67108864-BIT (1048576-WORD BY 64-BIT)SynchronousDRAM

DESCRIPTION

The MH1S64CWXTJ is 1048576-word by 64-bit Synchronous DRAM module. This consists of four industry standard 1Mx16 Synchronous DRAMs in TSOP and one industory standard EEPROM in TSSOP.

The mounting of TSOP on a card edge Dual Inline package provides any application where high densities and large quantities of memory are required.

This is a socket type - memory modules, suitable for easy interchange or addition of modules.

FEATURES

	Frequency	CLK Access Time (Component SDRAM)
-12	83MHz	8ns(CL=3)
-15	67MHz	9.5ns (CL=2)
-1539	67MHz	9ns (CL=3)

•Utilizes industry standard 1M x 16 Synchronous DRAMs TSOP and industry standard EEPROM in TSSOP

- •168-pin (84-pin dual in-line package)
- •single 3.3V±0.3V power supply
- •Clock frequency 83MHz/67MHz
- Fully synchronous operation referenced to clock rising edge
- Dual bank operation controlled by BA(Bank Address)
- •/CAS latency- 1/2/3(programmable)
- Burst length- 1/2/4/8(programmable)
- •Burst type- sequential / interleave(programmable)
- Column access random
- Auto precharge / All bank precharge controlled by A10
- Auto refresh and Self refresh
- •4096 refresh cycle /64ms
- •LVTTL Interface

APPLICATION

main memory or graphic memory in computer systems

SPD table

Byte No.	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	126	127
MH1S64CWXTJ-12	80	08	04	0C	08	01	40	00	01	C0	80	00	80	00	06	01	05	02	06	01	01	83	06
MH1S64CWXTJ-15	80	08	04	0C	80	01	40	00	01	F0	95	00	80	00	06	01	05	02	06	01	01	66	06
MH1S64CWXTJ-1539	80	08	04	0C	08	01	40	00	01	F0	90	00	80	00	04	01	05	02	04	01	01	66	04

MIT-DS-0064-0.2

Oct.28.1996

67108864-BIT (1048576-WORD BY 64-BIT)SynchronousDRAM

PIN CONFIGURATION

PIN NO.	PIN NAME						
1	VSS	43	VSS	85	VSS	127	VSS
2	DQ0	44	NC	86	DQ32	128	CKE
3	DQ1	45	/S2	87	DQ33	129	NC
4	DQ2	46	DQMB2	88	DQ34	130	DQMB6
5	DQ3	47	DQMB3	89	DQ35	131	DQMB7
6	VDD	48	NC	90	VDD	132	NC
7	DQ4	49	VDD	91	DQ36	133	VDD
8	DQ5	50	NC	92	DQ37	134	NC
9	DQ6	51	NC	93	DQ38	135	NC
10	DQ7	52	NC	94	DQ39	136	NC
11	DQ8	53	NC	95	DQ40	137	NC
12	VSS	54	VSS	96	VSS	138	VSS
13	DQ9	55	DQ16	97	DQ41	139	DQ48
14	DQ10	56	DQ17	98	DQ42	140	DQ49
15	DQ11	57	DQ18	99	DQ43	141	DQ50
16	DQ12	58	DQ19	100	DQ44	142	DQ51
17	DQ13	59	VDD	101	DQ45	143	VDD
18	VDD	60	DQ20	102	VDD	144	DQ52
19	DQ14	61	NC	103	DQ46	145	NC
20	DQ15	62	NC	104	DQ47	146	NC
21	NC	63	NC	105	NC	147	NC
22	NC	64	VSS	106	NC	148	VSS
23	VSS	65	DQ21	107	VSS	149	DQ53
24	NC	66	DQ22	108	NC	150	DQ54
25	NC	67	DQ23	109	NC	151	DQ55
26	VDD	68	VSS	110	VDD	152	VSS
27	/WE	69	DQ24	111	/CAS	153	DQ56
28	DQMB0	70	DQ25	112	DQMB4	154	DQ57
29	DQMB1	71	DQ26	113	DQMB5	155	DQ58
30	/S0	72	DQ27	114	NC	156	DQ59
31	NC	73	VDD	115	/RAS	157	VDD
32	VSS	74	DQ28	116	VSS	158	DQ60
33	A0	75	DQ29	117	A1	159	DQ61
34	A2	76	DQ30	118	A3	160	DQ62
35	A4	77	DQ31	119	A5	161	DQ63
36	A6	78	VSS	120	A7	162	VSS
37	A8	79	NC	121	A9	163	NC
38	A10	80	NC	122	BA	164	NC
39	NC	81	NC	123	NC	165	SA0
40	VDD	82	SDA	124	VDD	166	SA1
41	VDD	83	SCL	125	NC	167	SA2
42	CK0	84	VDD	126	NC	168	VDD

NC = No Connection

Preliminary Spec. Some contents are subject to change without notice. MITSUBISHI LSIs

MH1S64CWXTJ-12,-15,-1539

MH1S64CWXTJ-12,-15,-1539

67108864-BIT (1048576-WORD BY 64-BIT)SynchronousDRAM

PIN FUNCTION

CK (CK0)	Input	Master Clock:All other inputs are referenced to the rising edge of CK
CKE	Input	Clock Enable:CKE controls internal clock.When CKE is low,internal clock for the following cycle is ceased. CKE is also used to select auto / self refresh. After self refresh mode is started, CKE E becomes asynchronous input.Self refresh is maintained as long as CKE is low.
/S (/S0 &/S2)	Input	Chip Select: When /S is high,any command means No Operation.
/RAS,/CAS,/WE	Input	Combination of /RAS,/CAS,/WE defines basic commands.
A0-10	Input	A0-10 specify the Row/Column Address in conjunction with BA.The Row Address is specified by A0-10.The Column Address is specified by A0-7.A10 is also used to indicate precharge option.When A10 is high at a read / write command, an auto precharge is performed. When A10 is high at a precharge command, both banks are precharged.
BA	Input	Bank Address:BA is not simply BA.BA specifies the bank to which a command is applied.BA must be set with ACT,PRE,READ,WRITE commands
DQ0-63	Input/Output	Data In and Data out are referenced to the rising edge of CK
DQMB0-7	Input	Din Mask/Output Disable:When DQMB is high in burst write.Din for the current cycle is masked.When DQMB is high in burst read,Dout is disabled at the next but one cycle.
Vdd,Vss	Power Supply	Power Supply for the memory mounted module.
SLA	Input	Serial clock for serial PD
SDA	Output	Serial data for serial PD

MH1S64CWXTJ-12,-15,-1539

67108864-BIT (1048576-WORD BY 64-BIT)SynchronousDRAM

BASIC FUNCTIONS

The MH1S64CWXTJ provides basic functions, bank(row)activate, burst read / write, bank(row)precharge, and auto / self refresh.

Each command is defined by control signals of /RAS,/CAS and /WE at CK rising edge. In addition to 3 signals,/S,CKE and A10 are used as chip select,refresh option,and precharge option,respectively.

To know the detailed definition of commands please see the command truth table.

Activate(ACT) [/RAS =L, /CAS = /WE =H]

ACT command activates a row in an idle bank indicated by BA.

Read(READ) [/RAS =H,/CAS =L, /WE =H]

READ command starts burst read from the active bank indicated by BA.First output data appears after /CAS latency. When A10 =H at this command, the bank is deactivated after the burst read(auto-precharge, **READA**).

Write(WRITE) [/RAS =H, /CAS = /WE =L]

WRITE command starts burst write to the active bank indicated by BA. Total data length to be written is set by burst length. When A10 =H at this command, the bank is deactivated after the burst write(auto-precharge,**WRITEA**).

Precharge(PRE) [/RAS =L, /CAS =H,/WE =L]

PRE command deactivates the active bank indicated by BA. This command also terminates burst read / write operation. When A10 =H at this command, both banks are deactivated(precharge all, **PREA**).

Auto-Refresh(REFA) [/RAS =/CAS =L, /WE =CKE =H]

PEFA command starts auto-refresh cycle. Refresh address including bank address are generated internally. After this command, the banks are precharged automatically.

MH1S64CWXTJ-12,-15,-1539

67108864-BIT (1048576-WORD BY 64-BIT)SynchronousDRAM

COMMAND TRUTH TABLE

COMMAND	MNEMONIC	CK n-1	CK n	/S	/RAS	/CAS	/WE	BA	A10	A0-9
Deselect	DESEL	Н	Х	н	X	Х	Х	Х	Х	Х
No Operation	NOP	Н	Х	L	Н	Н	Н	Х	Х	Х
Row Adress Entry & Bank Activate	ACT	Н	x	L	L	Н	Н	V	V	V
Single Bank Precharge	PRE	Н	Х	L	L	Н	L	V	L	Х
Precharge All Bank	PREA	Н	Х	L	L	Н	L	V	Н	Х
Column Address Entry & Write	WRITE	Н	х	L	LH	н	L	V	L	V
Column Address Entry & Write with Auto- Precharge	WRITEA	Н	x	L	н	L	L	V	н	V
Column Address Entry & Read	READ	Н	х	L	н	L	Н	V	L	V
Column Address Entry & Read with Auto Precharge	READA	н	x	L	н	L	Н	V	н	V
Auto-Refresh	REFA	Н	Н	L	HL	L	Н	Х	Х	Х
Self-Refresh Entry	REFS	Н	L	L	L	L	Н	Х	Х	X
Self-Refresh Exit	REFSX	L	Н	Н	LX	Х	Х	Х	Х	Х
		L	Н	L	Н	Н	Н	Х	Х	Х
Burst Terminate	TERM	Н	Х	L	Н	Н	L	Х	Х	Х
Mode Register Set	MRS	Н	Х	L	L	L	L	L	L	V*1

H =High Level, L = Low Level, V = Valid, X = Don't Care, n = CK cycle number

NOTE: 1.A7-9 = 0, A0-6 = Mode Address

MH1S64CWXTJ-12,-15,-1539

67108864-BIT (1048576-WORD BY 64-BIT)SynchronousDRAM

FUNCTION TRUTH TABLE

Current State	/S	/RAS	/CAS	/WE	Address	Command	Action
IDLE	Н	Х	Х	Х	Х	DESEL	NOP
	L	Н	Н	Н	Х	NOP	NOP
	L	Н	Н	L	BA	TBST	ILLEGAL*2
	L	Н	L	Х	BA,CA,A10	READ/WRITE	ILLEGAL*2
	L	L	Н	Н	BA,RA	ACT	Bank Active,Latch RA
	L	L	Н	L	BA,A10	PRE/PREA	NOP*4
	L	L	L	Н	Х	REFA	Auto-Refresh*5
	L	L	L	L	Op-Code, Mode-Add	MRS	Mode Register Set*5
ROW ACTIVE	Н	Х	Х	Х	Х	DESEL	NOP
	L	Н	Н	Н	Х	NOP	NOP
	L	Н	Н	L	BA	TBST	NOP
			1	Ц			Begin Read,Latch CA,
	L	п	L	п	DA,CA,ATU	READ/READA	Determine Auto-Precharge
		ц	1	1		WRITE/	Begin Write,Latch CA,
	L	п	L	L	DA,CA,ATU	WRITEA	Determine Auto-Precharge
	L	L	Н	Н	BA,RA	ACT	Bank Active/ILLEGAL*2
	L	L	Н	L	BA,A10	PRE/PREA	Precharge/Precharge All
	L	L	L	Н	Х	REFA	ILLEGAL
	L	L	L	L	Op-Code, Mode-Add	MRS	ILLEGAL
READ	Н	Х	Х	Х	Х	DESEL	NOP(Continue Burst to END)
	L	Н	Н	Н	Х	NOP	NOP(Continue Burst to END)
	L	Н	Н	L	BA	TBST	Terminate Burst
							Terminate Burst,Latch CA,
	L	Н	L	Н	BA,CA,A10	READ/READA	Begin New Read, Determine
							Auto-Precharge*3
							Terminate Burst,Latch CA,
	L	Н	L	L	BA,CA,A10	WRITE/WRITEA	Begin Write, Determine Auto-
							Precharge*3
	L	L	Н	Н	BA,RA	ACT	Bank Active/ILLEGAL*2
	L	L	Н	L	BA,A10	PRE/PREA	Terminate Burst, Precharge
	L	L	L	Н	Х	REFA	ILLEGAL
	L	L	L	L	Op-Code, Mode-Add	MRS	ILLEGAL

MH1S64CWXTJ-12,-15,-1539

67108864-BIT (1048576-WORD BY 64-BIT)SynchronousDRAM

FUNCTION TRUTH TABLE(continued)

Current State	/S	/RAS	/CAS	/WE	Address	Command	Action
WRITE	н	Х	Х	Х	Х	DESEL	NOP(Continue Burst to END)
	L	Н	Н	Н	Х	NOP	NOP(Continue Burst to END)
	L	Н	Н	L	BA	TBST	Terminate Burst
							Terminate Burst,Latch CA,
	L	н	L	Н	BA,CA,A10	READ/READA	Begin Read, Determine Auto-
							Precharge*3
							Terminate Burst,Latch CA,
	L	н	L	L	BA,CA,A10		Begin Write, Determine Auto-
						WRITEA	Precharge*3
	L	L	Н	Н	BA,RA	ACT	Bank Active/ILLEGAL*2
	L	L	Н	L	BA,A10	PRE/PREA	Terminate Burst, Precharge
	L	L	L	Н	Х	REFA	ILLEGAL
	L	L	L	L	Op-Code,	MRS	ILLEGAL
					Mode-Add	5505	
READ with	н	X	X	X	X	DESEL	NOP(Continue Burst to END)
AUTO	L	н	Н	Н	Х	NOP	NOP(Continue Burst to END)
PRECHARGE	L	н	Н	L	BA	TBST	ILLEGAL
	L	н	L	Н	BA,CA,A10	READ/READA	ILLEGAL
	L	н	L	L	BA.CA.A10	WRITE/	ILLEGAL
			_			WRITEA	
	L	L	Н	Н	BA,RA	ACT	Bank Active/ILLEGAL*2
	L	L	Н	L	BA,A10	PRE/PREA	ILLEGAL*2
	L	L	L	Н	Х	REFA	ILLEGAL
	1	1	1	1	Op-Code,	MRS	
	_	_	_		Mode-Add		
WRITE with	Н	Х	Х	Х	Х	DESEL	NOP(Continue Burst to END)
AUTO	L	Н	Н	H	Х	NOP	NOP(Continue Burst to END)
PRECHARGE	L	Н	Н	L	BA	TBST	ILLEGAL
	L	Н	L	Н	BA,CA,A10	READ/READA	ILLEGAL
	L	н	L	L	BA,CA,A10	WRITE/ WRITEA	ILLEGAL
	L	L	Н	Н	BA,RA	ACT	Bank Active/ILLEGAL*2
	L	L	Н	L	BA,A10	PRE/PREA	ILLEGAL*2
	L	L	L	Н	Х	REFA	ILLEGAL
	L	L	L	L	Op-Code, Mode-Add	MRS	ILLEGAL

MH1S64CWXTJ-12,-15,-1539

67108864-BIT (1048576-WORD BY 64-BIT)SynchronousDRAM

FUNCTION TRUTH TABLE(continued)

Current State	/S	/RAS	/CAS	/WE	Address	Command	Action
PRE -	Н	Х	Х	Х	Х	DESEL	NOP(Idle after tRP)
CHARGING	L	Н	Н	Н	Х	NOP	NOP(Idle after tRP)
	L	Н	Н	L	BA	TBST	ILLEGAL*2
	L	Н	L	Х	BA,CA,A10	READ/WRITE	ILLEGAL*2
	L	L	Н	Н	BA,RA	ACT	ILLEGAL*2
	L	L	Н	L	BA,A10	PRE/PREA	NOP*4(Idle after tRP)
	L	L	L	Н	Х	REFA	ILLEGAL
	1		1	-	Op-Code,	MRS	ILLEGAL
	-	-	-	-	Mode-Add		
ROW	Н	Х	Х	Х	Х	DESEL	NOP(Row Active after tRCD
ACTIVATING	L	Н	Н	Н	Х	NOP	NOP(Row Active after tRCD
	L	Н	Н	L	BA	TBST	ILLEGAL*2
	L	Н	L	Х	BA,CA,A10	READ/WRITE	ILLEGAL*2
	L	L	Н	Н	BA,RA	ACT	ILLEGAL*2
	L	L	Н	L	BA,A10	PRE/PREA	ILLEGAL*2
	L	L	L	Н	Х	REFA	ILLEGAL
				-	Op-Code,	MRS	
			-	-	Mode-Add		
WRITE RE-	Н	Х	Х	Х	Х	DESEL	NOP
COVERING	L	Н	Н	Н	Х	NOP	NOP
	L	Н	Н	L	BA	TBST	ILLEGAL*2
	L	Н	L	Х	BA,CA,A10	READ/WRITE	ILLEGAL*2
	L	L	Н	Н	BA,RA	ACT	ILLEGAL*2
	L	L	Н	L	BA,A10	PRE/PREA	ILLEGAL*2
	L	L	L	Н	Х	REFA	ILLEGAL
	L	L	L	L	Op-Code, Mode-Add	MRS	ILLEGAL

MH1S64CWXTJ-12,-15,-1539

67108864-BIT (1048576-WORD BY 64-BIT)SynchronousDRAM

FUNCTION TRUTH TABLE(continued)

Current State	Current State /S /RAS /CA		/CAS	/WE	Address	Command	Action
RE-	н х х х х		DESEL	NOP(Idle after tRC)			
FRESHING	L	н	Н	Н	Х	NOP	NOP(Idle after tRC)
	L	н	н	L	BA	TBST	ILLEGAL
	L	Н	L	Х	BA,CA,A10	READ/WRITE	ILLEGAL
	L	L	Н	Н	BA,RA	ACT	ILLEGAL
	L	L	Н	L	BA,A10	PRE/PREA	ILLEGAL
	L	L	L	Н	Х	REFA	ILLEGAL
			1	1	Op-Code,	MRS	ILLEGAL
	_			-	Mode-Add		
MODE	Н	Х	Х	Х	Х	DESEL	NOP(Idle after tRSC)
REGISTER	L	Н	Н	Н	Х	NOP	NOP(Idle after tRSC)
SETTING	L	Н	Н	L	BA	TBST	ILLEGAL
	L	Н	L	Х	BA,CA,A10	READ/WRITE	ILLEGAL
	L	L	Н	Н	BA,RA	ACT	ILLEGAL
	L	L	Н	L	BA,A10	PRE/PREA	ILLEGAL
	L	L	L	Н	Х	REFA	ILLEGAL
			1	1	Op-Code,	MRS	ILLEGAL
					Mode-Add		

ABBREVIATIONS:

H = Hige Level, L = Low Level, X = Don't Care

BA = Bank Address, RA = Row Address, CA = Column Address, NOP = No Operation

NOTES:

- 1. All entries assume that CKE was High during the preceding clock cycle and the current clock cycle.
- 2. ILLEGAL to bank in specified state; function may be legal in the bank indicated by BA, depending on the state of that bank.
- 3. Must satisfy bus contention, bus turn around, write recovery requirements.
- 4. NOP to bank precharging or in idle state. May precharge bank indicated by BA.
- 5. ILLEGAL if any bank is not idle.

ILLEGAL = Device operation and / or date-integrity are not guaranteed.

67108864-BIT (1048576-WORD BY 64-BIT)SynchronousDRAM

FUNCTION TRUTH TABLE FOR CKE

Current State	CK n-1	CK n	/S	/RAS	/CAS	/WE	Add	Action
SELF -	Н	Х	Х	Х	Х	Х	Х	INVALID
REFRESH*1	L	н	н	Х	Х	Х	Х	Exit Self-Refresh(Idle after tRC)
	L	н	L	Н	Н	Н	Х	Exit Self-Refresh(Idle after tRC)
	L	н	L	Н	Н	L	Х	ILLEGAL
	L	н	L	Н	L	Х	Х	ILLEGAL
	L	н	L	L	Х	Х	Х	ILLEGAL
	L	L	Х	Х	Х	Х	Х	NOP(Maintain Self-Refresh)
POWER	Н	X	Х	Х	Х	Х	Х	INVALID
DOWN	L	н	Х	Х	Х	Х	Х	Exit Power Down to Idle
	L	L	Х	Х	Х	Х	Х	NOP(Maintain Self-Refresh)
ALL BANKS	Н	н	Х	Х	Х	Х	Х	Refer to Function Truth Table
IDLE*2	Н	L	L	L	L	Н	Х	Enter Self-Refresh
	Н	L	Н	Х	Х	Х	Х	Enter Power Down
	Н	L	L	Н	Н	Н	Х	Enter Power Down
	Н	L	L	Н	Н	L	Х	ILLEGAL
	Н	L	L	Н	L	Х	Х	ILLEGAL
	н	L	L	L	Х	Х	Х	ILLEGAL
	L	X	Х	Х	Х	Х	Х	Refer to Current State = Power Down
ANY STATE	Н	н	Х	Х	Х	Х	Х	Refer to Function Truth Table
other than	н	L	Х	Х	Х	Х	Х	Begin CK0 Suspend at Next Cycle*3
listed above	L	Н	Х	Х	Х	Х	Х	Exit CK0 Suspend at Next Cycle*3
	L	L	Х	Х	Х	Х	Х	Maintain CK0 Suspend

ABBREVIATIONS:

H = High Level, L = Low Level, X = Don't Care

NOTES:

- 1. CKE Low to High transition will re-enable CK and other inputs **asynchronously**. A minimum setup time must be satisfied before any command other than EXIT.
- 2. Power-Down and Self-Refresh can be entered only form the All banks idle State.
- 3. Must be legal command.

67108864-BIT (1048576-WORD BY 64-BIT)SynchronousDRAM

SIMPLIFIED STATE DIAGRAM

MH1S64CWXTJ-12,-15,-1539

67108864-BIT (1048576-WORD BY 64-BIT)SynchronousDRAM

POWER ON SEQUENCE

Before starting normal operation, the following power on sequence is necessary to prevent a SDRAM from damaged or malfunctioning.

- 1. Apply power and start clock. Attempt to maintain CKE high, DQMB0-7 high and NOP condition at the inputs.
- 2. Maintain stable power, stable cock, and NOP input conditions for a minimum of 500É s.
- 3. Issue precharge commands for all banks. (PRE or PREA)
- 4. After all banks become idle state (after tRP), issue 8 or more auto-refresh commands.
- 5. Issue a mode register set command to initialize the mode register.

After these sequence, the SDRAM is idle state and ready for normal operation.

MODE REGISTER

Burst Length, Burst Type and /CAS Latency can be programmed by setting the mode register(MRS). The mode register stores these date until the next MRS command, which may be issue when both banks are in idle state. After tRSC from a MRS command, the SDRAM is ready for new command.

R:Reserved for Future Use

Preliminary Spec. Some contents are subject to change without notice.

MITSUBISHI LSIs

MH1S64CWXTJ-12,-15,-1539

Initia	al Ado	dress	BL		Column Addressing																
A2	A1	A0			Sequential								Interleaved								
0	0	0		0	1	2	3	4	5	6	7	0	1	2	3	4	5	6	7		
0	0	1		1	2	3	4	5	6	7	0	1	0	3	2	5	4	7	6		
0	1	0		2	3	4	5	6	7	0	1	2	3	0	1	6	7	4	5		
0	1	1	0	3	4	5	6	7	0	1	2	3	2	1	0	7	6	5	4		
1	0	0	0	4	5	6	7	0	1	2	3	4	5	6	7	0	1	2	3		
1	0	1		5	6	7	0	1	2	3	4	5	4	7	6	1	0	3	2		
1	1	0		6	7	0	1	2	3	4	5	6	7	4	5	2	3	0	1		
1	1	1		7	0	1	2	3	4	5	6	7	6	5	4	3	2	1	0		
-	0	0		0	1	2	3					0	1	2	3						
-	0	1	4	1	2	3	0					1	0	3	2						
-	1	0	4	2	3	0	1					2	3	0	1						
-	1	1		3	0	1	2					3	2	1	0						
-	-	0	2	0	1							0	1								
-	-	1	2	1	0							1	0								

MH1S64CWXTJ-12,-15,-1539

67108864-BIT (1048576-WORD BY 64-BIT)SynchronousDRAM

OPERATION DESCRIPTION

BANK ACTIVATE

The SDRAM has two independent banks. Each bank is activated by the ACT command with the bank address(BA). A row is indicated by the row address A10-0. The minimum activation interval between one bank and the other bank is tRRD.

PRECHARGE

The PRE command deactivates indicated by BA. When both banks are active, the precharge all command(PREA,PRE + A10=H) is available to deactivate them at the same time. After tRP from the precharge, an ACT command can be issued.

READ

After tRCD from the bank activation, a READ command can be issued. 1st output date is available after the /CAS Latency from the READ, followed by (BL-1) consecutive date when the Burst Length is BL. The start address is specified by A7-0, and the address sequence of burst data is defined by the Burst Type. A READ command may be applied to any active bank, so the row precharge time(tRP) can be hidden behind continuous output data(in case of BL=8) by interleaving the dual banks. When A10 is high at a READ command, the auto-precharge(READA) is performed. Any command (READ, WRITE, PRE, ACT) to the same bank is inhibited till the internal precharge is complete. The internal precharge start timing depends on /CAD Latency. The next ACT command can be issued after tRP from the internal precharge timing.

Preliminary Spec. Some contents are subject to change without notice.

MH1S64CWXTJ-12,-15,-1539

67108864-BIT (1048576-WORD BY 64-BIT)SynchronousDRAM

WRITE

After tRCD from the bank activation, a WRITE command can be issued. 1st input data is set at the same cycle as the WRITE. Following(BL-1) data are written into the RAM, when the Burst Length is BL. The start address is specified by A7-0, and the address sequence of burst data is defined by the Burst Type. A WRITE command may be applied to any active bank, so the row precharge time(tRP) can be hidden behind continuous input data (in case of BL=4) by interleaving the dual banks. From the last input data to the PRE command, the write recovery time (tWR) is required. When A10 is high at a WRITE command, the auto-precharge(WRITEA) is performed. Any command(READ, WRITE, PRE, ACT) to the same bank is inhibited till the internal precharge is complete. The internal precharge begins at tWR after the last input data cycle. The next ACT command can be issued after tRP from the internal precharge timing.

MH1S64CWXTJ-12,-15,-1539

67108864-BIT (1048576-WORD BY 64-BIT)SynchronousDRAM

BURST INTERRUPTION

[Read Interrupted by Read]

Burst read option can be interrupted by new read of the same or the other bank. MH4S64CTJ allows random column access. READ to READ interval is minimum 1 CK

[Read Interrupted by Write]

Burst read operation can be interrupted by write of the same or the other bank. Random column access is allowed. In this case, the DQ should be controlled adequately by using the DQMB0-7 to prevent the bus contention. The output is disabled automatically 2 cycle after WRITE assertion.

(18/45)

67108864-BIT (1048576-WORD BY 64-BIT)SynchronousDRAM

[Read Interrupted by Precharge]

Burst read operation can be interrupted by precharge of the same or the other bank. Read to PRE interval is minimum 1 CK. A PRE command disables the data output, depending on the /CAS Latency. The figure below shows examples, when the dataout is terminated.

Read Interrupted by Precharge (BL=4)

67108864-BIT (1048576-WORD BY 64-BIT)SynchronousDRAM

[Read Interrupted by Burst Terminate]

Similarly to the precharge, burst terminate command can interrupt burst read operation and disable the data output. READ to TERM interval is minimum 1 CK. The figure below shows examples, when the dataout is terminated.

67108864-BIT (1048576-WORD BY 64-BIT)SynchronousDRAM

[Write Interrupted by Write]

Burst write operation can be interrupted by new write of the same or the other bank. Random column access is allowed. WRITE to WRITE interval is minimum 1 CK.

[Write Interrupted by Read]

Burst write operation can be interrupted by read of the same or the other bank. Random column access is allowed. WRITE to READ interval is minimum 1 CK. The input data on DQ at the interrupting READ cycle is "don't care".

67108864-BIT (1048576-WORD BY 64-BIT)SynchronousDRAM

[Write Interrupted by Precharge]

Burst write operation can be interrupted by precharge of the same bank. Random column access is allowed. Because the write recovery time(tWR) is required between the last input data and the next PRE, 3rd data should be masked with DQMB0-7 shown as below.

[Write Interrupted by Burst Terminate]

Burst terminate command can terminate burst write operation. In this case, the write recovery time is not required and the bank remains active. The figure below shows the case 3 words of data are written. Random column access is allowed. WRITE to TERM interval is minimum 1 CK.

MH1S64CWXTJ-12,-15,-1539

67108864-BIT (1048576-WORD BY 64-BIT)SynchronousDRAM

AUTO REFRESH

Single cycle of auto-refresh is initiated with a REFA(/CS=/RAS=/CAS=L, /WE=/CKE=H) command. The refresh address is generated internally. 4096 REFA cycle within 64ms refresh 16Mbit memory cells. The auto-refresh is performed on each bank alternately(ping-pong refresh). Before performing an auto-refresh, both banks must be in the idle state. Additional commands must not be supplied to the device before tRC from the REFA command.

MH1S64CWXTJ-12,-15,-1539

67108864-BIT (1048576-WORD BY 64-BIT)SynchronousDRAM

SELF REFRESH

Self-refresh mode is entered by issuing a REFS command (/CS=/RAS=/CAS=L, /WE=H, CKE=L). Once the self-refresh is initiated, it is maintained as log as CKE is kept low.During the self-refresh mode, CKE is asynchronous and the only enabled input (but asynchronous), all other inputs including CK0 are disabled and ignored, and power consumption due to synchronous inputs is saved. To exit the self-refresh, supplying stable CK0 inputs, asserting DESEL or NOP command and then asserting CKE(REFSX). After tRC from REFSX both banks are in the idle state and a new command can be issued after tRC, but DESEL or NOP commands must be asserted till then.

MH1S64CWXTJ-12,-15,-1539

67108864-BIT (1048576-WORD BY 64-BIT)SynchronousDRAM

CLK SUSPEND

CKE controls the internal CLK at the following cycle. Figure below shows how CKE works. By negating CKE, the next internal CLK is suspended. The purpose of CLK suspend is power down, output suspend or input suspend. CKE is a synchronous input except during the self-refresh mode. CLK suspend can be performed either when the banks are active or idle, but a command at the following cycle is ignored.

67108864-BIT (1048576-WORD BY 64-BIT)SynchronousDRAM

DQM CONTROL

DQMB0-7 is a dual function signal defined as the data mask for writes and the output disable for reads. During writes, DQMB0-7 masks input data word by word. DQMB0-7 to write mask latency is 0.

During reads, DQMB0-7 forces output to Hi-Z word by word. DQMB0-7 to output Hi-Z latency is 2.

67108864-BIT (1048576-WORD BY 64-BIT)SynchronousDRAM

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Condition	Ratings	Unit
Vdd	Supply Voltage	with respect to Vss	-0.5 ~ 4.6	V
VI	Input Voltage	with respect to Vss	-0.5 ~ 4.6	V
VO	Output Voltage	with respect to Vss	-0.5 ~ 4.6	V
IO	Output Current		50	mA
Pd	Power Dissipation	Ta=25°C	4	W
Topr	Operating Temperature		0 ~ 70	°C
Tstg	Storage Temperature		-40 ~ 100	°C

RECOMMENDED OPERATING CONDITION

(Ta=0 ~ 70°C, unless otherwise noted)

Symbol	Parameter		Linit			
Gymbol		Min.	Тур.	Max.	Onit	
Vdd	Supply Voltage	3.0	3.3	3.6	V	
Vss	Supply Voltage	0	0	0	V	
VIH	High-Level Input Voltage all inputs	2.0		Vdd+0.3	V	
VIL	Low-Level Input Voltage all inputs	-0.3		0.8	V	

CAPACITANCE

(Ta=0 ~ 70°C, Vdd = 3.3 \pm 0.3V, Vss = 0V, unless otherwise noted)

Symbol	Parameter	Test Condition	Limits(max.)	Unit
CI(A)	Input Capacitance, address pin	VI = Vss	30	pF
CI(C)	Input Capacitance, control pin		30	pF
CI(K)	Input Capacitance, CK pin		15	pF
CI/O	Input Capacitance, I/O pin	Vi=25mVrms	12	pF

67108864-BIT (1048576-WORD BY 64-BIT)SynchronousDRAM

AVERAGE SUPPLY CURRENT from Vdd

(Ta=0 ~70°C, Vdd = 3.3 ± 0.3 V, Vss = 0V, unless otherwise noted)

Symbol	Parameter	Test Condition		Limits(max)			
			-12	-15	-1539	U.III	
lcc1s	operating current, single bank	tRC=min.tCLK=min, BL=1, CL=3	360	360	300	mA	
lcc1d	operating current, dual bank	tRC=min.tCLK=min, BL=1, CL=3	520	520	440	mA	
lcc2h	standby current, CKE=H	both banks idle, tCLK=min, CKE=H	72	72	64	mA	
Icc2I	standby current, CKE=L	both banks idle, tCLK=min, CKE=L	8	8	8	mA	
Icc3	active standby current	both banks active, tCLK=min, CKE=H	140	140	120	mA	
Icc4	burst current	tCLK=min, BL=4, CL=3, 1 bank idle(discerte)	480	480	400	mA	
Icc5	auto-refresh current	tRC=min, tCLK=min	240	240	200	mA	
Icc6	self-refresh current	CKE <0.2V	4	4	4	mA	

AC OPERATING CONDITIONS AND CHARACTERISTICS

(Ta=0 ~ 70°C, Vdd = 3.3 ± 0.3V, Vss = 0V, unless otherwise noted)

Cumphal	Deremeter	Test Condition	Lim	Unit	
Symbol	Parameter	Test Condition			Max.
VOH(DC)	High-Level Output Voltage(DC)	IOH=-2mA	2.4		V
VOL(DC)	Low-Level Output Voltage(DC)	IOL=2mA		0.4	V
IOZ	Off-stare Output Current	Q floating VO=0 ~ Vdd	-10	10	uA
li	Input Current	VIH=0 ~ Vdd+0.3V	-40	40	uA

MH1S64CWXTJ-12,-15,-1539

67108864-BIT (1048576-WORD BY 64-BIT)SynchronousDRAM

AC TIMING REQUIREMENTS

	Symbol Parameter		Limits						
Symbol			-12		-15		-1539		Unit
			Min.	Max.	Min.	Max.	Min.	Max.	
		CL=1	30		30		30		ns
tCLK	CK cycle time	CL=2	15		15		20		ns
		CL=3	12		12		15		ns
tCH	CK High pulse width		4		4		4		ns
tCL	CK Low pilse width		4		4		4		ns
tΤ	Transition time of CK		1	10	1	10	1	10	ns
tIS	Input Setup time(all inputs)		3		3		3		ns
tlH	Input Hold time(all inputs)		1		1		1.5		ns
tRC	Row cycle time		100		100		120		ns
tRCD	Row to Column Delay		30		30		30		ns
tRAS	Row Active time		70	10000	70	10000	80	10000	ns
tRP	Row Precharge time		30		30		40		ns
tWR	Write Recovery time		12		12		15		ns
tRRD	Act to Act Deley time		24		24		30		ns
tRSC	Mode Register Set Cycle time		24		24		30		ns
tPDE	Power Down Exit time		12		12		15		ns
tREF	Refresh Interval time			65.6		65.6		65.6	ms

4V Any AC timing is

referenced to the input

- _{.4V} signal crossing through
 - 1.4V.

MH1S64CWXTJ-12,-15,-1539

67108864-BIT (1048576-WORD BY 64-BIT)SynchronousDRAM

SWITCHING CHARACTERISTICS

(Ta=0 ~ 70°C, Vdd = 3.3 \pm 0.3V, Vss = 0V, unless otherwise noted)

			Limits						
Symbol	Parameter		-1	-12		-15		-1539	
			Min.	Max.	Min.	Max.	Min.	Max.	t
	Access time from CK	CL=1		27		27		30	ns
tAC		CL=2		9.5		9.5		12	ns
		CL=3		8		8		9	ns
tCAC	Column Access Time			24.5		24.5		30	ns
tRAC	Row Access Time			54.5		54.5		60	ns
tOH	Output Hold time from CK		3		3		3		ns
tOLZ	Delay time, output low impedance from CK		0		0		0		ns
tOHZ	Delay time, output high impedance from CK		3	8	3	8	3	10	ns

Output Load Condition

MH1S64CWXTJ-12,-15,-1539

MH1S64CWXTJ-12,-15,-1539

67108864-BIT (1048576-WORD BY 64-BIT)SynchronousDRAM

if any bank is active, it must be precharged

MH1S64CWXTJ-12,-15,-1539

MH1S64CWXTJ-12,-15,-1539

MH1S64CWXTJ-12,-15,-1539

MH1S64CWXTJ-12,-15,-1539

67108864-BIT (1048576-WORD BY 64-BIT)SynchronousDRAM

Outline

