8/16-bit Data Bus Static RAM Card

Connector Type

Two-piece 68-pin

MF365A-LZCATXX
MF3129-LZCATXX
MF3257-LZCATXX
MF3513-LZCATXX
MF31M1-LZCATXX
MF32M1-LZCATXX
MF34M1-LZCATXX

1. DESCRIPTION

Mitsubishi's Static RAM cards provide large memory capacities on a device approximately the size of a credit card (85.6mm×54mm×3.3mm).

The cards use a 8/16 bit data-bus. The devices use a replaceable lithium battery to maintain data. Available in 64K byte-4M byte capacities, Mitsubishi's Static RAM cards are available with a 68-pin, two-piece connector.

2. FEATURES

- ■Uses TSOP (Thin Small Outline Package) to achieve very high memory density coupled with high reliability, without enlarging card size
- ■Electrostatic discharge protection to 15kV
- ■Buffered interface
- ■Write protect switch
- ■Attribute memory
- ■68pin

3. APPLICATIONS

■Office automation

■Data Communication

■Computers

■Industrial

■Telecommunications

■Consumer

4. PRODUCT LIST

	Item	Memory	Data Bus	Attribute	Auxiliary
Type name		capacity	width(bits)	memory	battery
MF365A-LZCATXX		64KB			
MF3129-LZCATXX		128KB			
MF3257-LZCATXX		256KB			
MF3513-LZCATXX		512KB	8/16	8KB	NO
MF31M1-LZCATXX		1MB		E^2PROM	
MF32M1-LZCATXX		2MB			
MF34M1-LZCATXX		4MB			

5. SUMMARY

MF3XXX-LZCATXX series is the Static RAM cards which has 8/16 bit changeable data-bus width. The card has a replaceable lithium battery to maintain data in memory. When the card is not use or the supply voltage drops, the battery will automatically maintain data in memory.

6. FUNCTIONAL DESCRIPTION

The function of the card is determined by the combination of the following five control signals, REG#, CE1#, CE2#, OE#, WE#; active low signals. (Please refer to section 10 FUNCTION TABLE on page 5) (1)COMMON MEMORY FUNCTION

When REG# signal is high level, the common memory area is selected.

(a)READ MODE

To read, WE# is set high level and CE1# or CE2# is set low level and the memory address is applied at inputs A0-A21(4MB). Setting OE# low level executes the reading with output at data-bus. It is available to make the following functions according to the combination of CE1# and CE2#.

When CE1# is set low level and CE2# is set high level, the card operates as an 8 bit data-bus width card. The data can be dealt with lower data-bus(D0-D7).

When both CE1# and CE2# are set low level, the card operates as a 16 bit data-bus width card.

At this mode LSB of address-bus (A0) is ignored.

In addition odd byte can be accessed through upper data-bus(D8-D15) when CE1# is set high level and CE2# is set low level. This mode is useful when handling only odd bytes in the 16 bit data-bus interface system (A0 is ignored).

When both CE1# and CE2# are set high level, the card becomes a standby mode where the card consumes low power and the data-bus is placed in high impedance state (above functions of CE1# and CE2# are the same as in the following modes).

When both OE# and WE# are set high level, the card becomes a output disable mode and the data-bus is placed in high impedance state.

(b)WRITE MODE

To write, the memory address is first applied at inputs A0-A21(4MB) and the data is applied at output pins. Setting CE1# or CE2# low level, WE# low level and OE# high level executes the writing.

(2) ATTRIBUTE MEMORY FUNCTION

When REG# is set low level, the attribute memory area is selected. MF3XXX-LZCATXX series accommodates an attribute memory of 8KB E²PROM on even addresses.

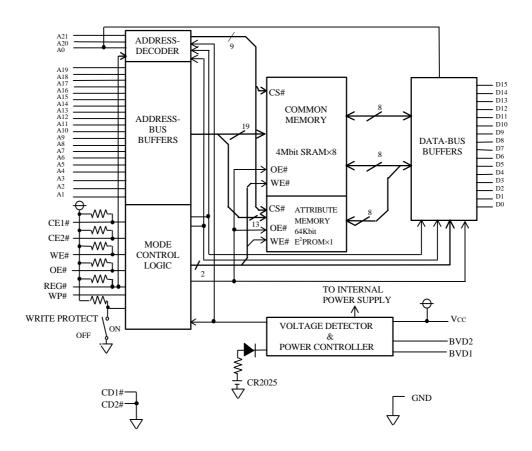
(a)READ MODE

First set CE1# and CE2# low level or high level and select residing address (even address). Data can be read by setting OE# low level and WE# high level.

(b)WRITE MODE

Writing can be done either by byte-mode or page-mode. The page-mode write is the function to be able to write data of 32 bytes in a single write cycle. The page address is set by A6 to A13 (Please note that attribute memory exists in even bytes only). To write, set OE# high level and WE# low level. Data will be latched at the rising edge of WE#. After the first load unless WE# changes from high level to low level within 30µs, the automatic erase/program starts and completes in 10ms or before. Page data can be latched if WE# transits from high level to low level before the 30µs. Page-mode write also executes erase/program operation within 10ms. The page address must be maintained during the page data loading.

7. WRITE PROTECT MODE


When the write protect switch is switched on, this card goes into a write protect mode that can read but not write data. In this mode, WP pin becomes "H" level.

At the shipment the write protect switch is switched off (Normal mode : The card can be written ; WP pin indicates "L" level).

8. PIN ASSIGNMENTS

Pin		GWEVIS	Pin		
No.	Symbol	Function	No.	Symbol	Function
1	GND	Ground	35	GND	Ground
2	D3	\	36	CD1#	Card detect 1
3	D4		37	D11	\
4	D5	Data I/O	38	D12	
5	D6		39	D13	Data I/O
6	D7)	40	D14	
7	CE1#	Card enable 1	41	D15	Ų
8	A10	Address input	42	CE2#	Card enable 2
9	OE#	Output enable	43	NC	h
10	A11)	44	NC	No connection
11	A9		45	NC	Ų
12	A8	Address input	46	A17	A17 (NC for \leq 128KB types)
13	A13	_	47	A18	A18 (NC for \leq 256KB types)
14	A14)	48	A19	A19 (NC for \leq 512KB types) Address
15	WE#	Write enable	49	A20	A20 (NC for \leq 1MB type) input
16	NC	No connection	50	A21	A21 (NC for \leq 2MB type)
17	VCC	Power supply voltage	51	VCC	Power supply voltage
18	NC	No connection	52	NC	
19	A16	\ A16 (NC for 64KB type)	53	NC	
20	A15		54	NC	
21	A12		55	NC	
22	A7		56	NC	> No connection
23	A6		57	NC	
24	A5	Address input	58	NC	
25	A4		59	NC])
26	A3		60	NC	Y
27	A2		61	REG#	Attribute memory select
28	A1		62	BVD2	Battery voltage detect 2
29	A0)	63	BVD1	Battery voltage detect 1
30 31	D0 D1	Data I/O	64 65	D8 D9	Data I/O
32	D1 D2	Data I/O	66	D9 D10	Data I/O
33	WP	Write protect	67	CD2#	Card detect 2
34	GND	Ground	68	GND	Ground
J 4	עויט	Orvaila	UO	מאט	Oround

9. BLOCK DIAGRAM (4MB) (MF34M1-LZCATXX)

10. FUNCTION TABLE

Mode	REG#	CE1#	CE2#	OE#	WE#	A0	I/O (D15~D8)	I/O (D7~D0)	Icc
Standby	X	Н	Н	X	X	X	High-impedance	High-impedance	standby
Read A (16bit) common	Н	L	L	L	Н	X	Odd Byte Data out	Even Byte Data out	Active
Write A (16bit) common	Н	L	L	Н	L	X	Odd Byte Data in	Even Byte Data in	Active
Read B (8bit) common	Н	L	Н	L	Н	L	High-impedance	Even Byte Data out	Active
	Н	L	Н	L	Н	Н	High-impedance	Odd Byte Data out	Active
Write B (8bit)	Н	L	Н	Н	L	L	High-impedance	Even Byte Data in	Active
common	Н	L	Н	Н	L	Н	High-impedance	Odd Byte Data in	Active
Read C (8bit) common	Н	Н	L	L	Н	X	Odd Byte Data out	High-impedance	Active
Write C (8bit) common	Н	Н	L	Н	L	X	Odd Byte Data in	High-impedance	Active
Output disable	X	X	X	Н	Н	X	High-impedance	High-impedance	Active
Read A (16bit) attribute	L	L	L	L	Н	X	Data out (unknown)	Even Byte Data out	Active
Read B (8bit) attribute	L	L	Н	L	Н	L	High-impedance	Even Byte Data out	Active
	L	L	Н	L	Н	Н	High-impedance	Data out (unknown)	Active
Read C (8bit) attribute	L	Н	L	L	Н	X	Data out (unknown)	High-impedance	Active
Write A (16bit) attribute	L	L	L	Н	L	X	don't care	Even Byte Data in	Active
Write B (8bit)	L	L	Н	Н	L	L	don't care	Even Byte Data in	Active
attribute	L	L	Н	Н	L	Н	don't care	don't care	Active
Write C (8bit) attribute	L	Н	L	Н	L	X	don't care	don't care	Active

Note 1 : H=Vih, L=Vil, X=Vih or Vil

11. ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Conditions	Ratings	Unit
Vcc	Supply voltage		-0.3~6.0	V
VI	Input voltage	With respect to GND	-0.3~VCC+0.3	V
Vo	Output voltage		0~VCC	V
Topr1	Operating temperature 1	Read, Write Operation	0~60	°C
Topr2	Operating temperature 2	Data retention	0~60	°C
Tstg	Storage temperature	Excludes data retention	-20~70	°C

12. RECOMMENDED OPERATING CONDITIONS (Ta=0~55°C, unless otherwise noted)

Sumbol	December		T I :4		
Symbol	Parameter	Min.	Тур.	Max.	Unit
Vcc	Vcc Supply voltage	4.75	5.0	5.25	V
GND	System ground		0		V
VIH	High input voltage	2.4		VCC	V
VIL	Low input voltage	0		0.8	V

13. ELECTRICAL CHARACTERISTICS (Ta=0~55°C, Vcc=5V±5%, unless otherwise noted)

Symbol	Parameter		Test conditions			Limits		Unit
					Min.	Тур.	Max.	
Vон	High output voltage	Iон= -1.0mA			2.4			V
Vol	Low output voltage	IoL=2mA					0.4	V
Іін	High input current	V _I =V _{cc} V					10	μΑ
IIL	Low input current	VI=0V	CE1#, CE2#, WI	E#, OE#, REG#	-10		-70	μΑ
			Other inputs				-10	
Iozh	High output current	CE1#=CE2#=	VIH or OE#=VIH V	VE#=Vih,			10	μΑ
	in off state	Vo=Vcc						
Iozl	Low output current	CE1#=CE2#=	VIH or OE#=VIH V	VE#=Vih,			-10	μΑ
	in off state	Vo=0V						
Icc 1 • 1	Active supply	CE1#=CE2#=	VIL, Other inputs	64KB~512KB			170	mA
	current 1	=VIH or VIL,C	Outputs=open	1MB~4MB			230	
Icc 1 • 2	Active supply	CE1#=CE2# ≤	≤ 0.2 V, Other	64KB~512KB			160	mA
	current 2	inputs $\leq 0.2V$	or \geq Vcc-0.2V,					
		Outputs=open		1MB~4MB			220	
Icc 2 • 1	Standby supply	CE1#=CE2#=	VIH	64KB~4MB			10	mA
	current 1	Other inputs=	VIH or VIL					
Icc 2 • 2	Standby supply	CE1#=CE2# ≥	≥ Vcc-0.2V	64KB~512KB			0.45	mA
	current 2	Other inputs ≤	≤ 0.2V or	1MB~4MB			0.65	
		≥ Vcc-0.2V	=					
VBDET1	Battery detect	Vcc=5V, Ta=25°C			2.27	2.37	2.47	V
	reference voltage 1		, -					
VBDET2	Battery detect	Vcc=5V, Ta=2	25°C		2.55	2.65	2.75	V
	reference voltage 2							

Note 2: Currents flowing into the card are taken as positive (unsigned).

14. CAPACITANCE

Symbol Parameter		Test conditions		Limits			
Symbol	Farameter	Test conditions		Тур.	Max.	Unit	
CI	Input capacitance	VI=GND, vi=25mVrms f=1MHz, Ta=25°C			30	pF	
Со	Output Capacitance	Vo=GND, vo=25mVrms f=1MHz, Ta=25°C			20	pF	

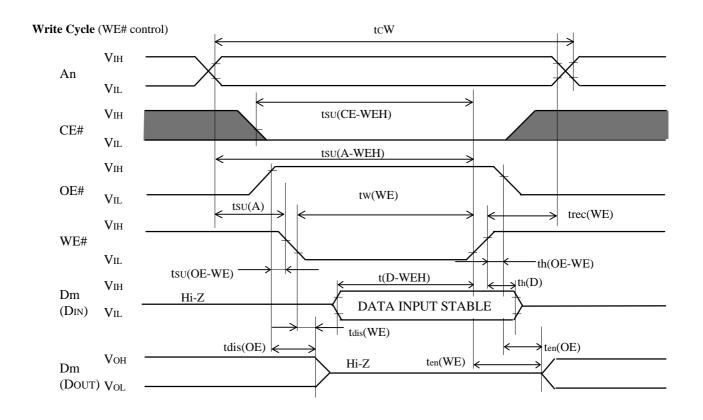
Note 4: These parameters are not 100% tested.

^{3 :} Typical values are measured at Vcc=5V, Ta=25°C.

15. SWITCHING CHARACTERISTICS

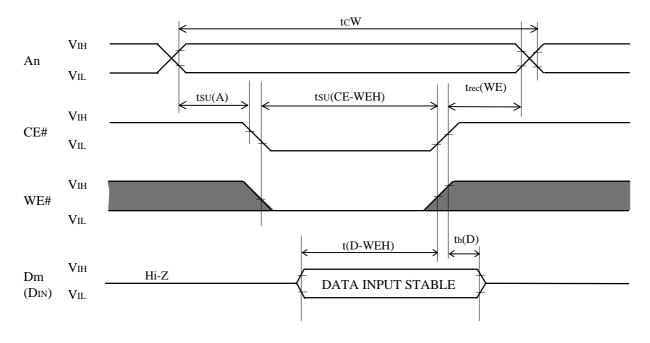
Read Cycle (Ta=0~55°C, VCC=5V±5%, unless otherwise noted)

Symbol	Parameter	Lin	nits	Unit
		Min.	Max.	
tcR	Read cycle time	150		ns
ta(A)	Address access time		150	ns
ta(CE)	Card enable access time		150	ns
ta(OE)	Output enable access time		75	ns
tdis(CE)	Output disable time (from CE#)		75	ns
tdis(OE)	Output disable time (from OE#)		75	ns
ten(CE)	Output enable time (from CE#)	5		ns
ten(OE)	Output enable time (from OE#)	5		ns
tv(A)	Data valid time (after address change)	0		ns


16. TIMING REQUIREMENTS

Write Cycle (Ta=0~55°C, Vcc=5V±5%, unless otherwise noted)

Symbol	Parameter	Lin	nits	Unit
		Min.	Max.	
tcW	Write cycle time	150		ns
tw(WE)	Write pulse width	80		ns
tsu(A)	Address set up time	20		ns
tsu(A-WEH)	Address set up time with respect to WE# high	100		ns
tsu(CE-WEH)	Card enable set up time with respect to WE# high	100		ns
t(D-WEH)	Data set up time with respect to WE# high	50		ns
th(D)	Data hold time	20		ns
trec(WE)	Write recovery time	20		ns
tdis(WE)	Output disable time (from WE#)		75	ns
tdis(OE)	Output disable time (from OE#)		75	ns
ten(WE)	Output enable time (from WE#)	5		ns
ten(OE)	Output enable time (from OE#)	5		ns
tsu(OE-WE)	OE# set up time with respect to WE# low	10		ns
th(OE-WE)	OE# hold time with respect to WE# high	10		ns


TIMING DIAGRAM Read Cycle tcR V_{IH} An V_{IL} ta(A) tv(A) ta(CE) V_{IH} CE# $V_{IL} \\$ ten(CE) tdis(CE) V_{IH} > ta(OE) OE# $V_{IL} \\$ ten(OE) tdis(OE) Von Hi-Z Dm **OUTPUT VALID** (DOUT) VOL

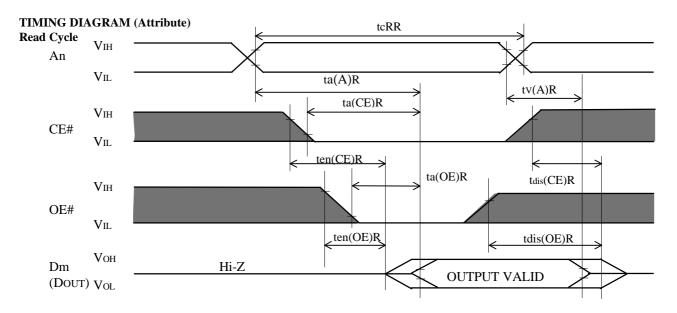
WE#="H" level REG#="H" level

REG#="H" level

Write Cycle (CE# control)

OE#="H" level REG#="H" level

17. SWITCHING CHARACTERISTICS (Attribute)

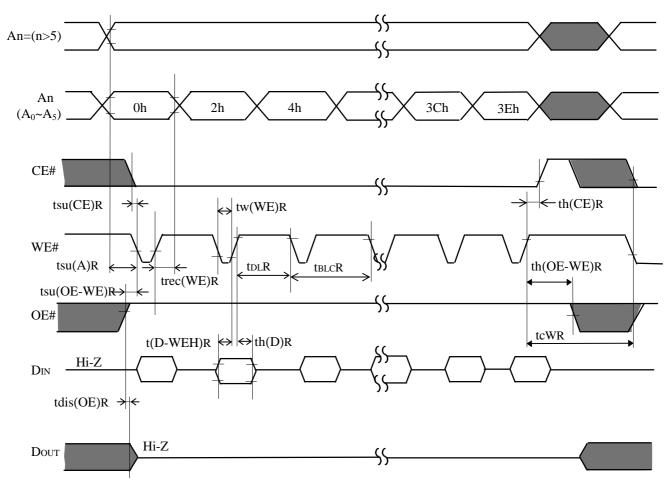

Read Cycle (Ta=0~55°C, Vcc=5V±5%, unless otherwise noted)

Symbol	Parameter	Lin	nits	Unit
		Min.	Max.	
tcRR	Read cycle time	300		ns
ta(A)R	Address access time		300	ns
ta(CE)R	Card enable access time		300	ns
ta(OE)R	Output enable access time		150	ns
tdis(CE)R	Output disable time (from CE#)		100	ns
tdis(OE)R	Output disable time (from OE#)		100	ns
ten(CE)R	Output enable time (from CE#)	5		ns
ten(OE)R	Output enable time (from OE#)	5		ns
tV(A)R	Data valid time after address change	0		ns

18. TIMING REQUIREMENTS (Attribute)

Write Cycle (Ta=0~55°C, Vcc=5V±5%, unless otherwise noted)

Symbol	Parameter	Lin	nits	Unit
		Min.	Max.	
tsu(A)R	Address setup time	30		ns
tsu(CE)R	CE# setup time	40		ns
th(CE)R	CE# hold time	30		ns
t(D-WEH)R	Data setup time	120		ns
th(D)R	Data hold time	40		ns
tsu(OE-WE)R	OE# setup time	30		ns
th(OE-WE)R	OE# hold time	40		ns
tw(WE)R	Write pulse width	170		ns
tdlR	Data latch time	120		ns
tBLCR	Byte load cycle time	0.3	30	μs
tcWR	Write cycle time	10		ms
ten(OE)R	Output enable time from OE#	5		ns
trec(WE)R	Write recovery time	30		ns


WE#="H" level REG#="L" level

BYTE WRITE TIMING CHART

REG#="L" level

PAGE MODE WRITE TIMING CHART

REG#="L" level

Note 5: Test Conditions

Input pulse levels : VIL=0.4V, VIH=2.8V

Input pulse rise, fall time : tr=tf=10ns

Reference voltage

 $\begin{array}{ll} \text{Input} & : \text{Vil} = 0.8 \text{V}, \text{Vih} = 2.4 \text{V} \\ \text{Output} & : \text{Vol} = 0.8 \text{V}, \text{Voh} = 2.0 \text{V} \\ \end{array}$

(ten and tdis are measured when output voltage is \pm 500mV from steady state.)

Load : 100pF + 1 TTL gate

5pF + 1 TTL gate (at ten and tdis measuring)

6: Indicates the don't care input

7: Writing is executed in overlap of CE# and WE# are "L" level. (only for Common Memory)

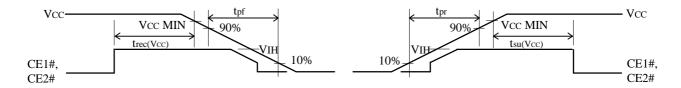
8 : Don't apply inverted phase signal externally when Dm pin is in output mode.

9 : CE# is indicated as follows:

Read A/Write A: CE#=CE1#=CE2#

Read B/Write B : CE#=CE1#, CE2#="H" level Read C/Write C : CE#=CE2#, CE1#="H" level

19. ELECTRICAL CHARACTERISTICS


BATTERY BACKUP (Ta=0~55°C, unless otherwise noted)

Symbol	Parameter	Test condi	ions		Limits		Unit
				Min.	Тур.	Max.	
VBATT	Back-up enable battery voltage	All pins open		2.6			V
Vi(CE)	Card enable voltage	2.4V≤VCC≤5.25°	V	2.4			V
		0V≤VCC<2.4V		Vcc-0.1	Vcc	Vcc+0.1	
			64KB			3	
			128KB			3	
		All pins open,	256KB			3	
	Battery back-up supply current	VBATT=3V,	512KB			5	μΑ
		Ta=25°C	1MB			3	
			2MB			5	
Icc			4MB			9	
(Bup)			64KB			30	
			128KB			30	
		All pins open,	256KB			30	
	Battery back-up supply current	VBATT=3V	512KB			50	μΑ
			1MB		•	30	
			2MB		•	50	
			4MB		•	90	

20. TIMING REQUIREMENTS (Ta=0~55°C, unless otherwise noted)

Symbol	Parameter	Limits			Unit
		Min.	Тур.	Max.	
tpr	Power supply rise time	0.1		300	ms
tpf	Power supply fall time	3		300	ms
tsu(Vcc)	Setup time at power on	20			ms
trec(Vcc)	Recovery time at power off	1000			ns

CARD INSERTION/REMOVAL TIMING DIAGRAM

21. BATTERY SPECIFICATIONS

Please use the following coin type lithium battery.

Type of main battery; CR2025 or equivalents

21.1 BATTERY LIFE EXPECTANCY

The calculated main battery's life expectancies are as follows.

Card Type	main battery's life (when the card is left continuously)
MF365A-LZCATXX	5.9years
MF3129-LZCATXX	5.9years
MF3257-LZCATXX	5.9years
MF3513-LZCATXX	3.6years
MF31M1-LZCATXX	5.9years
MF32M1-LZCATXX	3.6years
MF34M1-LZCATXX	2.0years

Conditions; Temperature : 25°C Humidity : 60%RH

22. CONNECTOR

The number of card insertion and removal are as follows.

Office environment 10000 times min. at speed of 10 cycles/min. Harsh environment 5000 times min. at speed of 10 cycles/min.

23. CARD WEIGHT about 30g

24. UL CLASS OF MAIN CARD PARTS

(1)MAIN FRAME UL94V-0 (2)PCB UL94V-0 (3)PLASTIC PART OF CONNECTOR UL94V-0

25. THE BATTERY VOLTAGE DETECT SIGNALS (BVD1,2)

BVD1	BVD2	Comment	
Н	Н	Battery operational	
Н	L	Battery operational, but battery should be replaced	
L	L	Battery and data integrity is not kept	

Note10. The battery voltage detect signals indicate the present state of the battery. They do not guarantee the data retention.

26.CONCERNING THE SECURITY OF DATA

There is always the possibility that a soft-error (this malfunction is not permanent hence it is called soft and the data can be restored by rewriting) may occur with semiconductor products.

When keeping the important data within an IC card, remember to give due consideration to safety when making your circuit designs, with appropriate measures such as

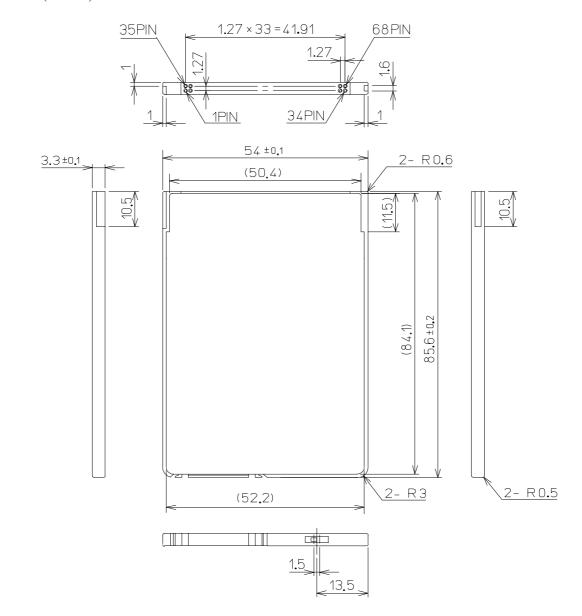
- (1) Keeping multiple copies of the data.
- (2) Addition of ECC or CRC by software or hardware.

– \triangle Warning (if card with battery / card with auxiliary battery) –

- (1)Do not charge, short, disassemble, deform, heat, or throw the batteries into fire, as they may ignite, overheat, rupture or explode.
- (2)Place the batteries out of the reach of children. If somebody swallows them, they should see a doctor immediately.
- (3)When discarding or storing the batteries, wrap them individually with cellophane tape or other nonconductive material. If they are positioned in contact with any other metals or batteries, they may explode, rupture or leak electrolyte solution.

- /!\ Caution

This product is not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor when considering the use of a product contained herein for a special applications, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.


Keep safety first in your circuit designs!

Mitsubishi Electric Corporation puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage. Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (1)placement of substitutive, auxiliary circuits,(2)use of non-flammable material or (3)prevention against any malfunction or mishap.

Notes regarding these materials

- •These materials are intended as a reference to assist our customers in the selection of the Mitsubishi semiconductor product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Mitsubishi Electric Corporation or a third party.
- Mitsubishi Electric Corporation assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data, diagrams, charts or circuit application examples contained in these materials.
- All information contained in these materials, including product data, diagrams and charts, represent
 information on products at the time of publication of these materials, and are subject to change by Mitsubishi
 Electric Corporation without notice due to product improvements or other reasons. It is therefore
 recommended that customers contact Mitsubishi Electric Corporation or an authorized Mitsubishi
 Semiconductor product distributor for the latest product information before purchasing a product listed
 herein.
- For instruction on proper use of the IC card, thoroughly read the manual attached to the product before use. After reading please store the manual in s safe place for future reference.
- The prior written approval of Mitsubishi Electric Corporation is necessary to reprint or reproduce in whole or in part these materials.
- If these products or technologies are subject the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than approved destination. Any diversion or re-export contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited.
- Please contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor for further details on these materials or the products contained therein.

OUTLINE(68P-012)

