$
				STio16-23	$8.192 \mathrm{Mb} / \mathrm{s}$
				STio24-31	Not available

Table 2 - . Mode Selection for Backplane interface

DMS Register Bits		Modes	Local Interface	Data Rate
LMS1	LMS0			
0	0	2Mb/s Mode	STi0-15	$2.048 \mathrm{Mb} / \mathrm{s}$
			STo0-15	$2.048 \mathrm{Mb} / \mathrm{s}$
0	1	Sub-Rate Switching Mode	STi0-11	$2.048 \mathrm{Mb} / \mathrm{s}$
			STi12	Sub-rate Switching Input Stream at $2.048 \mathrm{Mb} / \mathrm{s}$
			STi13-15	Not available
			STo0-11	$2.048 \mathrm{Mb} / \mathrm{s}$
			STo12	Sub-rate Switching Output Stream at $2.048 \mathrm{Mb} / \mathrm{s}$
			STo13-15	Not available
1	0	8Mb/s Mode	STiO-3	8.192 Mb/s
			STi4-15	Not available
			STo0-3	8.192 Mb/s
			STo4-15	Not available

Table 3 - . Mode Selection for Local Interface
the frame alignment register (FAR), users can select one of the twenty-four frame evaluation inputs for the frame alignment measurement.

A measurement cycle is started by setting the start frame evaluation (SFE) bit low for at least one frame. Then the evaluation starts when the SFE bit in the Internal Mode Selection (IMS) register is changed from low to high. One frame later, the complete frame evaluation (CFE) bit of the frame alignment register changes from low to high to signal that a valid offset measurement is ready to be read from bits 0 to 9 of the FAR register. The SFE bit must be set to zero before a new measurement cycle is started.

The falling edge of the frame measurement signal (FEi) is evaluated against the falling edge of the frame pulse (득). Table 8 and Figure 8 describe the frame alignment register.

Memory Block Programming

The MT90863 has two connection memories: the backplane connection memory and the local connection memory. The local connection memory is partitioned into high and low parts. The IMS register provides users with the capability of initializing the local connection memory low and the backplane connection memory in two frames. Bit 11 to bit 13 of every backplane connection memory location will be programmed with the pattern stored in bit 7 to bit 9 of the IMS register. Bit 12 to 15 of every local connection memory low location will be programmed with the pattern stored in bits 3 to 6 of the IMS register.

The block programming mode is enabled by setting the memory block program (MBP) bit of the control register high. When the block programming enable (BPE) bit of the IMS register is set to high, the block programming data will be loaded into bits 11 to 13 of every backplane connection memory and bits 12 to 15 of every local connection memory low. The other connection memory bits are loaded with zeros. When the memory block programming is complete, the device resets the BPE bit to zero. See Figure 7 for the connection memory contents when the device is in block programming mode.

Delay Through the MT90863

The switching of information from the input serial streams to the output serial streams results in a throughput delay. The device can be programmed to perform time-slot interchange functions with different throughput delay capabilities on a per-channel basis. For voice applications, select variable throughput
delay to ensure minimum delay between input and output data. In wideband data applications, select constant throughput delay to maintain the frame integrity of the information through the switch.

The delay through the device varies according to the type of throughput delay selected in the LV/C and $\mathrm{B} \overline{\mathrm{V}} / \mathrm{C}$ bits of the local and backplane connection memory as described in Table 16 and Table 19.

Variable Delay Mode (LV/C or BV/ C bit = 0)

The delay in this mode is dependent only on the combination of source and destination channels and is independent of input and output streams.

Constant Delay Mode (LV/C bit or B $\overline{\mathrm{V}} / \mathrm{C}=1$)

In this mode a multiple data memory buffer is used to maintain frame integrity in all switching configurations.

Microprocessor Interface

The MT90863 provides a parallel microprocessor interface for non-multiplexed bus structures. This interface is compatible with Motorola non-multiplexed buses. The required microprocessor signals are the 16 -bit data bus (D0-D15), 8-bit address bus (A0-A7) and 4 control lines ($\overline{C S}, \mathrm{DS}, \mathrm{R} / \overline{\mathrm{W}}$ and $\overline{\mathrm{DTA}}$). See Figure 16 for Motorola non-multiplexed bus timing.

The MT90863 microprocessor port provides access to the internal registers, connection and data memories. All locations provide read/write access except for the Data Memory and the Data Read Register which are read only.

Memory Mapping

The address bus on the microprocessor interface selects the internal registers and memories of the MT90863. If the A7 address input is low, then the registers are addressed by A6 to A0 as shown in Table 4.

If the A7 is high, the remaining address input lines are used to select the serial input or output data streams corresponding to the subsection of memory positions. For data memory reads, the serial inputs are selected. For connection memory writes, the serial outputs are selected.

The control, device mode selection and internal mode selection registers control all the major functions of the device. The device mode selection register and internal mode selection register should be programmed immediately after system power-up

Figure 7 - Block Programming Data in the Connection Memories

$\underset{(\text { Note } 1)}{\mathbf{A 7}}$	A6	A5	A4	A3	A2	A1	A0	Location
0	0	0	0	0	0	0	0	Control Register, CR
0	0	0	0	0	0	0	1	Device Mode Selection Register, DMS
0	0	0	0	0	0	1	0	Internal Mode Selection Register, IMS
0	0	0	0	0	0	1	1	Frame Alignment Register, FAR
0	0	0	0	0	1	0	0	Input Offset Selection Register 0, DOS0
0	0	0	0	0	1	0	1	Input Offset Selection Register 1, DOS1
0	0	0	0	0	1	1	0	Input Offset Selection Register 2, DOS2
0	0	0	0	0	1	1	1	Input Offset Selection Register 3, DOS3
0	0	0	0	1	0	0	0	Input Offset Selection Register 4, DOS4
0	0	0	0	1	0	0	1	Input Offset Selection Register 5, DOS5
0	0	0	0	1	0	1	0	Frame Output Offset Register, FOR0
0	0	0	0	1	0	1	1	Frame Output Offset Register, FOR1
0	0	0	0	1	1	0	0	Address Buffer Register, ABR
0	0	0	0	1	1	0	1	Data Write Register, DWR
0	0	0	0	1	1	1	0	Data Read Register, DRR
1	0	0	0	0	0	0	0	Ch 0
1	0	0	0	0	0	0	1	Ch 1
1	0	0				.		
1	0	0	1	1	1	1	0	Ch 30
1	0	0	1	1	1	1	1	Ch 31 (Note 2)
1	0	1	0	0	0	0	0	Ch 32
1	0	1	0	0	0	0	1	Ch 33
1	1	1	1	1	i	1	0	Ch 126
1	1	1	1	1	1	1	1	Ch 127 (Note 3)
Notes: 1. Bit A7 must be high for access to data and connection memory positions. Bit A7 must be low for access to registers. 2. Channels 0 to 31 are used when serial stream is at $2 \mathrm{Mb} / \mathrm{s}$. 3. Channels 0 to 127 are used when serial stream is at $8 \mathrm{Mb} / \mathrm{s}$								

to establish the desired switching configuration as explained in the Frame Alignment Timing and Switching Configurations sections.

The control register is used to control the switching operations in the MT90863. It selects the internal memory locations that specify the input and output channels selected for switching.

Control register data consists of: the memory block programming bit (MBP): the memory select bits (MSO-2); and, the stream address bits (STA0-4). The memory block programming bit allows users to program the entire connection memory block, (see Memory Block Programming section). The memory select bits control the selection of the connection memory or the data memory. The stream address bits define an internal memory subsections corresponding to serial input or serial output streams.

The data in the DMS register consists of the local and backplane mode selection bits (LMSO-1 and BMSO-2) to enable various switching modes for local and backplane interfaces respectively.

The data in the IMS register consists of block programming bits (LBPDO-3 and BBPDO-2), block programming enable bit (BPE), output standby bit (OSB) and start frame evaluation bit (SFE). The block programming enable bit allows users to program the entire backplane and local connection memories, (see Memory Block Programming section). If the ODE pin is low, the OSB bit enables (if high) or disables (if low) all ST-BUS output drivers. If the ODE pin is high, the contents of the OSB bit is ignored and all ST-BUS output drivers are enabled.

See Table 5 for the output high impedance control.

Address Buffer Mode

The implementation of the address buffer, data read and data write registers allows faster memory read/
write operation for the microprocessor port. See Table 6 and following for bit assignments.

The address buffer mode is controlled by the AB bit in the control register. The targeted memory for data read/write is selected by the MSO-2 bits in the control register.

The data write register (DWR) contains the data to be transferred to the memory. The data read register (DRR) contains the data transferred from the memory.

The address buffer register (ABR) allow users to specify the read or write address by programming the stream address bits (SAO-4) and the channel address bits (CAO-6). Data transfer from/to the memory is controlled by the read/write select bits (RS, WS). The complete data access (CDA) bit indicates the completion of data transfer between the memory and DWR or DRR register.

Write Operation Using Address Buffer Mode

Enable the address buffer mode by setting the AB bit from low to high. Program the DWR register with data to be transferred to memory. Load the ABR register with proper channel and stream information. Change the WS bit in the ABR register from low to high to initiate the data transfer from the DWR register to the memory. After several master clock cycles, the CDA bit in the ABR register changes from low to high to signal the completion of data transfer and resets the WS bit to low. Repeat the above steps for subsequent memory write operations. Disable the address buffer write operation by setting the $A B$ bit to low.

Read Operation Using Address Buffer Mode

Enable the address buffer mode by setting the AB bit from low to high. Program the ABR register with proper channel and stream information. Change the RS bit in the ABR register from low to high to initiate the data transfer from the memory to the DRR

ODE pin	OSB bit in IMS register	DC bit in Backplane CM	STio0-31 Output Driver Status	OE bit in Local CM	STo0-15 Output Driver Status
Don't Care	Don't Care	0	Per Channel High Impedance	0	Per Channel High Impedance
0	0	Don't care	High Impedance	Don't care	High Impedance
0	1	1	Enable	1	Enable
1	Don't care	1	Enable	1	Enable

Table 5 -. Output High Impedance Control

Table 6 - Control (CR) Register Bits

Table 7 - Device Mode Selection (DMS) Register Bits
register. After several master clock cycles, the CDA bit in the ABR register changes from low to high to signal the completion of data transfer and resets the RS bit to low. Read the DRR register to obtain the data transferred from the memory. Repeat the above steps for subsequent memory read operations. Disable the address buffer read operation by setting the $A B$ bit to low.

Backplane Connection Memory Control

The backplane connection memory controls the switching configuration of the backplane interface. Locations in the backplane connection memory are associated with particular STio output streams.

The $\mathrm{B} \overline{\mathrm{V}} / \mathrm{C}$ (Variable/Constant Delay) bit of each backplane connection memory location allows the per-channel selection between variable and constant throughput delay modes for all STio channels.

In message mode, the message channel (BMC) bit of the backplane connection memory enables (if high) an associated STio output channel. If the BMC bit is low, the contents of the backplane connection memory stream address bit (BSAB) and channel address bit (BCAB) defines the source information (stream and channel) of the time-slot that will be switched to the STio streams. When message mode is enabled, only the lower half (8 least significant bits) of the backplane connection memory is transferred to the STio pins.

Local Connection Memory Control

The local connection memory controls the local interface switching configuration. Local connection memory is split into high and low parts. Locations in local connection memory are associated with particular STo output streams.
The L/B (Local/Backplane Select) bit of each local connection memory location allows per-channel selection of source streams from local or backplane interface.

The LV/CC (Variable/Constant Delay) bit of each local connection memory location allows the per-channel selection between variable and constant throughput delay modes for all STo channels.

In message mode, the local connection memory message channel (LMC) bit enables (if high) an associated STo output channel. If the LMC bit is low, the contents of the stream address bit (LSAB) and the channel address bit (LCAB) of the local connection memory defines the source information (stream and channel) of the time-slot that will be switched to the STo streams. When message mode is enabled, only the lower half (8 least significant
bits) of the local connection memory low bits are transferred to the STo pins.

When sub-rate switching is enabled, the LSRO-1 bits in the local connection memory high define which bit position contains the sub-rate data.

DTA Data Transfer Acknowledgment Pin

The DTA pin is driven LOW by internal logic to indicate (to the CPU) that a data bus transfer is complete. When the bus cycle ends, this pin drives HIGH and then switches to the high-impedance state. If a short or signal contention prevents the DTA pin from reaching a valid logic HIGH, it will continue to drive for approximately 15 nsec before switching to the high-impedance state.

Initialization of the MT90863

During power up, the TRST pin should be pulsed low, or held low continuously, to ensure that the MT90863 is in the normal operation mode. A $5 \mathrm{~K} \Omega$ pull-down resistor can be connected to this pin so that the device will not enter the JTAG test mode during power up.

After power up, the contents of the connection memory can be in any state. The ODE pin should be held low after power up to keep all serial outputs in a high impedance state until the microprocessor has initialized the switching matrix. This procedure prevents two serial outputs from driving the same stream simultaneously.

During the microprocessor initialization routine, the microprocessor should program the desired active paths through the switch. The memory block programming feature can also be used to quickly initialize the DC and OE bit in the backplane and local connection memory respectively.

When this process is complete, the microprocessor controlling the matrices can either bring the ODE pin high or enable the OSB bit in IMS register to relinquish the high impedance state control.

Table 8- Internal Mode Selection (IMS) Register Bits

Table 9 - Frame Alignment (FAR) Register Bit

Figure 8- Example for Frame Alignment Measurement

Note 1: n denotes a STio stream number from 0 to 23.
Table 10 - Frame Delay Offset (DOS) Register Bits

Input Stream Offset	Measurement Result from Frame Delay Bits				Corresponding Offset Bits				
	FD9	FD2	FD1	FD0	IFn2	IFn1	IFn0	DLEn	
No clock period shift (Default)	1	0	0	0	0	0	0	0	
+ 0.5 clock period shift	0	0	0	0	0	0	0	1	
+1.0 clock period shift	1	0	0	1	0	0	1	0	
+1.5 clock period shift	0	0	0	1	0	0	1	1	
+2.0 clock period shift	1	0	1	0	0	1	0	0	
+2.5 clock period shift	0	0	1	0	0	1	0	1	
+3.0 clock period shift	1	0	1	1	0	1	1	0	
+3.5 clock period shift	0	0	1	1	0	1	1	1	
+4.0 clock period shift	1	1	0	0	1	0	0	0	
+4.5 clock period shift	0	1	0	0	1	0	0	1	

Table 11-Offset Bits (IFn2, IFn1, IFn0, DLEn) \& Input Offset Bits (FD9, FD2-0)

Figure 9 - Examples for Input Offset Delay Timing

Read/Write Address: $\quad 0 A_{H}$ for FORO register, $0 \mathrm{~B}_{\mathrm{H}}$ for FOR1 register,
Reset value: $\quad 0000_{\mathrm{H}}$ for all FOR registers.

15
14
13
12

FORO register

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

0	0	0	0	0	0	0	0	OF23	OF22	OF21	OF20	OF19	OF18	OF17	OF16

FOR1 register

Bit	Name (Note 1)	Description
$15-0$ (FORO) $7-0$ (FOR1)	OFn	Output Offset Bit. When 0, the first bit of the serial output stream has normal alignment with the frame pulse. When 1, the first bit of the serial output stream is advanced by $1 / 2$ CLK cycle with respect to the frame pulse. See .
$15-8$ (FOR1)	Unused	Must be zero for normal operation.
Note 1: n denotes a STio stream number from 0 to 23		

Table 12 - Frame Output Offset (FOR) Register Bits

Figure 10 - Examples for Frame Output Offset Timing

Table 13 -. Address Buffer (ABR) Register Bits

Read/Write Address: $0 \mathrm{D}_{\mathrm{H}}$ for DWR register, Reset value: 0000_{H}															
WR15	WR14	WR13	WR12	WR11	WR10	WR9	WR8	WR7	WR6	WR5	WR4	WR3	WR2	WR1	WRo
Bit		Name								cript					
15-0		15- W		$\begin{aligned} & \text { Writ } \\ & \text { loca } \end{aligned}$	e Data tions.	Bits	Data	be	ransfer	ed to	ne of	the int	rnal	meme	

.Table 14 - Data Write (DWR) Register Bits

Table 15 -. Data Read (DRR) Register Bits

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	0	BV/C	BMC	DC	BSAB 3	BSAB	BSAB 1	BSAB	[8CAB	BCAB 5	$\stackrel{\mathrm{BCAB}}{4}$	BCAB 3	BCAB 2	BCAB 1	BCAB 0
Bit		Nam								escript	tion				
15,14		Unus			Must be	zero fo	r norm	al ope	ration.						
13		BV/			Variable variable local inte	/Cons (low) rface	tant stream	hroug tant de s.	hput lay (hig	Delay. gh) mo	This bit des on	is us a per	to s -chann	elect el bas	ither is for the
12		BM			Message output on (bit 7 - bit local data loaded in		orresp be ou ory ad backp	When 1 onding utput to dress lane	, the bac outpu the ba of the onnectio	ackplan chann ackpla switche ion me	ne con nel and ne inte STi mory.	nection strea rface input	mem m. On STio pin channel	ory co y the s. Wh and	ntents are ower byte en 0 , the stream is
11		DC			Direction basis. W output dr	nal Co hen 1 , iver is	ntrol. the S in a his	This b Tio out gh-imp	it enab put driv pedanc	les the ver fun e state	STio ctions	pindriv normaly.	ers on lly. Wh	a peren 0 ,	channel he STio
$\begin{gathered} \text { 10-7 } \\ \text { (Note 1) } \end{gathered}$		BSAB	3-0		Source stream fo	Stream or the	Add source	ess B of the	its. Th conne	e binary ction.	y valu	is the	numb	er of	he data
$\begin{gathered} 6-0 \\ (\text { Note 1) } \end{gathered}$		BCAB	6-0		Source the conn	Chann ection	el Ad source	dress	Bits. T	The bina	ary val	ue iden	tifies	he ch	annel for
Note 1: If bit 12 (BMC) of the corresponding backplane connection memory location is 1 (device in message mode), then these entire 8 bits ($B S A B 0, B C A B 6-B C A B 0$) are output on the output channel and stream associated with this location.															

Table 16 - Blackplane Connection Memory Bits

Data Rate	BSAB3 to BSAB0 Bits Used to Determine the Source Stream of the connection
$2.048 \mathrm{Mb} / \mathrm{s}$	STi0 to STi15
$8.192 \mathrm{Mb} / \mathrm{s}$	STi0 to STi3
$2.048 \mathrm{Mb} / \mathrm{s}$ Sub-rate Switching	STi0 to STi12

Table 17 - BSAB Bits Programming for Different Local Interface mode

Data Rate	BCAB Bits Used to Determine the Source Channel of the Connection
$2.048 \mathrm{Mb} / \mathrm{s}$	BCAB4 to BCAB0 (32 channel/frame)
$8.192 \mathrm{Mb} / \mathrm{s}$	BCAB6 to BCAB0 (128 channel/frame)
$2.048 \mathrm{Mb} / \mathrm{s}$	BCAB4 to BCAB0 (32 channel/frame)
Sub-rate Switching	BCAB6 to BCAB0 (128 channel/frame)

Table 18 -. BCAB Bits Programming for Different Data Rates

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
L/B	BV/C	BMC	OE		LSAB	LSAB 2	LSAB	LSAB 0	LCAB 6	LCAB 5	$\stackrel{\text { LCAB }}{4}$		LCAB 2	$\stackrel{\text { LCAB }}{\substack{\text { L }}}$	[CAB
Bit		Name		Description											
15		L/B		Local/Backplane Select When 1, the output channel of STo0-15 comes from STiO-15 (local) When 0 , the output channel of SToO-15 comes from: STio0-31 (backplane, $2 \mathrm{Mb} / \mathrm{s}$ mode) STio0-31 (backplane, $4 \mathrm{Mb} / \mathrm{s}$ mode) STio0-15 (blackplane, $8 \mathrm{Mb} / \mathrm{s}$ mode) STio0-23 (blackplane, HMVIP mode)											
14		LV/C		Variable /Constant Throughput Delay. This bit is used to select either variable (low) or constant delay (high) modes on a per-channel basis for the source streams.											
13		LMC		Message Channel. When 1, the contents of the local connection memory are output on the corresponding output channel and stream. Only the lower byte (bit 7 - bit 0) will be output to the STo pins of the local interface. When 0 , the backplane or local data memory address of the switched input channel and stream is loaded into the local connection memory.											
12		OE		Output Enable. This bit enables the drivers of STo pins on a per-channel basis. When 1, the STo output driver functions normally. When 0, the STo output driver is in a high-impedance state.											
$\begin{gathered} 11-7 \\ (\text { Note 1) } \end{gathered}$		LSAB4-0		Source Stream Address Bits. The binary value identifies the data stream for the source of the connection.											
$\begin{gathered} 6-0 \\ (\text { Note 1) } \end{gathered}$		LCAB6-0		Source Channel Address Bits. The binary value identifies the channel for the source of the connection.											

Note 1: If bit 12 (LMC) of the corresponding local connection memory location is 1 (device in message mode), then these entire 8 bits (LSAB0, LCAB6-LCAB0) are output on the output channel and stream associated with this location.

Table 19 -. Local Connection Memory Low Bits

Data Rate	LSAB3 to LSAB0 Bits Used to Determine the Source Stream of the Connection
$2.048 \mathrm{Mb} / \mathrm{s}$	STio0 to STio31 or STi0 to STi15
$4.096 \mathrm{Mb} / \mathrm{s}$	STio0 to STio31
$8.192 \mathrm{Mb} / \mathrm{s}$	STio0 to STio15 or STi0 to STi3
HMVIP	STio0 to STio23
$2.048 \mathrm{Mb} / \mathrm{s}$ Sub-rate Switching	STi0 to STi12

Table 20 - LSAB Bits Programming for Different Local Interface Modes

Data Rate	LCAB Bits Used to Determine the Source Channel of the Connection
$2.048 \mathrm{Mb} / \mathrm{s}$	LCAB4 to LCAB0 (32 channel/frame)
$4.096 \mathrm{Mb} / \mathrm{s}$	LCAB5 to LCAB0 (64 channel/frame)
$8.192 \mathrm{Mb} / \mathrm{s}$	LCAB6 to LCAB0 (128 channel/frame)
HMVIP	LCAB4 to LCAB0 (32 channel/frame)
	LCAB6 to LCAB0 (128 channel/frame)
$2.048 \mathrm{Mb} / \mathrm{s}$	LCAB4 to LCAB0 (32 channel/frame)
Sub-rate Switching	LCAB6 to LCAB0 (128 channel/frame)

Table 21 - LCAB Bits Programming for Different Data Rates

15	14	13	12	11	10	9		8	7	6	5	4	3	2	1	0
0	0	0	0	0	0	0		0	0	0	0	0	0	0	LSR1	LSR0
Bit											rip					
$\begin{gathered} \text { 15-2 } \\ \text { (Note1) } \end{gathered}$		Unu			Must be	ero		orm	op	tio						
$\begin{gathered} 1,0 \\ \text { (Note1) } \end{gathered}$		LSR1,	SR0		Local S When When When When	-ra		$\begin{aligned} & \text { vitch } \\ & \text { it7 } 7-1 \\ & \text { it5- } \\ & \text { it } 3-2 \end{aligned}$			tpu			swis	hing st hing st hing st hing st	ream ream ream ream
Note 1: If bit 12 (LMC) of the corresponding local connection memory location is 1 (device in message mode), then these entire 8 bits (Bit7-0) are output on the output channel and stream associated with this location.																

Table 22 - Local Connection Memory High Bits

JTAG Support

The MT90863 JTAG interface conforms to the Boundary-Scan IEEE1149.1 standard. This standard specifies a design-for-testability technique called Boundary-Scan Test (BST). The operation of the boundary-scan circuitry is controlled by an external Test Access Port (TAP) Controller.

Test Access Port (TAP)

The Test Access Port (TAP) accesses the MT90863 test functions. It consists of three input pins and one output pin as follows:

- Test Clock Input (TCK)

TCK provides the clock for the test logic. The TCK does not interfere with any on-chip clock and thus remains independent. The TCK permits shifting of test data into or out of the Boundary-Scan register cells concurrently with the operation of the device and without interfering with the on-chip logic.

- Test Mode Select Input (TMS)

The TAP Controller uses the logic signals received at the TMS input to control test operations. The TMS signals are sampled at the rising edge of the TCK pulse. This pin is internally pulled to Vdd when it is not driven from an external source.

- Test Data Input (TDI)

Serial input data applied to this port is fed either into the instruction register or into a test data register, depending on the sequence previously applied to the TMS input. Both registers are described in a subsequent section. The received input data is sampled at the rising edge of TCK pulses. This pin is internally pulled to Vdd when it is not driven from an external source.

- Test Data Output (TDO)

Depending on the sequence previously applied to the TMS input, the contents of either the instruction register or data register are serially shifted out towards the TDO. The data out of the TDO is clocked on the falling edge of the TCK pulses. When no data is shifted through the boundary scan cells, the TDO driver is set to a high impedance state.

- Test Reset (TRST)

Reset the JTAG scan structure. This pin is internally pulled to VDD.

Instruction Register

The MT90863 uses the public instructions defined in the IEEE 1149.1 standard. The JTAG Interface contains a two-bit instruction register. Instructions are serially loaded into the instruction register from the TDI when the TAP Controller is in its shifted-IR state. These instructions are subsequently de-coded to achieve two basic functions: to select the test data register that may operate while the instruction is current; and, to define the serial test data register path that is used to shift data between TDI and DO during data register scan-ning.

Test Data Register

As specified in IEEE 1149.1, the MT90863 JTAG Interface contains three test data registers:

- The Boundary-Scan Register

The Boundary-Scan register consists of a series of Boundary-Scan cells arranged to form a scan path around the boundary of the MT90863 core logic.

- The Bypass Register

The Bypass register is a single stage shift register that provides a one-bit path from TDI to its TDO.

- The Device Identification Register

The device identification register is a 32-bit register. The register contents are:

The LSB bit in the device identification register is the first bit clock out.

The MT90863 scan register contains 212 bits. Bit 0 in Table 23 Boundary Scan Register is the first bit clocked out. All tri-state enable bits are active high.

Device Pin	Boundary Scan Bit 0 to Bit 213		
	Tri-state Control	Output Scan Cell	Input Scan Cell
AO A1 A2 A3 A4 A5 A6 A7 DS R/W CS			$\begin{gathered} 0 \\ 1 \\ 2 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \end{gathered}$
D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 D15	$\begin{aligned} & 11 \\ & 14 \\ & 17 \\ & 20 \\ & 23 \\ & 26 \\ & 29 \\ & 32 \\ & 35 \\ & 38 \\ & 41 \\ & 44 \\ & 47 \\ & 50 \\ & 53 \\ & 56 \end{aligned}$	$\begin{aligned} & 12 \\ & 15 \\ & 18 \\ & 21 \\ & 24 \\ & 27 \\ & 30 \\ & 33 \\ & 36 \\ & 39 \\ & 42 \\ & 45 \\ & 48 \\ & 51 \\ & 54 \\ & 57 \end{aligned}$	$\begin{aligned} & 13 \\ & 16 \\ & 19 \\ & 22 \\ & 25 \\ & 28 \\ & 31 \\ & 34 \\ & 37 \\ & 40 \\ & 43 \\ & 46 \\ & 49 \\ & 52 \\ & 55 \end{aligned}$
DTA		59	
STiO STi1 STi2 STi3 STi4 STi5 STi6 STi7			$\begin{aligned} & 60 \\ & 61 \\ & 62 \\ & 63 \\ & 64 \\ & 65 \\ & 66 \\ & 67 \end{aligned}$
STi8 STi9 STi10 STi11 STi12 STi13 STi14 STi15 ODE			$\begin{aligned} & 68 \\ & 69 \\ & 70 \\ & 71 \\ & 72 \\ & 73 \\ & 74 \\ & 75 \\ & 76 \end{aligned}$

Table 23 - Boundary Scan Register Bits

Device Pin	Boundary Scan Bit 0 to Bit 213		
	Tri-state Control	Output Scan Cell	Input Scan Cell
STo0 STo1 STo2 STo3 STo4 STo5 STo6 STo7 STo8 STo9 STo10 STo11 STo12 STo13 STo14 STo15	77 79 81 83 85 87 89 91 93 95 97 99 101 103 105 107	78 80 82 84 86 88 90 92 94 96 98 100 102 104 106 108	
$\begin{gathered} \text { C16i } \\ \text { F0i } \\ \text { C4i/C8i } \\ \text { F0o } \\ \text { C4o } \end{gathered}$	$\begin{aligned} & 112 \\ & 114 \end{aligned}$	$\begin{aligned} & 113 \\ & 115 \end{aligned}$	$\begin{aligned} & 109 \\ & 110 \\ & 111 \end{aligned}$
STio0/FE0 STio1/FE1 STio2/FE2 STio3/FE3 STio4/FE4 STio5/FE5 STio6/FE6 STio7/FE7	$\begin{aligned} & 116 \\ & 119 \\ & 122 \\ & 125 \\ & 128 \\ & 131 \\ & 134 \\ & 137 \end{aligned}$	$\begin{aligned} & 117 \\ & 120 \\ & 123 \\ & 126 \\ & 129 \\ & 132 \\ & 135 \\ & 138 \end{aligned}$	$\begin{aligned} & 118 \\ & 121 \\ & 124 \\ & 127 \\ & 130 \\ & 133 \\ & 136 \\ & 139 \end{aligned}$
STio8/FE8 STio9/FE9 STio10/FE10 STio11/FE11 STio12/FE12 STio13/FE13 STio14/FE14 STi015/FE15	$\begin{aligned} & 140 \\ & 143 \\ & 146 \\ & 149 \\ & 152 \\ & 155 \\ & 158 \\ & 161 \end{aligned}$	$\begin{aligned} & 141 \\ & 144 \\ & 147 \\ & 150 \\ & 153 \\ & 156 \\ & 159 \\ & 162 \end{aligned}$	$\begin{aligned} & 142 \\ & 145 \\ & 148 \\ & 151 \\ & 154 \\ & 157 \\ & 160 \\ & 163 \end{aligned}$
STio16/FE16 STio17/FE17 STio18/FE18 STio19/FE19 STio20/FE20 STio21/FE21 STio22/FE22 STio23/FE23	$\begin{aligned} & 164 \\ & 167 \\ & 170 \\ & 173 \\ & 176 \\ & 179 \\ & 182 \\ & 185 \end{aligned}$	$\begin{aligned} & 165 \\ & 168 \\ & 171 \\ & 174 \\ & 177 \\ & 180 \\ & 183 \\ & 186 \end{aligned}$	$\begin{aligned} & 166 \\ & 169 \\ & 172 \\ & 175 \\ & 178 \\ & 181 \\ & 184 \\ & 187 \end{aligned}$
STio24 STio25 STio26 STio27 STio28 STio29 STio30 STio31 RESET	$\begin{aligned} & 188 \\ & 191 \\ & 194 \\ & 197 \\ & 200 \\ & 203 \\ & 206 \\ & 209 \end{aligned}$	$\begin{aligned} & 189 \\ & 192 \\ & 195 \\ & 198 \\ & 201 \\ & 204 \\ & 207 \\ & 210 \end{aligned}$	190 193 196 199 202 205 208 211 212

Table 23 - Boundary Scan Register Bits

Absolute Maximum Ratings*

	Parameter	Symbol	Min	Max	Units
1	Supply Voltage	V_{DD}	-0.5	5.0	V
2	Input Voltage	V_{I}	-0.5	$\mathrm{~V}_{\mathrm{DD}}+0.5$	V
3	Output Voltage	V_{O}	-0.5	$\mathrm{~V}_{\mathrm{DD}}+0.5$	V
4	Package power dissipation	P_{D}		2	W
5	Storage temperature	T_{S}	-55	+125	${ }^{\circ} \mathrm{C}$

* Exceeding these values may cause permanent damage. Functional operation under these conditions is not implied.

Recommended Operating Conditions - Voltages are with respect to ground $\left(\mathrm{V}_{s \mathrm{~s}}\right)$ unless otherwise stated.

	Characteristics	Sym	Min	Typ	Max	Units	Test Conditions
1	Operating Temperature	T_{OP}	-40		+85	${ }^{\circ} \mathrm{C}$	
2	Positive Supply	V_{DD}	3.0		3.6	V	
3	Input High Voltage	V_{IH}	$0.7 \mathrm{~V}_{\mathrm{DD}}$		V_{DD}	V	
4	Input High Voltage on 5V Tolerant Inputs	V_{HH}			5.5	V	
5	Input Low Voltage	V_{IL}	V_{SS}		$0.3 \mathrm{~V}_{\mathrm{DD}}$	V	

AC Electrical Characteristics - Voltages are with respect to ground (V_{ss}) unless otherwise stated.

		Characteristics	Sym	Min	Typ	Max	Units	Test Conditions
1	$\begin{aligned} & 1 \\ & N \\ & \text { N } \\ & \text { U } \\ & \text { T } \\ & \text { S } \end{aligned}$	Supply Current	IDD		45		mA	Output unloaded
2		Input High Voltage	V_{IH}	$0.7 \mathrm{~V}_{\mathrm{DD}}$			V	
3		Input Low Voltage	V_{IL}			$0.3 \mathrm{~V}_{\mathrm{DD}}$	V	
4		Input Leakage (input pins) Input Leakage (bi-directional pins)	$\begin{aligned} & \hline \mathrm{I}_{\mathrm{IL}} \\ & \mathrm{I}_{\mathrm{BL}} \end{aligned}$			$\begin{aligned} & 15 \\ & 50 \end{aligned}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$	$0 \leq<\mathrm{V} \leq \mathrm{V}_{\mathrm{DD}}$ See Note 1
5		Input Pin Capacitance	C_{1}			10	pF	
6	$\begin{aligned} & \text { P } \\ & \text { U } \\ & \text { T } \end{aligned}$	Output High Voltage	V_{OH}	$0.8 \mathrm{~V}_{\mathrm{DD}}$			V	$\mathrm{I}_{\mathrm{OH}}=10 \mathrm{~mA}$
7		Output Low Voltage	$\mathrm{V}_{\text {OL }}$			0.4	V	$\mathrm{I}_{\mathrm{OL}}=10 \mathrm{~mA}$
8		High Impedance Leakage	loz			5	$\mu \mathrm{A}$	$0<\mathrm{V}<\mathrm{V}_{\mathrm{DD}} \mathrm{See}$ Note 1
9		Output Pin Capacitance	C_{0}			10	pF	

Note:

1. Maximum leakage on pins (output or I / O pins in high impedance state) is over an applied voltage (V)

AC Electrical Characteristics - Timing Parameter Measurement Voltage Levels

	Characteristics	Sym	Level	Units	Conditions
1	CMOS Threshold	V_{CT}	$0.5 \mathrm{~V}_{\mathrm{DD}}$	V	
2	Rise/Fall Threshold Voltage High	V_{HM}	$0.7 \mathrm{~V}_{\mathrm{DD}}$	V	
3	Rise/Fall Threshold Voltage Low	V_{LM}	$0.3 \mathrm{~V}_{\mathrm{DD}}$	V	

* Exceeding these values may cause permanent damage. Functional operation under these conditions is not implied

AC Electrical Characteristics - Frame Pulse and CLK

	Characteristic	Sym	Min	Typ	Max	Units	Notes
1	Frame pulse width	$\mathrm{t}_{\text {FPW }}$		60		ns	ST-BUS mode
2	Frame Pulse Setup time before C16i falling	$\mathrm{t}_{\text {fPS }}$		10		ns	
3	Frame Pulse Hold Time from C16i falling	$\mathrm{t}_{\text {FPH }}$		10		ns	
4	C16i Period	t_{CP}		60		ns	
5	C16i Pulse Width High	t_{CH}		30		ns	
6	C16i Pulse Width Low	t_{CL}		30		ns	
7	Clock Rise/Fall Time	$\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$		10		ns	ST-BUS, CT Bus or HMVIP mode
8	FPo Frame pulse output width	trpow		244		ns	
9	FPo Frame Pulse output setup time before C4o falling	$\mathrm{t}_{\text {fPos }}$	10		150	ns	
10	FPo Frame Pulse output Hold Time from C4o falling	$\mathrm{t}_{\text {FPOH }}$	20	10	150	ns	
11	C4o Period	$\mathrm{t}_{\mathrm{C} 40 \mathrm{P}}$		244		ns	
12	C4o Pulse Width High	$\mathrm{t}_{\mathrm{C} 40 \mathrm{H}}$		122		ns	
13	C4o Pulse Width Low	$\mathrm{t}_{\text {C40 }}$		122		ns	
14	CT frame pulse width	$\mathrm{t}_{\text {cFPW }}$		122		ns	CT Bus mode
15	CT Frame Pulse Setup Time before C8i rising	$\mathrm{t}_{\text {CFPS }}$	45		90	ns	
16	CT Frame Pulse Hold Time from C8i rising	$\mathrm{t}_{\text {CFPH }}$	45		90	ns	
17	C8i Period	$\mathrm{t}_{\mathrm{HCP}}$		122		ns	
18	C8i Pulse Width High	$\mathrm{t}_{\mathrm{HCH}}$		61		ns	
19	C8i Pulse Width Low	$\mathrm{t}_{\mathrm{HCL}}$		61		ns	
20	HMVIP frame pulse width	$\mathrm{t}_{\text {HFPW }}$		244		ns	HMVIP mode
21	Frame Pulse Setup Time before C4i falling	$\mathrm{t}_{\text {HFPS }}$	50		150	ns	
22	Frame Pulse Hold Time from C4i falling	$\mathrm{t}_{\text {HFPH }}$	50		150	ns	
23	C4i Period	$\mathrm{t}_{\mathrm{HCP}}$		244		ns	
24	C4i Pulse Width High	$\mathrm{t}_{\text {HCH }}$		122		ns	
25	C4i Pulse Width Low	$\mathrm{t}_{\mathrm{HCL}}$		122		ns	
26	C4i/C8i Rise/Fall Time	$\mathrm{t}_{\mathrm{Hr}}, \mathrm{t}_{\mathrm{Hf}}$		10		ns	HMVIP or CT Bus mode
27	Delay between falling edge of C4i/ C 8 i and rising edge of C 16 i	$\mathrm{t}_{\text {DIF }}$	-10		10	ns	
28	Delay between falling edge of C16i and falling edge of C4o	$\mathrm{t}_{\mathrm{DC} 40}$	-10		10	ns	

AC Electrical Characteristics - Serial Streams for Backplane and Local Interfaces

	Characteristic	Sym	Min	Typ	Max	Units	Test Conditions
1	STio/STi Set-up Time	$\mathrm{t}_{\mathrm{SIS}}$		10		ns	
2	STio/STi Hold Time	$\mathrm{t}_{\mathrm{SIH}}$		20		ns	
3	STo Delay - Active to Active	$\mathrm{t}_{\mathrm{SOD}}$		40		ns	$\mathrm{C}_{\mathrm{L}}=200 \mathrm{pF}$
4	STo delay - Active to High-Z - High-Z to Active	t_{ZD}		40		ns	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{~K}, \mathrm{C}_{\mathrm{L}}=200 \mathrm{pF}$, See Note 1
5	Output Driver Enable (ODE) Delay	$\mathrm{t}_{\mathrm{ODE}}$		40	ns		

Note:

1. High Impedance is measured by pulling to the appropriate rail with R_{L}, with timing corrected to cancel time taken to discharge C_{L}.

Figure 11 - ST-BUS Timing for Stream rate of 2.048, 4.096 or $8.192 \mathrm{Mb} / \mathrm{s}$

Figure 12-CT Bus Timing for Stream rate of 2.048, 4.096 or $8.192 \mathrm{Mb} / \mathrm{s}$

Figure 13 - HMVIP Bus Timing for Stream rate of 2.048 Mb/s or 8.192 Mb/s

Figure 14 - Serial Output and External Control

AC Electrical Characteristics - Motorola Non-Multiplexed Bus Mode

	Characteristics	Sym	Min	Typ	Max	Units	Test Conditions
1	CS setup from DS falling	$\mathrm{t}_{\mathrm{cSS}}$		0		ns	
2	$\mathrm{R} / \overline{\mathrm{W}}$ setup from DS falling	$t_{\text {RWS }}$		10		ns	
3	Address setup from DS falling	$\mathrm{t}_{\text {ADS }}$			5	ns	
4	$\overline{\mathrm{CS}}$ hold after DS rising	$\mathrm{t}_{\mathrm{CSH}}$		10		ns	
5	R/W hold after DS rising	$t_{\text {RWH }}$		10		ns	
6	Address hold after DS rising	$\mathrm{t}_{\text {ADH }}$			6	ns	
7	Data setup from DTA low on read Reading registers Reading Memory	tDDR_REG tDDR_MEM			$\begin{gathered} 16 \\ 440 \end{gathered}$	ns	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$
8	Data hold on read	$\mathrm{t}_{\text {DHR }}$			11	ns	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \\ & \mathrm{R}_{\mathrm{L}}=1 \mathrm{~K} \end{aligned}$ $\text { Note } 1$
9	Data setup on write (fast write)	$t_{\text {DSW_REG }}$			2	ns	
10	Valid data delay on write (slow write)	$t_{\text {SWD }}$			150	ns	
11	Data hold on write	$\mathrm{t}_{\text {DHW }}$	5			ns	
12	Acknowledgment delay: Reading/writing registers Reading/writing memory	$t_{\text {AKD_REG }}$ $t_{\text {AKD_MEM }}$			$\begin{gathered} 40 \\ 470 \end{gathered}$	ns	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$
13	Acknowledgment hold time	$\mathrm{t}_{\text {AKH }}$			17	ns	$\begin{aligned} & \hline \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \\ & \mathrm{R}_{\mathrm{L}}=1 \mathrm{~K}, \\ & \text { Note } \\ & \hline \end{aligned}$

Note:

1. High Impedance is measured by pulling to the appropriate rail with R_{L}, with timing corrected to cancel time taken to discharge C_{L}.

Figure 16 - Motorola Non-Multiplexed Bus Timing

Ball Gate Array

120-BGA	144-BGA	160-BGA
MT90823	MT90863	MT90826

Metric Quad Flat Pack - L Suffix

Dim	44-Pin		64-Pin		100-Pin		128-Pin	
	Min	Max	Min	Max	Min	Max	Min	Max
A	-	$\begin{aligned} & 0.096 \\ & (2.45) \end{aligned}$	-	$\begin{aligned} & 0.134 \\ & (3.40) \end{aligned}$	-	$\begin{aligned} & 0.134 \\ & (3.40) \end{aligned}$	-	$\begin{aligned} & 0.154 \\ & (3.85) \end{aligned}$
A1	$\begin{gathered} \hline 0.01 \\ (0.25) \end{gathered}$	-	$\begin{gathered} \hline 0.01 \\ (0.25) \end{gathered}$	-	$\begin{gathered} 0.01 \\ (0.25) \end{gathered}$	-	0.00	$\begin{gathered} \hline 0.01 \\ (0.25) \end{gathered}$
A2	$\begin{aligned} & 0.077 \\ & (1.95) \end{aligned}$	$\begin{aligned} & 0.083 \\ & (2.10) \end{aligned}$	$\begin{gathered} 0.1 \\ (2.55) \end{gathered}$	$\begin{gathered} 0.12 \\ (3.05) \end{gathered}$	$\begin{gathered} 0.1 \\ (2.55) \end{gathered}$	$\begin{gathered} 0.12 \\ (3.05) \end{gathered}$	$\begin{aligned} & 0.125 \\ & (3.17) \end{aligned}$	$\begin{aligned} & 0.144 \\ & (3.60) \end{aligned}$
b	$\begin{gathered} \hline 0.01 \\ (0.30) \end{gathered}$	$\begin{aligned} & 0.018 \\ & (0.45) \end{aligned}$	$\begin{aligned} & 0.013 \\ & (0.35) \end{aligned}$	$\begin{gathered} 0.02 \\ (0.50) \end{gathered}$	$\begin{aligned} & 0.009 \\ & (0.22) \end{aligned}$	$\begin{aligned} & \hline 0.015 \\ & (0.38) \end{aligned}$	$\begin{aligned} & 0.019 \\ & (0.30) \end{aligned}$	$\begin{aligned} & 0.018 \\ & (0.45) \end{aligned}$
D	$\begin{gathered} \hline 0.547 \mathrm{BSC} \\ (13.90 \mathrm{BSC}) \end{gathered}$		$\begin{gathered} 0.941 \mathrm{BSC} \\ (23.90 \mathrm{BSC}) \end{gathered}$		$\begin{gathered} 0.941 \mathrm{BSC} \\ (23.90 \mathrm{BSC}) \end{gathered}$		$\begin{aligned} & \hline 1.23 \mathrm{BSC} \\ & \text { (31.2 BSC) } \end{aligned}$	
D_{1}	$\begin{gathered} \hline 0.394 \mathrm{BSC} \\ (10.00 \mathrm{BSC}) \end{gathered}$		$\begin{gathered} 0.787 \mathrm{BSC} \\ (20.00 \mathrm{BSC}) \end{gathered}$		$\begin{gathered} 0.787 \mathrm{BSC} \\ (20.00 \mathrm{BSC}) \end{gathered}$		$\begin{aligned} & 1.102 \mathrm{BSC} \\ & \text { (28.00 BSC) } \end{aligned}$	
E	$\begin{gathered} \hline 0.547 \mathrm{BSC} \\ (13.90 \mathrm{BSC}) \end{gathered}$		$\begin{aligned} & 0.705 \mathrm{BSC} \\ & \text { (17.90 BSC) } \end{aligned}$		$\begin{gathered} 0.705 \mathrm{BSC} \\ (17.90 \mathrm{BSC}) \end{gathered}$		$\begin{aligned} & 1.23 \mathrm{BSC} \\ & \text { (31.2 BSC) } \end{aligned}$	
E_{1}	$\begin{gathered} 0.394 \mathrm{BSC} \\ (10.00 \mathrm{BSC}) \end{gathered}$		$\begin{gathered} \hline 0.551 \mathrm{BSC} \\ (14.00 \mathrm{BSC}) \end{gathered}$		$\begin{gathered} 0.551 \mathrm{BSC} \\ \text { (14.00 BSC) } \end{gathered}$		$\begin{aligned} & \text { 1.102 BSC } \\ & \text { (28.00 BSC) } \end{aligned}$	
e	$\begin{aligned} & 0.031 \mathrm{BSC} \\ & \text { (0.80 BSC) } \end{aligned}$		$\begin{aligned} & 0.039 \mathrm{BSC} \\ & \text { (1.0 BSC) } \end{aligned}$		$\begin{aligned} & 0.256 \mathrm{BSC} \\ & (0.65 \mathrm{BSC}) \end{aligned}$		$\begin{aligned} & 0.031 \mathrm{BSC} \\ & \text { (0.80 BSC) } \end{aligned}$	
L	$\begin{aligned} & 0.029 \\ & (0.73) \end{aligned}$	$\begin{gathered} \hline 0.04 \\ (1.03) \end{gathered}$	$\begin{aligned} & 0.029 \\ & (0.73) \end{aligned}$	$\begin{gathered} 0.04 \\ (1.03) \end{gathered}$	$\begin{aligned} & 0.029 \\ & (0.73) \end{aligned}$	$\begin{gathered} 0.04 \\ (1.03) \end{gathered}$	$\begin{aligned} & \hline 0.029 \\ & (0.73) \end{aligned}$	$\begin{gathered} 0.04 \\ (1.03) \end{gathered}$
L1	$\begin{aligned} & \hline 0.077 \text { REF } \\ & \text { (1.95 REF) } \end{aligned}$		0.077 REF (1.95 REF)		0.077 REF (1.95 REF)		$\begin{aligned} & \hline 0.063 \mathrm{REF} \\ & \text { (1.60 REF) } \end{aligned}$	

NOTE: Governing controlling dimensions in parenthesis () are in millimeters.

Package Outlines

Dim	160-Pin		208-Pin		240-Pin	
	Min	Max	Min	Max	Min	Max
A	-	$\begin{aligned} & 0.154 \\ & (3.92) \end{aligned}$		$\begin{gathered} .161 \\ (4.10) \end{gathered}$	-	$\begin{aligned} & 0.161 \\ & (4.10) \end{aligned}$
A1		$\begin{gathered} 0.01 \\ (0.25) \end{gathered}$	$\begin{gathered} 0.01 \\ (0.25) \end{gathered}$	$\begin{gathered} 0.02 \\ (0.50) \end{gathered}$	$\begin{gathered} 0.01 \\ (0.25) \end{gathered}$	$\begin{gathered} 0.02 \\ (0.50) \end{gathered}$
A2	$\begin{aligned} & 0.125 \\ & (3.17) \end{aligned}$	$\begin{aligned} & 0.144 \\ & (3.67) \end{aligned}$	$\begin{gathered} .126 \\ (3.20) \end{gathered}$	$\begin{gathered} .142 \\ (3.60) \end{gathered}$	$\begin{gathered} 0.126 \\ (3.2) \end{gathered}$	$\begin{aligned} & 0.142 \\ & (3.60) \end{aligned}$
b	$\begin{aligned} & 0.009 \\ & (0.22) \end{aligned}$	$\begin{aligned} & \hline 0.015 \\ & (0.38) \end{aligned}$	$\begin{gathered} .007 \\ (0.17) \end{gathered}$	$\begin{aligned} & .011 \\ & (0.27) \end{aligned}$	$\begin{aligned} & \hline 0.007 \\ & (0.17) \end{aligned}$	$\begin{aligned} & \hline 0.010 \\ & (0.27) \end{aligned}$
D	$\begin{aligned} & \text { 1.23 BSC } \\ & \text { (31.2 BSC) } \end{aligned}$		$\begin{aligned} & 1.204 \\ & (30.6) \end{aligned}$		$\begin{aligned} & 1.360 \mathrm{BSC} \\ & \text { (34.6 BSC) } \end{aligned}$	
D_{1}	$\begin{aligned} & 1.102 \mathrm{BSC} \\ & (28.00 \mathrm{BSC}) \end{aligned}$		$\begin{gathered} 1.102 \\ (28.00) \\ \hline \end{gathered}$		$\begin{gathered} \hline 1.26 \mathrm{BSC} \\ \text { (32.00 BSC) } \\ \hline \end{gathered}$	
E	$\begin{gathered} \hline 1.23 \mathrm{BSC} \\ \text { (31.2 BSC) } \\ \hline \end{gathered}$		1.204 BSC (30.6 BSC)		$\begin{aligned} & 1.360 \mathrm{BSC} \\ & \text { (34.6 BSC) } \end{aligned}$	
E_{1}	$\begin{gathered} 1.102 \mathrm{BSC} \\ (28.00 \mathrm{BSC}) \\ \hline \end{gathered}$		$\begin{aligned} & 1.102 \mathrm{BSC} \\ & (28.00 \mathrm{BSC}) \\ & \hline \end{aligned}$		$\begin{gathered} 1.26 \mathrm{BSC} \\ (32.00 \mathrm{BSC}) \end{gathered}$	
e	$\begin{aligned} & 0.025 \mathrm{BSC} \\ & \text { (0.65 BSC) } \end{aligned}$		$\begin{aligned} & 0.020 \mathrm{BSC} \\ & \text { (0.50 BSC) } \end{aligned}$		$\begin{aligned} & 0.0197 \mathrm{BSC} \\ & \text { (0.50 BSC) } \end{aligned}$	
L	$\begin{aligned} & 0.029 \\ & (0.73) \end{aligned}$	$\begin{gathered} 0.04 \\ (1.03) \end{gathered}$	$\begin{aligned} & \hline 0.018 \\ & (0.45) \end{aligned}$	$\begin{aligned} & 0.029 \\ & (0.75) \end{aligned}$	$\begin{aligned} & 0.018 \\ & (0.45) \end{aligned}$	$\begin{aligned} & 0.029 \\ & (0.75) \end{aligned}$
L1	$\begin{aligned} & \text { 0.063 REF } \\ & \text { (1.60 REF) } \end{aligned}$		$\begin{aligned} & \hline 0.051 \mathrm{REF} \\ & \text { (1.30 REF) } \\ & \hline \end{aligned}$		$\begin{aligned} & \hline 0.051 \mathrm{REF} \\ & \text { (1.30 REF) } \\ & \hline \end{aligned}$	

NOTE: Governing controlling dimensions in parenthesis () are in millimeters.

http://www.mitelsemi.com

World Headquarters - Canada

Tel: +1 (613) 5922122
Fax: +1 (613) 5926909

North America
Tel: +1 (770) 4860194
Fax: +1 (770) 6318213

Asia/Pacific
Tel: +65 3336193
Fax: +65 3336192

Europe, Middle East, and Africa (EMEA)
Tel: +44 (0) 1793518528
Fax: +44 (0) 1793518581

Information relating to products and services furnished herein by Mitel Corporation or its subsidiaries (collectively "Mitel") is believed to be reliable. However, Mitel assumes no liability for errors that may appear in this publication, or for liability otherwise arising from the application or use of any such information, product or service or for any infringement of patents or other intellectual property rights owned by third parties which may result from such application or use. Neither the supply of such information or purchase of product or service conveys any license, either express or implied, under patents or other intellectual property rights owned by Mitel or licensed from third parties by Mitel, whatsoever. Purchasers of products are also hereby notified that the use of product in certain ways or in combination with Mitel, or non-Mitel furnished goods or services may infringe patents or other intellectual property rights owned by Mitel.

This publication is issued to provide information only and (unless agreed by Mitel in writing) may not be used, applied or reproduced for any purpose nor form part of any order or contract nor to be regarded as a representation relating to the products or services concerned. The products, their specifications, services and other information appearing in this publication are subject to change by Mitel without notice. No warranty or guarantee express or implied is made regarding the capability, performance or suitability of any product or service. Information concerning possible methods of use is provided as a guide only and does not constitute any guarantee that such methods of use will be satisfactory in a specific piece of equipment. It is the user's responsibility to fully determine the performance and suitability of any equipment using such information and to ensure that any publication or data used is up to date and has not been superseded. Manufacturing does not necessarily include testing of all functions or parameters. These products are not suitable for use in any medical products whose failure to perform may result in significant injury or death to the user. All products and materials are sold and services provided subject to Mitel's conditions of sale which are available on request.

M Mitel (design) and ST-BUS are registered trademarks of MITEL Corporation
Mitel Semiconductor is an ISO 9001 Registered Company
Copyright 1999 MITEL Corporation
All Rights Reserved
Printed in CANADA

