MITSUBISHI < CONTROL / DRIVER IC>

28

27 V

26

25 TP

24 Ci

23 Rs

22

U

W

Vcc2

15

16

18

19

20

21

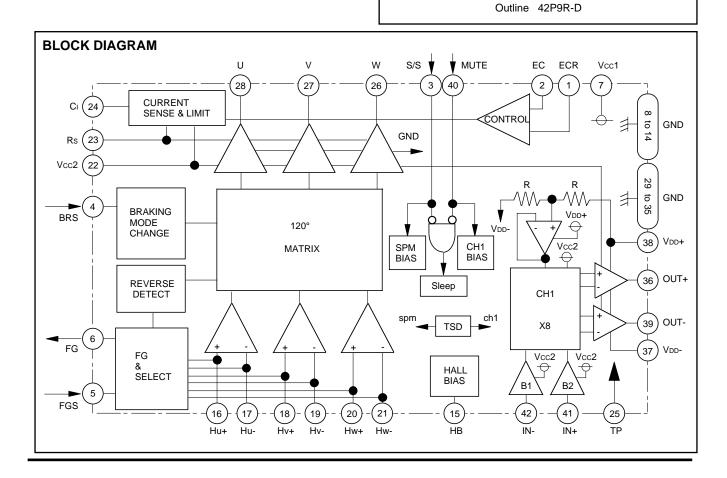
HΒ

Hu+

Hu- 17

 H_{V+}

Hv-


Hw+

Hw

M56786FP

SPINDLE MOTOR AND 1CH ACTUATOR DRIVER

DESCRIPTION **PIN CONFIGURATION (TOP VIEW)** The M56786FP is a semiconductor integrated circuit in order to drive the spindle motor and 1ch actuator. ECR IN- \bigcirc 1 42 **FEATURES** 2 41 IN+ EC • 3.3V DSP available. • Low power dissipation & low motor echo noise. S/S 3 40 MUTE Large power dissipation package(Power Package). OUT-BRS 4 39 High motor drive current. Wide dynamic range. 5 38 Vdd+ FGS • Motor current control for both motor torque directions. 6 37 Vdd-FG • Reverse torque mode select [SHORT BRAKING,etc]. Sleep mode. 7 36 OUT+ Vcc1 • FG signal output terminal. 8 35 FG pulse select. 9 • Automatic stop. • Low saturation voltage □ 10 11 12 13 14 M56786FP • Wide power supply voltage range(4.5V–13.2V) GND GND **APPLICATION** CD-ROM, DVD, DVD-ROM, DVD-RAM etc.

MITSUBISHI < CONTROL / DRIVER IC>

M56786FP

SPINDLE MOTOR AND 1CH ACTUATOR DRIVER

Pin No.	Symbol	Function	Pin No.	Symbol	Function		
1	ECR	The reference voltage for EC	22	Vcc2	12V supply voltage		
2	EC	Motor speed control	23	Rs	Motor current sense		
3	S/S	Start / Stop for spindle driver	24	Сі	Phase Compensation		
4	BRS	Reverse torque mode select	25	TP	Test Note1		
5	FGS	FG pulse select	26	W	Motor drive output W		
6	FG	Frequency generator output	Ð	V	Motor drive output V		
1	Vcc1	5V supply voltage	28	U	Motor drive output U		
8-14	GND	GND	29-35	GND	GND		
(15)	HB	Bias for Hall Sensor	36	OUT+	Non-inverted output of actuator driver		
16	Hu+	Hu+ Sensor amp. input	37	VDD-	GND of actuator driver		
17	Hu-	Hu- Sensor amp. input	38	VDD+	Power supply of actuator driver		
18	Hv+	Hv+ Sensor amp. input	39	OUT-	Inverted output of actuator driver		
19	Hv-	Hv- Sensor amp. input	40	MUTE	Mute of actuator driver		
20	Hw+	Hw+ Sensor amp. input	(41)	IN+	Non-inverted input of actuator driver		
21)	Hw-	Hw- Sensor amp. input	(42)	IN-	Inverted input of actuator driver		

PIN DESCRIPTION

*Pull-up resistors (10kohm) are included in the circuits connected to pin[FG]. *Note1. The pin TP is test terminal. Please make an open the pin TP.

ABSOLUTE MAXIMUM RATING (Ta=25°C)

Symbol	Parameter	Conditions	Rating	Unit
Rs	Motor supply voltage	@ pin	15	V
Vcc2	Power supply 2 voltage	22 pin	15	V
Vcc1	Power supply 1 voltage	⑦ pin	7.0	V
Vdd+	Power supply 3 voltage	38 pin	15	V
lo1	SPM Output current	Note 2	1.2	A
lo2	ATC Output Current	Note 2	0.7	A
VH(c)	Sensor amp. Differential input range	(6-2) pins	4.5	V
Vin	Maximum voltage of input terminals	(1,2,3,4,5,16-2),40 pin	0-Vcc1	V
VIII	Maximum voltage of input terminals	23, (4), (42 pin	0-Vcc2	V
Pt	Power dissipation	Free Air	1.2	W
Κθ	Thermal derating	Free Air	9.6	mW/°C
Tj	Junction temperature		150	°C
Topr	Operating temperature		-20-+75	°C
Tstg	Storage temperature		-40-+125	°C

*Note2 ; The ICs must be operated within the Pt (power dissipation) or the area of safety operation. *Note3 ; The pin[Tp] is a test terminal. Please make open this terminal. *Note4 ; Please don't connect directly the external power supply to the@,@,@,@,@,@,@,@,@,@,@,pin.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter		Unit		
Symbol	Falameter	Min.	Тур.	Max.	Unit
Vcc1	Power supply 1	4.5	5.0	5.5	V
Vcc2	Power supply 2	4.5	12.0	13.2	V
Vdd+	Power supply 3	4.5	12.0	13.2	V
lo1	SPM Output drive current			700	mA
lo2	ACT Output drive current			700	mA

SPINDLE MOTOR AND 1CH ACTUATOR DRIVER

ELECTRICAL CHARACTERISTICS

(Vcc1=5V, Vcc2=12V, Vdd+=5V, Vdd-=GND, Ta=25°C unless otherwise noted.)

Symbol	Parameter	Conditions		Limits		Unit
Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
Isleep	Sleep Mode Supply current	Vcc1 & Vcc2 pin total Current (at S/S pin, MUTE pin low or open)			10	μΑ
lcc	Supply current	Vcc1 & Vcc2 pin total Current (EC=ECR=1.65V) [S/S pin, MUTE pin High]		19	28	mA
Vsat	Saturation voltage	Top and Bottom saturation voltage.(Load current:500mA)		1.2	1.9	V
ECdead-	Control voltage dead zone	EC <ecr< td=""><td>-60</td><td>-30</td><td>0</td><td>mV</td></ecr<>	-60	-30	0	mV
ECdead+	Control voltage dead zone	EC>ECR	0	+30	+60	IIIV
ECR	Reference voltage Input range	① pin(it is possible to input 0 to 5V)	0	1.65	3.3	V
EC	Control voltage Input range	② pin(it is possible to input 0 to 5V)	0	1.65	3.3	V
Gio	Control gain	Io=Gio/Rsense [A/V]	0.34	0.4	0.46	V/V
Vlim	Control limit	Ilim=Vlim/Rsense [A]	0.27	0.3	0.33	V
VH com	Hall sensor amp common mode input range	(6)-@ pins	1.3		Vcc1-1.3	V
VHmin	Hall sensor amp. input signal level	(a)−@ pins	60	120	_	mVp-p
VHb	Hall bias terminal output voltage	Load current (IHb)=10mA.	0.6	0.85	1.2	V
IHb	Hall bias terminal sink current			—	30	mA
Von	Motor start voltage	[S/S]pin input voltage when it starts up the motor. *The IC is in the active condition. *The hall bias is available.	2.0			v
Voff	Motor stop voltage	[S/S]pin input voltage when it stops the motor. *The IC is in the sleep condition. *The hall bias is off.			0.8	V
ViH1	BRS input high voltage	BRS input voltage that the short braking is selected when the reverse torque.	3.6			V
ViM	BRS input middle voltage	BRS input voltage that the free run is selected when the reverse torque.	1.6		2.2	V
ViL1	BRS input low voltage	BRS input voltage that the reverse braking is selected when the reverse torque.			0.8	V

*Note3. The ViM is the limit in case of external voltage input control. The free run mode is selected when the BRS pin is open, too.

SPINDLE MOTOR AND 1CH ACTUATOR DRIVER

ELECTRICAL CHARACTERISTICS

(Vcc1=5V, Vcc2=12V, Vdd+=5V, Vdd-=GND, Ta=25°C unless otherwise noted.)

Symbol	Parameter	Conditions		Limits			
Symbol	i arameter	Conditions	Min.	Тур.	Max.	Unit	
ViL2	Logic input Low voltage	[FGS] input voltage when it is LOW.			0.8	V	
Vol	[FG] pin output low voltage	at lo current=1mA			0.5	V	
ViH2	Logic input high voltage	[FGS] input voltage when it is HIGH.	2.0			V	

ELECTRICAL CHARACTERISTICS

(Vcc1=5V, Vcc2=12V, Vdd+=5V, Vdd-=GND, Ta=25°C unless otherwise noted.)

Symbol	Parameter	Conditions		Limits			
Symbol	Falalletei	Conditions	Min.	Тур.	Max.	Unit	
Vsat2	ACT Saturation voltage	Top and Bottom saturation voltage. Load current 0.5A (bootstrap)		0.7	1.0	V	
Voff2	output offset voltage	IN(+)= IN(-)= 1.65V	-47		47	mV	
Gain	Voltage Gain between input and output	{OUT(+)-OUT(-)} (IN(+) - IN(-))	7.2	8.0	8.8	V/V	
		Vcc2 = 12 V	0	—	8.0	V	
VinIN	IN-,IN+ input voltage range	Vcc2 = 5 V VDD+ = 5 V	0		3.0	V	
linIN	IN-,IN+ input current	IN(+) = IN(-) = 1.65V	-2		0	μA	
Vmute-on	Mute-on voltage	Mute-on		—	0.8	V	
Vmute-off	Mute-off voltage	Mute-off	2.0			V	
Imute	Mute terminal input current	Mute terminal input current (at 5V input voltage)			250	μΑ	

THERMAL CHARACTERISTICS

(Vcc1=5V, Vcc2=12V, Vdd+=5V, Vdd-=GND, Ta=25°C unless otherwise noted.)

Symbol	Parameter	Function start temperature of IC			Function stop temperature of IC			Unit
		Min.	Тур.	Max.	Min.	Тур.	Max.	
TSD	Thermal Shut Down	—	165			125		°C

SPINDLE MOTOR AND 1CH ACTUATOR DRIVER

THE RELATIONSHIP WITH I/O CONTROL AND THE BRAKING MODE

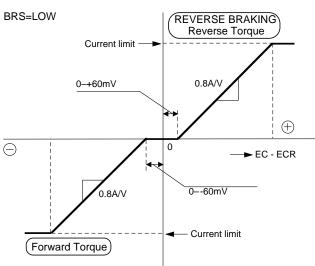
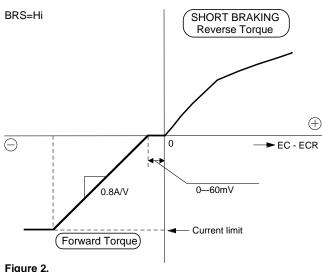
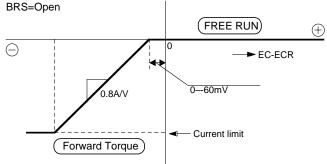



Figure 1.

is shown in Figure 1,2 and 3. The current gain is 0.8A/V(at sensing resistor:0.5ohm) in forward torque directions, and the dead zone is from0mV to 60mV. When the reverse brake mode(BRS=Lo) is selected, the coil current gain under the reverse torque control is the same with in


The braking mode is selected flexibly by using the BRS terminal. The relationship between the EC-ECR (the difference between

EC<(control voltage> and ECR<reference voltage>) and the torque

forward torque directions.

When the short brake mode(BRS=Hi) is selected, the coil current under the reverse torque control depends on the back emf. and the coil resistance.

Figure 2.

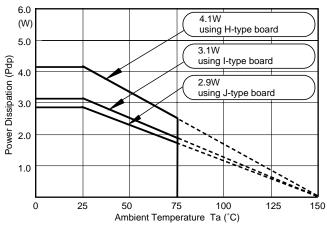

When the free run mode(BRS=open) is selected, the coil current under the reverse torque control (EC-ECR>0) becomes zero and in free run situation.

Figure 3.

MITSUBISHI <CONTROL / DRIVER IC>

M56786FP

SPINDLE MOTOR AND 1CH ACTUATOR DRIVER

THERMAL DERATING

This IC's package is POWER-SSOP, so improving the board on which the IC is mounted enables a large power dissipation without a heat sink.

For example, using an 1 layer glass epoxy resin board, the IC's power dissipation is 2.9W at least. And it comes to 4.1W by using an improved 2 layer board.

The information of the H, I, J type board is shown in the board information.

SPINDLE MOTOR AND 1CH ACTUATOR DRIVER

HALL AMPLIFIER INPUT AND COMMUTATION

The relationship between the hall amplifier inputs voltage and the motor current outputs is shown in Figure 4.

Figure 4.

BRAKING MODE SELECT FUNCTION

Braking mode select [BRS] pin				
HIGH	SHORT BRAKE			
OPEN	FREE RUN			
LOW	REVERSE BRAKE			

Figure 5.

FG FUNCTION

FG pulse select (FGSpin)				
LOW or OPEN HIGH				
NX1 pulse	NX3 pulse			

Figure 6.

SLEEP MODE FUNCTION and MUTE FUNCTION

S/S	MUTE	Spindle Hall bias	Actuator CIRCUIT	BIAS CIRCUIT	TSD CIRCUIT
Н	Н	ON	ON	ON	ON
Н	L,OPEN	ON	OFF	ON	ON
L,OPEN	Н	OFF	ON	ON	ON
L,OPEN	L,OPEN	OFF	OFF	OFF	OFF

Figure 7.

It is possible to select three kinds of mode [the reverse braking, the short braking and the free run] in reverse torque by logic control using the BRS terminal.

Figure 5 shows the function table of the braking mode select.

It is the reverse braking when BRS is LOW, the short braking when BRS is HIGH and the free run when BRS is OPEN.

It is possible for user to switch the output pulse numeric by external logic control using FG pulse select terminal [FGS]. Figure 6 shows the FG pulse select function.

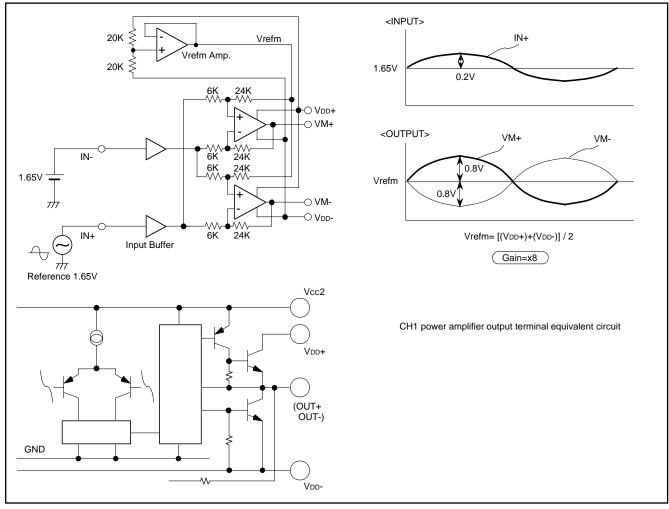
The FG pin outputs the square pulse signal synchronizing with the hall inputs [Hv+ and Hv-] timming when FGS=LOW or OPEN. When FGS=HIGH, it outputs the square pulse signal of 3 times. The FG pin is pulled up to Voc1 by an internal resistor [two

The FG pin is pulled-up to Vcc1 by an internal resistor [typ. 10Kohm].

This IC has the S/S terminal (S/S) for ON/OFF of the Spindle motor drive and the MUTE terminal (MUTE) for ON/OFF of the actuator drive.

It is possible to control ON / OFF of each circuit (SPM, Actuator) by external logic inputs.

The figure 7 shows its function.


In case of both S/S and MUTE is LOW or OPEN, the bias of all circuit becomes OFF[Current is zero].

Therefore, this mode is available in order to reduce the power dissipation when the waiting mode.

MITSUBISHI <CONTROL / DRIVER IC>

M56786FP

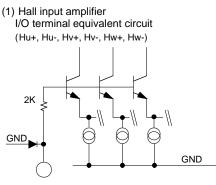
SPINDLE MOTOR AND 1CH ACTUATOR DRIVER

I/O CHARACTERISTICS of ACTUATOR DRIVE PART

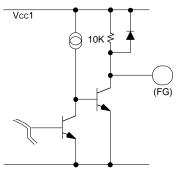
Figure 8.

The power amplifiers of CH1 is shown in Figure 8.

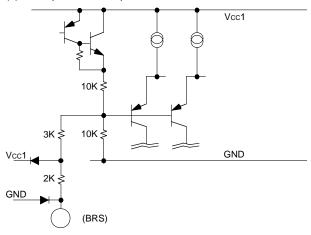
The power supplies is VD+ and VD-. Generally, the VD- pin is connected to GND(0V). Also, it is possible to be connected to other power supply larger than 0 volts (ex:5V). The source side of the power amplifier output stage consists of a

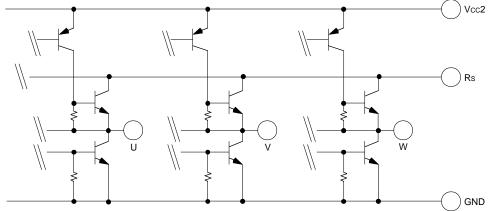

The source side of the power amplifier output stage consists of a PNP and a NPN. The emitta of the PNP is connected to Vcc2. So, the power of the PNP supplies can be adjusted externally.

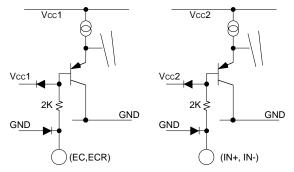
MITSUBISHI <CONTROL / DRIVER IC>

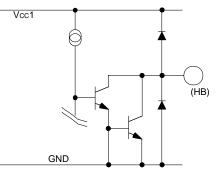

M56786FP

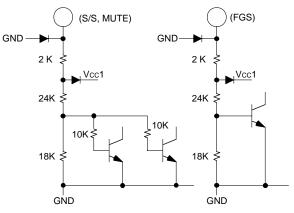
SPINDLE MOTOR AND 1CH ACTUATOR DRIVER


I/O terminal Equivalent circuit

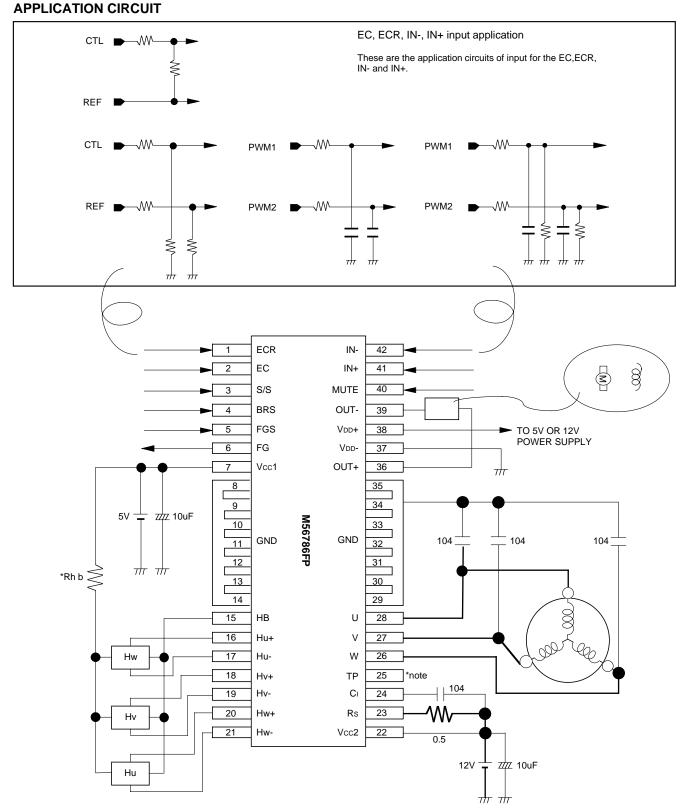

(3)FG output terminal equivalent circuit


(5)BRS input terminal equivalent circuit


(7)Spindle driver output stage equivalent circuit


(2)IN+, IN-, EC, ECR input terminal equivalent circuit

(4)HB output terminal equivalent circuit


(6)S/S, MUTE, FGS input terminal equivalent circuit

MITSUBISHI < CONTROL / DRIVER IC>

M56786FP

SPINDLE MOTOR AND 1CH ACTUATOR DRIVER

*The Rh b is a resistor in order to adjust the hall output voltage. Please fix as to be \pm 100–130mV for hall output voltage.