Notice: This is not a final specification. Notice: This is not a final specification. Some parametric limits are subject to change Ver.3.1 Dec, 1999

DESCRIPTION

The M66273 is a graphic display-only controller for dot matrix type STN-LCD which is used widely for OA equipment, PDA, amusement equipment, etc.

The M66273 is an advanced product from the M66272 at the point of MPU interface and timing specifications. This LCD display functions are the same with the M66272.

It is capable of displaying six types of LCD by combining the panel configuration(single or dual scan), LCD display function(binary or gray scale), LCD display data bus width(4 or 8 bit).

Panel configuration	Binary/ gray scale	LCD display data	Displayable LCD size
Single scan	Dipony	4bit	Equivalent to 640 x 240
	Binary	8bit	Equivalent to 640 x 240
	Gray scale	4bit	
		8bit	Equivalent to 320 x 240
Dual scan	Binary	4bit	Equivalent to 320 x 240 x 2 screens
	Gray scale	4bit	Equivalent to 320 x 120 x 2 screens

The M66273 can support the reflective color type LCD (ECB : Electrically Controlled Birefringence).

The IC has a built-in 19200-byte VRAM as a display data memory. All of the VRAM addresses are externally opened. Direct addressing of display data can be performed from MPU, thus display data processing such as drawing can be efficiently carried out.

The built-in arbiter circuit(cycle steal system) which gives priority to display access allows timing-free access from MPU to VRAM, preventing display screen distortion.

The IC provides has a function for LCD module built-in system by lessening connect pins between the MPU and the IC.

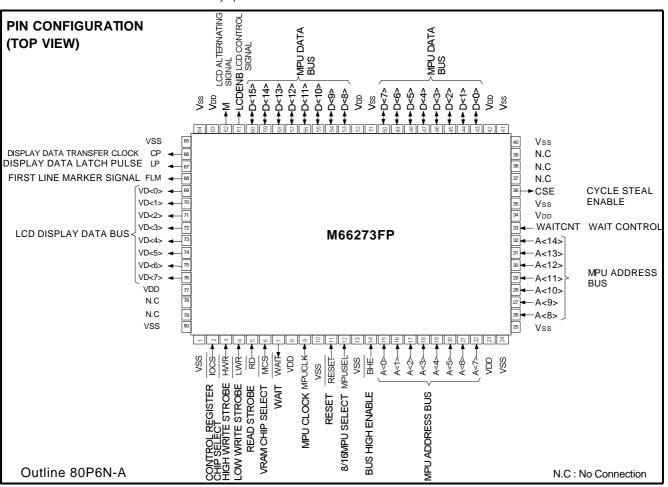
FEATURES

- Display memory
- -Built-in 19200-byte(153.6-Kbit) VRAM(Equivalent to 640 x 240 dots x 1 screen, 320 x 240 dots x 2 screens)
- · All addresses of built-in VRAM are externally opened.

M66273FP

LCD CONTROLLER with VRAM

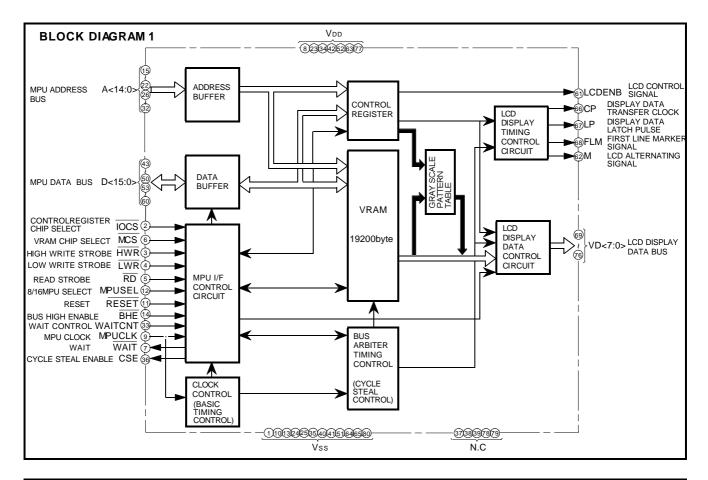
- Displayable LCD
 - Binary display Monochrome STN-LCD of up to 153600 dots(equivalent to 1/2 VGA)
- 4 gray scale display
- Monochrome STN-LCD of up to 76800 dots (equivalent to 1/4 VGA) Reflective color STN-LCD of up to 76800 dots (equivalent to 1/4 VGA)
- Interface with MPU
- Capability of switching the interface with two-way 8/16-bit MPU
 Provides WAIT output pin(WAIT output when access from MPU to VRAM is gained)
- Capability of controlling BHE or LWR/HWR at the interface with a 16-bit MPU

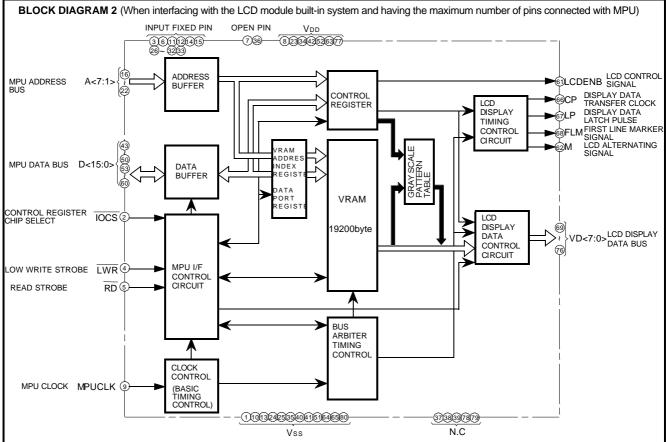

Interface with LCD

- · LCD display data bus is a 4-bit or 8-bit parallel output.
- 4 kinds of control signals: CP, LP, FLM and M
- Display functions
- Graphic display only
- Binary or 4 gray scale display(gray scale palette is used to set pseudo medium 2 gray scale.)
- · Reflective color(ECB) uses a gray scale function.
- Vertical scrolling is allowed within memory range.
- Additional function for LCD module built-in system
- Capability of interfacing with two-way 8/16-bit MPU(16-bit MPU byte access is not allowed.)
- · Access from MPU to VRAM is gained via the I/O register.
- 5V or 3V single power supply

APPLICATION

PPC/FAX operation panel, display/operation panel of other OA equipment, multifunction/public telephone


- · PDA/electronic notebook/information terminal, portable terminal
- Game, Amusements, Kids computer, etc.



MITSUBISHI < DIGITAL ASSP>

M66273FP

LCD CONTROLLER with VRAM

Notice: This is not a final specification. Some parametric limits are subject to change Ver.3.1 Dec. 1999

2

Notice: This is not a final specification. Notice: This is not a final specification. Some parametric limits are subject to change. Ver.3.1 Dec, 1999

M66273FP

LCD CONTROLLER with VRAM

PIN DESCRIPTIONS

Item	Pin name	Input/ Output	Function	Number of pins				
	D<15:0>	Input/ Output	MPU data bus When selecting 8 bit MPU by MPUSEL input, connect D<15:8> to "Vod" or "Vss".	16				
	A<14:0>	Input	MPU address bus When selecting 8-bit MPU, use A<14:0>. When selecting 16-bit MPU, use A<14:1> as a address bus. By combining A<0> and BHE, access to internal VRAM can be gained. When driving two screens (dual scan mode), notice that the allowable setup range of VRAM address is restricted. When IOCS control use A <7:0>, and MCS control use A <14:0> for selecting address of control register.	15				
	IOCS	Input	Chip select input of control register When this pin is "L", select the internal control register. Assign to I/O space of MPU.	1				
	MCS	Input	Chip select input of VRAM / control register When this pin is "L", select the internal VRAM. Assign to memory space of MPU. And this pin can for chip select of control register. In detail, refer to "COMBINATIONS OF CONTROL INPUT PINS ON THE MPU INTERFACE" and "CONTROL REGISTER".	1				
	HWR	Input	High-Write strobe input When this pin is "L", write data to the internal VRAM. HWR is valid only in using 16-bit MPU controlled byte access by LWR and HWR.	1				
	LWR	Input	Low-Write strobe input When this pin is "L", write data to the internal control register or VRAM.	1				
MPU	RD	Input	Read strobe input When this pin is "L", read data from the internal control register or VRAM.	1				
interface	-		IPUSEL Input 8/16-bit MPU select input According to MPU, set "Vss" for 8-bit MPU and set "Vpd" for 16-bit MPU.					
			RESET Input Reset input Use reset signal of MPU. When this pin is "L", initialize (reset) all internal control registers and counters.					
	MPUCLK	Input	MPU clock Input system clock output from MPU.	1				
	BHE	Input	Bus-High-Enable input This pin is valid when using 16-bit MPU controlling byte access with A<0> and BHE. Connect to "Vod" to select 8-bit MPU.	1				
	WAITCNT	Input	Wait control input This pin is used for controlling WAIT output timing when requested access from MPU to VRAM. Use this pin, when it is necessary to output WAIT earlier than the timing of falling edge of overlapping with MCS and RD or LWR and HWR. And then connect AS, ALE or etc of MPU. Connect WAITCNT to "VDD" or "VSS", when it is necessary to output WAIT at the timing of falling edge of overlapping with MCS and RD or LWR and HWR.	1				
	WAIT	Output	WAIT output for MPU This signal makes WAIT for MPU. In case of fixed WAITCNT input("Vss" or "VDD")change WAIT to "L" at the timing of falling edge of overlapping with MCS and RD or LWR and HWR. And in case of using WAITCNT input, change WAIT to "L" at timing of falling edge of WAITCNT on MCS = "L". And WAIT output return to "H" at synchronization with the rising edge of MPUCLK after internal processing. (Output WAIT only when requested access from MPU to VRAM is gained during cycle steal access.)					
	CSE	Output	Cycle Steal Enable output State output of internal cycle steal access.	1				

PREI	is not a final st metric limits ar	Dec,1999
Some P	Ver.3.1	Dec,1999

LCD CONTROLLER with VRAM

PIN DESCRIPTIONS

Item	Pin name	Input/ Output	Function	Number of pins		
	VD<7:0>	Output	Display data bus for LCD Transfer the LCD display data in synchronization with a rising edge of CP by putting 4-bit or 8-bit in parallel. The VD <n:0> output pin in use differs depending on the number of driven screens and the display mode.</n:0>	8		
	СР	Output	Display data transfer clock Shift clock for the transfer of display data to LCD. Take the display data of VD <n:0> to LCD at falling edge of CP.</n:0>	1		
LCD	LP	LP Output Display data latch pulse This clock use both as the latch pulse of display data for LCD and the transfer of scanning signal LP is output when it finishes transferring display data of a line. Latch of display data and the transfer of scanning signal at falling edge of LP.				
interface ⁻	FLM	Output	First Line Marker signal output Output the start pulse of scanning line. This signal is "H" active, the IC for driving scanning line catches FLM at falling edge of LP.	1		
	М	Output	LCD alternating signal output Signal for driving LCD by alternating current.	1		
	LCDENB	Output	LCD (ON/OFF) control signal output Output data which is set at bit "0" of mode register (R1) in the control register. This signal can be used for controlling the LCD power supply, because LCDENB is set to "L" by RESET.	1		
	Vdd		Power supply pin	7		
Others	Vss		Ground	7		
	N.C		No connection	10		

DIFFERENCE BETWEEN M66273FP AND M66272FP

The M66273FP is an advanced product from the M66272FP at the point of MPU interface and timing specifications.

LCD display functions are the same with the M66272FP.

The following shows difference between the M66273FP and the M66272FP without timing specifications. Refer to the later item about timing specifications and detail specifications.

Specif ication	M66273FP	M66272FP
Pin function	WAITCNT input (WAIT control input)	SWAP input (Bus swap input)
WAIT output control	It is capable of selecting WAIT output trigger input. In case of fixed WAITCNT input, change WAIT to "L" at the timing of the falling edge of overlapping with MCS and RD or LWR/HWR, and in case of using WAITCNT input, change WAIT to "L" at the timing of the falling edge of WAITCNT on MCS="L".	WAIT output change to "L" at the timing of the falling edge of overlapping with MCS and RD or LWR/HWR.
Access to control register	Use IOCS or MCS pins for chip select of control register. (capable of controlling VRAM and control register by MCS pin.)	Use IOCS pin for chip select of control register.
Bus swap function	Set by SWAP register.	Set by SWAP pin.

LCD CONTROLLER with VRAM

OUTLINE

The M66273 is a graphic display only controller for displaying a dot matrix type STN-LCD.

LCD display mode

It is capable of displaying six types of LCD by combining the panel configuration, binary/gray scale, LCD display data bus width.

Display mode	Panel configuration	Binary/ grayscale	LCD display data	Displayable LCD size	
1		Dinem	4bit	Equivalent to 640	
2	Single	Binary	8bit	x 240	
3	scan	0	4bit	Equivalent to 320 x 240	
4		Gray scale	8bit		
5	Dual	Binary	4bit	Equivalent to 320 x 240 x 2 screens	
6	scan	Gray scale	4bit	Equivalent to 320 x 120 x 2 screens	

Control register

When accessing the control register from MPU, use pins IOCS, LWR, RD, A<7:0> and D<7:0>, or MCS, LWR, RD, A<14:0> and D<7:0> (However, use D<15:0> only when 16-bit MPU controls the LCD module built-in support function.)

Refer to Table-1, setting of control input.

The IC contains the following registers as control registers.

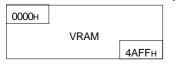
Operation control	R1 to R11		
Supporting LCD module built-in type	R12 to 14 or R15 to 16		
Gray scale pattern table	R17 to R80		

VRAM

This IC has a built-in 19200-byte VRAM which is equivalent to two screens of 320 x 240 dots LCD.

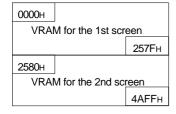
 \underline{When} accessing VRAM from MPU, use pins MCS, HWR, LWR, RD, BHE, A<14:0> and D<15:0>.

Use of MPUSEL input can support both 8/16 bit MPU.


Refer to table-2 to 6, VRAM specifications for 8/16 bit MPU and input setting in access.

The VRAM address settable range is restricted depending on the panel configuration, as follows.

VRAM address settable range


• When single scan mode

•A<14:0>=0000 to 4AFFн --- 19200 byte

· When dual scan mode

-For the 1st screen --- A<14:0>=0000 to 257F H --- 9600 byte -For the 2nd screen --- A<14:0>=2580 to 4AFFH --- 9600 byte

Cycle steal system

Cycle steal system is interact method of transforming display data for LCD from VRAM and accessing VRAM from MPU on the basic cycle (MAINCLK) of internal operation.

Basic timing is two clocks of MAINCLK, and assign first clock to the access from MPU to VRAM and second clock to the transfer of display data from VRAM to LCD.

In accessing VRAM from <u>MPU</u>, output WAIT. In case of fixed WAITCNT input, change WAIT to "L" at the timing of the falling edge of overlapping with MCS and RD or LWR / HWR, and in case of using WAITCNT input, change WAIT to "L" at the timing of the falling edge of WAITCNT on MCS="L", And return to "H" at synchronizing with rising edge of MPUCLK after internal processing. For the cycle steal system, this IC provides a cycle steal control function to improve data transfer efficiency in a line. <u>This func-tion</u> gains access with the cycle steal system by taking WAIT for MPU during the display term with necessity for the display data transfer from built-in VRAM to LCD. On the other side, it does not output WAIT for keeping throughput of MPU during horizontal synchronous term (idle running term) with no necessity for the display data transfer from VRAM to LCD side. In detail, refer to "Description of cycle steal".

Output to LCD side

LCD display data VD<7:0> is output in parallel per 4 bits or 8 bits in synchronization with the rising edge of CP.

Pin VD<n:0> differs depending on the display mode.

	Sing	Dual scan	
	4-bit transfer	8-bit transfer	4-bit transfer
			VD<7:4>
	VD<3:0>	VD<7:0>	VD<3:0>
Displa	y mode 13	(2)(4)	(5)(6)

When display data for a line has been sent, LP outputs data in synchronization with the falling edge of MAINCLK.

The IC enables adjustment to an optimum value of the frame

frequency as requested from the LCD PANEL side by adjusting pulse width of LP with the LPW register value.

FLM is output when the display data for the first line has been sent. M output is an LCD alternating signal for driving LCD with alternating current.

M output cycles can be set in lines with the M output cycle variable register and is available to prevent LCD from deterioration.

· Gray scale display function

Gray scale display can assign 2-bit VRAM data to a picture element of LCD display to show the display density at four levels. Gray scale display pattern tables 0 and 1 (4 x 4 matrix x 16 patterns x 2 medium gray scale), consisting of SRAM of 64 bytes in total, can set any gray scale display pattern. In datail refer to "Description of grayscale function"

In detail, refer to "Description of gray scale function".

· Application to reflective color type LCD

The above gradation display function is available to control about four display colors on the reflective color type LCD with ECB (Electrically Controlled Birefringence).

LCD CONTROLLER with VRAM

COMBINATIONS OF CONTROL INPUT PINS ON THE MPU INTERFACE

Tables 1 to 6 show input setting conditions for access to the control register and VRAM from the MPU side. (1) Access to the control register

For data, D<7:0> is used.

(Only when 16bit MPU is used to control the LCD module built-in system, D<15:0> is used for data.)

IOCS	MCS	LWR	RD	A<14:0>	Operation		
L	Н	L	Н	0000н to 009Ен	IOCS Writes to control register		
L	Н	Н	L	0000н to 009Eн	control	Reads from control register	
Н	L	L	Н	5000H to 509EH	Writes to control register		
Н	L	Н	L	5000H to 509EH	MCS Writes to control register control Reads from control register		
Н	Н	Х	Х		Invalid		

(2) Write to VRAM

Table-1

(2-1) For use of 8bit MPU (Set as follow: MPUSEL="L", BHE=HWR="H")

Table-2	MPU SEL	MCS	BHE	A<0>	HWR	LWR	Odd address	Even address	Valid data bus width for MPU
	L	L	Н	L	н	L	Invalid	Write	0hit
				Н			Write	Invalid	8bit
				Х		Н	lay colid		
		Н		Х		Х	Invalid Invalid		

(2-2) For use of 16bit MPU - 1 (For MPU controlling byte access with A<0> and BHE, set as follow: MPUSEL=HWR="H")

Table-3	MPU SEL	MCS	BHE	A<0>	HWR	LWR	Upper byte	Lower byte	Valid data bus width for MPU											
	н	L	L	L	н	L	Write	Write	16bit											
						Н	Invalid	Invalid												
						L	Write	Invalid	Upper 8bit											
				н		Н	Invalid	Invalid												
						L	Invalid	Write	Lower 8bit											
				L	L	L		Ŀ			L L	L	Ŀ	L	Ŀ		Н			
			Н	н		L	Invalid	Invalid												
				п		н	Invaliu	Invaliu												
		Н	Х	Х		Х														

(2-3) For use of 16bit MPU - 2 (For MPU controlling byte access with LWR and HWR, set as follow: MPUSEL=BHE="H", A<0>="L")

Table-4	MPU SEL	MCS	BHE	A<0>	HWR	LWR	Upper byte	Lower byte	Valid data bus width for MPU
	Н	L	Н	L	L	L	Write	Write	16bit
						н	Write	Invalid	Upper 8bit
						L	Invalid	Write	Lower 8bit
					Н	Н	las se li el	امت معانيا	
		Н			Х	Х	Invalid	Invalid	

(3) Read from VRAM

Table

(3-1) For use of 8bit MPU (Set as follows: MPUSEL="L", BHE="H")

Table-5	MPU SEL	MCS	BHE	A<0>	RD	Odd address	Even address	Valid data bus width for MPU
	L	L	H.	L	L	Invalid	Read	
				н		Read	Invalid	8bit
				v	Н	Invalid	Invalid	
		Н		^	Х	Invaliu	Invaliu	

(3-2) For use of 16bit MPU (Set as follow: MPUSEL="H")

le-6	MPU SEL	MCS	BHE	A<0>	RD	Upper byte	Lower byte	Valid data bus width for MPU
	Н	L	X	Х	L	Read	Read	16bit
					Н	La se Pal		
		Н			Х	Invalid	Invalid	

Notes : Combinations except for the above cause malfunction. Be sure to make settings according to the above combinations. : X=either "L" or "H"

6

PRELIMINARY Notce: This is not a final specification. Notice: This is not a final specification. Some parametric limits are subject to change. Ver.3.1 Dec,1999 MITSUBISHI < DIGITAL ASSP>

M66273FP

.7

LCD CONTROLLER with VRAM

CONTROL REGISTER

M66273 is equipped with 80 types of built-in control registers.

For operation control	R1 to R11
Only for LCD module built-in system	R12 to R14, or R15 to R17
For gradation pattern table	R17 to R80

 \overline{IOCS} , \overline{LWR} , \overline{RD} , A<7:0> and D<7:0>, or \overline{MCS} , \overline{LWR} , \overline{RD} , A<14:0> and D<7:0> are used for setting from the MPU to control register. And for address in \overline{IOCS} control,use A<7:0>=00H to 9EH,and in \overline{MCS} control, use A<14:0>=5000H to 509EH.

(However, D<15:0> is to be used only when registers R15 and R16 only for LCD module built-in system are used.)

(1) Types of control registers · List of registers for operation control

	Types of register	Address (ICOS contro	Address)			Data	a	-			R/W	Reset
No.	Name	A<7:0>	A<14:0>	D7	D6	D5	D4	D3	D2	D1	D0		
R1	Basic operation mode	00н	5000H	RESET	IDXON	◀	_DIV	>	DISP	REV	LCDE	R/W	00н
R2	LCD output mode	02н	5002H			WAITC	SWAP		DUAL	GRAY	4/8	R/W	00н
R3	Number of horizontal display characters	04н	5004н	◄			_CR					W	28н
R4	Horizontal synchronous pulse width	06н	5006н	◄			_LPW				-	w	04н
R5	Cycle steal enable width	08н	5008H	◀			_CSW	'				w	02н
R6	Number of vertical lines	ОАн	500AH	◀			_SLT	_				w	78 H
R7	1st screen display start address	0Сн	500Cн	•			—SA1L	<u> </u>			D0 0	R/W	00н
R8		ОЕн	500EH		-		_SA1F	+ <u> </u>			-		00н
R9	2nd screen display start address	10н	5010H	-			—SA2L			-	D0 0	R/W	80н
R10			5012H	\geq			_SA2H	I			-		25н
R11	M output frequency variable	14н	5014н	-			—MT				-	w	00н

· List of registers only for LCD module built-in type support function

(For 8bit MPU only)

R12 VRAM address index	16н	5016H	<	DX8L		00н
R13 VRAM address index	18H	5018H		_IDX8H	R/W	00н
R14 Data port	1Ан	501Ан	4	DP8	R/W	Undetermined

(For 16bit MPU only)

1								
LVDes of redister		Address Address (ICOS control)			Data			Deast
No.	Name	A<7:0>	A<14:0>	D15 -	4	►D0	R/W	Reset
R15	VRAM address index	1Сн	501С н		D14 D1	D0 0	R/W	0000н
R16	Data port	1Ен	501Eн	D15	DP16	D0	R/W	Undetermined

· List of registers for gray scale pattern table

	Types of register		Address	19			Data	a					Reset
No.	Name	A<7:0>	A<14:0>	D7	D6	D5	D4	D3	D2	D1	D0	R/W	Resel
R17	Gray scale pattern 0-1	20н	5020H	◀	—FRC0	-1-2 —		-	-FRC	0-1-1 -		-	
R18	Gray scale pattern 0-2	22н	5022н	◀	-FRC0	-1-4 —		-	-FRC	0-1-3 -			
to	to	to	to		to				to			R/W	Undetermined
R47	Gray scale pattern 0-31	5Сн	505Сн	◀	-FRC0	-16-2		-	FRC	0-16-1-		-	
R48	Gray scale pattern 0-32	5Ен	505EH	◀	-FRC0	-16-4—		-	FRC	0-16-3_		-	
R49	Gray scale pattern 1-1	60н	5060H	◀	—FRC1	-1-2 —		-	FRC	1-1-1		-	
R50	Gray scale pattern 1-2	62н	5062н	◄	—FRC1	-1-4 —		-	-FRC	1-1-3 -			
to	to	to	to		to				to			R/W	Undetermined
R79	Gray scale pattern 1-31	9Сн	509Сн	-	FRC1	-16-2			FRC	1-16-1			
R80	Gray scale pattern 1-32	9Ен	509Ен		—FRC1	-16-4-	-		-FRC	1-16-3-	•	+	

LCD CONTROLLER with VRAM

(2) Description of registers

Address is listed for \overline{ICOS} control. Incase of \overline{MCS} control, set to address adding 50H to upper 7 bit (50**H).

[R1] Basic operation mode

Set the Basic operation mode

Address	R/W	Function	Restriction	Reset
		D7 RESET 0 Reset OFF 1 Reset ON	•Surely return to reset off after reset on. And then, can't set another bits (D6 to D0) at the same time.	0
		D6 IDXON Set to decide whether or not the function only for LCD 0 Index mode OFF module built-in system is used. 1 Index mode ON Set Index mode OFF for reset.		0
		DIVDivision of D5Set the division of MPUCLK input to set the reference clock cycle (MAINCLK) for intern operation.001001011/2 division011/4 division011/8 division101/16 division	•Don't set except for the settings in the table at left.	000
00н	R/W	D2 DISP -Control display ON/OFF of LCD. 0 Display OFF -In the reverse mode with REV (D1) set to "1", "1" is output display data VD <n:0> with DISP="0". 1 Display ON -Reset sets display OFF.</n:0>	t to	0
		D1REV·Controls normal/reverse of LCD display.0Normal display·Resetting sets normal display.1Reverse display		0
		D0 LCDE 0 LCDENB="0"output 1 LCDENB="1"output *Resetting outputs "0" (Vss potential) to the LCDENB output •This function is prepared for controlling the apply voltage When the power supply is turned ON after registers have to completely set, set this LCDE to "1" to apply the LCD volte Conversely for turning OFF the power supply to the system the LCDE to "0" to turn OFF the LCD voltage. This prevents abnormal DC voltage from being applied to LCD. This function depends on the LCD functions. Use the function, if necessary.	to LCD. been tage. n, set	0

PREI	is not a final s metric limits at	pecification e subject to change.
Some pur	Ver.3.1	Dec,1999

MITSUBISHI < DIGITAL ASSP>

M66273FP

9

LCD CONTROLLER with VRAM

[R2] MPUI/LCD mode

Set the dis	play data	output mode	on the LCD side.

Address	R/W		Function	Restriction	Reset
		D7, D6 are not used.	•To read R2, "0" is output to D7 , D6.		0
		D5 WAITC 0 MCS and RD or H/LWR control 1 WAITCNT control	 Set to select trigger signal of WAIT output. When setting WAITC to "0", change WAIT to "L" at timing of falling edge of overlapping with MCS and RD or LWR and HWR. And return to "H" at synchronization with the rising edge of MPUCLK offer internal processing. When setting WAITC to "T", change WAIT to "L" at timing of falling edge of WAITCNT on MCS="L".And return to "H" at synchronization with rising edge of MPUCLK after internal processing. Output WAIT only when requested access from MPU to VRAM is gained during cycle steal access. Resetting set WAITC ="0". 	 -set when register is initialized. When setting to "0",connect WAITCNT input to Vss or VDD. 	0
02н	R/W	D4 SWAP 0 Order of upper/lower byte 1 Order of lower/upper byte	 •When selecting 16 bit MPU, set SWAP to "0" to transfer VD<n:0> in order of Upper/Lower byte of MPU data bus, reversally set to "1" in order of Lower/Upper byte.</n:0> •When selecting 8 bit MPU, set to "0" •Even if setting to "1", use D<7:0> to access to register of 8 bit width. •Resetting set SWAP="0". 	 set when register is initialized. 	0
		D3 is not used.	•To read R2, "0" is output to D3.		0
		D2DUAL01 screen driving panel12 screen driving panel	 Set the LCD panel configuration. Resetting sets the 1 screen driving panel. 	•set when register is initialized.	0
		D1 GRAY 0 Binary display mode 1 Gray scale display mode	 Set the LCD display mode (binary or gray scale). Resetting sets the binary display mode. 	-set when register is initialized.	0
		D04/804bit transfer18bit transfer	 Set the transfer path width of the LCD display data path VD<n:0>.</n:0> Resetting sets 4bit transfer. 	-set when register is initialized.	0

PRELIMINARY Notice: This is not a final specification. Some parametric limits are subject to change.

M66273FP

LCD CONTROLLER with VRAM

[R3] Number of horizontal display characters

Address	R/W			Function		Restriction	Reset
04н	w	СR D7 to D0 00н 01н 02н с с с FFн	Number of characters 1 2 · · ·	CD display dots Gray scale display 4 4 8 ¹ 1 ↓ 1020	•Sets the number of hori-zontal display characters per line. •Resetting sets "28н" (=40 characters).	 For CR, maximum of 255 characters can be set. In display modes (2) (3),(4) and (6), the number of even cha-racters can be set. 	28н

(Note) Definition of the number of characters

The number of display characters means data corresponding to 1byte of VRAM. One character : In the case of binary, one character means 8dots of LCD display. In the case of gray scale display, one character means 4dots of LCD display (because 2bits of VRAM corresponds to 1dot of LCD display).

[R4] Horizontal synchronous pulse width


Address	R/W			Function	Restriction	Reset
06н	w	LPW D7 to D0 00H 01H 02H ↓ ↓ FFH	Number of characters 2 2 2 255	 In the unit of characters, set the width of horizontal synchronous pulse generated per line. Horizontal synchronous pulse is output from the LP pin and is used for serial/parallel conversion of displayed data. Adjustment of LPW can set the frame frequency to an optimum value. The LP output pulse actually generated takes the value(LPW setup value - 2CP), taking into account the CP output timing. Only in the case of display mode ④however, the LP output pulse takes the value (LPW set value - 1CP). Resetting sets "04H" (= 4 characters). 	 In display modes (2), (3), (4) and (6) only the number of even characters can be set. In display modes (1) and (5), set LPW to 02н or more. In display modes (2), (3), (4) and (6), set LPW to 04н or more. 	

[R5] Cycle steal enable width

ddress
08н

[R6] Number of vertical lines

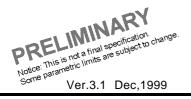
Address R/	W Function Restriction					
0Ан V	SLT Number of D7 to D0 vertical lines 00H — 01H 2 02H 4 i i i	cording to the number of LCD display lines.				

LCD CONTROLLER with VRAM

PRELIMINARY Notice: This is not a final specification Some parametric limits are subject to change. Ver.3.1 Dec, 1999

[R7, R8] 1st screen display start address

Address	R/W				Function		Restriction	Reset
		D7	SA1H D6 to D0	SA1L D7 to D0	1st screen display start address	•Sets the 1st screen display start address.	•At the display start add-ress, even addresses can only be set. • For single scan;	
0C H (SA1L)			00н	00н	0000н	determined by writing data into SA1H. ·Reading SA1H outputs "0" to	0000H to 4AFEH	00н
		/	00н	02н	0002н		Sets 0000H to 257EH.	
	R/W		00н	04н	0004н		above must not be made.	
						·Resetting sets "0000н".	•To modify the display start address, be sure to respecify in order of SA1L- SA1H even when only	
0EH (SA1H)			4Ан	FEн	4AFEH		SA1L is modified.	00н


[R9, R10] 2nd screen display start address

Address	R/W				Function		Restriction	Reset
		_	SA2H D6 to D0	SA2L	2nd screen display start address	·Used for dual scan mode only to set the 2nd	•At the display start add- ress, only even addre-	
10н (SA2L)			25н	80H	2580н	•The display start address is Settings except for the	sses can be set, and; •Can set 2580н to 4AFEн.	80н
			25н	82н	2582H		Settings except for the	
	R/W		25н	84н	2584н	determined by writing data into SA2H.	above must not be made.	<u> </u>
						•Reading SA2H outputs "0" to D7.	•To modify the display start address, be sure to	
12н (SA2H)			4Ан	FEн	4AFEн	·Resetting sets "2580H".	respecify in order of SA2L - SA2H even when only SA2L is modified.	25н

[R11] M output cycle variable

Address	R/W		Function		Restriction	Reset
14н	W	MT D7 to D0 00H 01H 02H	Output cycle of M signal Makes toggle change every frame. Makes toggle change every line (=1LP). Makes toggle change every 2 lines.	 Sets the output cycle of M signal output from the M terminal. With MT=01н, for example, M sig- nal repeatedly reverses (toggles) every line. Resetting sets "00н". It is recommended to set this register to an optimum value ac- 		00н
		¥ FFн	Makes toggle change every 255 lines.	cording to the LCD specification.		

MITSUBISHI < DIGITAL ASSP>

LCD CONTROLLER with VRAM

M66273FP

[R12, R13] VRAM address index (8bit MPU only)

Address	R/W				1	Restriction	Reset	
16н		I D7	DX8H D6 to D0	IDX8L D7 to D0	VRAM address to access	·VRAM address index register only for LCD module built-in system. Sets the VRAM	•VRAM addresses to access can be set to	
(IDX8L)			<u>00н</u> 00н	00н 01н	0000н 0001н	address to access. Since IDX8H and IDX8L are independent from each other, either one of the register values	0000H to 4AFFH. Settings except for the above must not be made.	00н
18н (IDX8H)	R/W		00н 1 1 4Ан	02H ↓ FFH	0002H	can also be set and modified. In addition, automatic increments are made for consecutive addresses. •Reading IDX8H outputs "0" to D7. •Resetting sets "0000H".		ООН

[R14] Data port (8bit MPU only)

Address	R/W		Restriction	Reset		
		DP8		•Data port register only for LCD module built-		
		D7 to D0	Data port (8bit)	in type support additional functions. Via this register, 8bit data is read/written between		ХХн
1Ан	R/W			MPU and VRAM.		(Undetermined)
				·Completion of access to DP8 increments the		
				IDX8H and IDX8L values by +1.		
				Resetting outputs undetermined data.		

[R15] VRAM address index (16bit MPU only)

Address	R/W			Functio	on	Restriction	Reset
		D15	IDX16 D14 to D0	VRAM address to access	·VRAM address index register only for LCD module built-in type support addi-tional functions. Sets the VRAM address to	•VRAM address to ac-cess can be set to 0000H to 4AFEH.	
			0000н	0000н	access.	Settings except for the	
10	R/W		0002н	0002н	·Automatically incremented for consecu-tive	above must not be made.	0000н
1Сн	R/VV		0004н	0004н		•Set the VRAM address with D<14:1> and fix it to	
					 ·Reading IDX16 outputs "0" to D15. ·Resetting sets "0000+". 	D<0>=0.	
		/	4AFEн	4AFEн]		

Note : With SWAP="1" set, set the byte-swapped data for the VRAM address to access. (Set low order bytes of VRAM address to D<15:8> and set high order bytes of VRAM address to D<7:0>.)

[R16] Data port (16bit MPU only)

Address	R/W		Functio	n	Restriction	Reset
		DP16		Data port register only for LCD module built-		
		D15 to D0	Data port (16bit)	in type support additional functions. Via this register, 16bit data is read/ written between		ХХХХН
1Ен	R/W			MPU and VRAM.		(Undetermined)
				Completion of access to DP16 incre-ments		
				the IDX16 value by +1.		
				Resetting outputs undetermined data.		

Note : Registers R12 to R16 are used only for LCD module built-in system. Register setting is not needed if these functions are not used.

Notice: This is not a final specification. Notice: This is not a final specification. Some parametric limits are subject to change. Ver.3.1 Dec, 1999

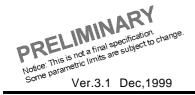
M66273FP

LCD CONTROLLER with VRAM

[R17 to R80] Gradation patterns 0-1 to 32 and 1-1 to 32

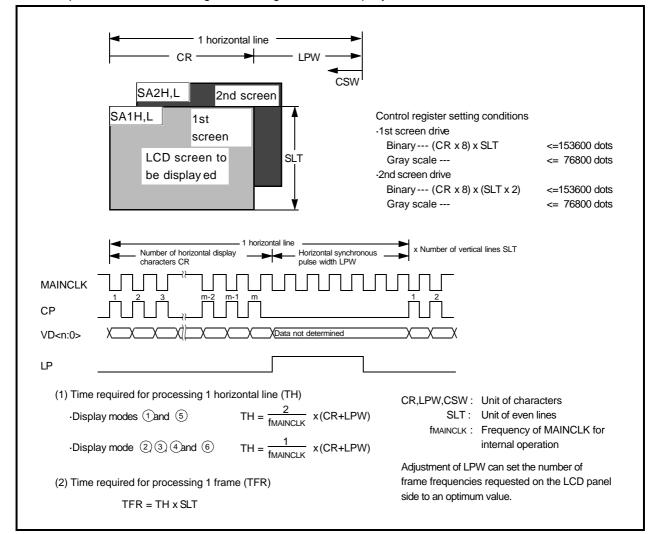
Address	R/W F	unctio	n					Restriction	Reset
			Register	Address	Data		Sets data of gradation	Set gradation patterns	
		No.	Name	A<7:0>	D7 to D4	D3 to D0	pattern 0. Gradation pattern 0	when the register is initialized.	
		R17	Gray scale pattern 0-1	20н	FRC0-1-2	FRC0-1-1	provides 16 patterns of	·When access to R17 to	
20н	R/W	R18	Gray scale pattern 0-2	22н	FRC0-1-4	FRC0-1-3	4 x 4 matrix.	R80, must be set	XXH
to 5Eн	r./ v v	to	to	to	to	to	_	DISP=OFF. Can't access to R17 to R80 on DISP=ON.	(Undeter- mined)
		R47	Gray scale pattern 0-31	5Сн	FRC0-16-2	FRC0-16-1		•All registers R17 to R80	
		R48	Gray scale pattern 0-32	5Ен	FRC0-16-4	FRC0-16-3		must be set.	
							·Sets data of gradation	-	
			Register	Address	Dala		pattern 1.		
		No.	Name	A<7:0>	D7 to D4	D3 to D0	Gradation pattern 1		
60н	R/W		Gray scale pattern 1-1			FRC1-1-1	provides 16 patterns of 4 x 4 matrix.		ХХн
to		R50	Gray scale pattern 1-2	62H	FRC1-1-4	FRC1-1-3	4 X 4 Maurx.		(Undeter-
9Ен		to	to	to	to	to			mined)
		R79	Gray scale pattern 1-31	9Сн	FRC1-16-2	FRC1-16-1			
		R80	Gray scale pattern 1-32	9Ен	FRC1-16-4	FRC1-16-3			
	<u> </u>	Gr		Gray scale Register n	► Number	ale pattern table 0 or 1 of patterns : 1 to 16 of lines : 1 to 4			
		Gr	ay scale pattern setting ex						
	Gray scale pattern 0-1 = 48н								
Gray scale pattern $0-2 = 12H$									
1st frame 1st line									
		2nc			FRC0	-1-2			
		3rd]		-1-3			

- FRC0-1-4


Note : Registers R17 to R80 are used to set grayscale patterns for grayscale display. Register setting is not needed for binary display.

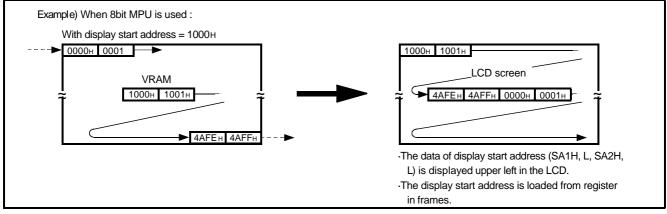
4th line

MITSUBISHI < DIGITAL ASSP>


M66273FP

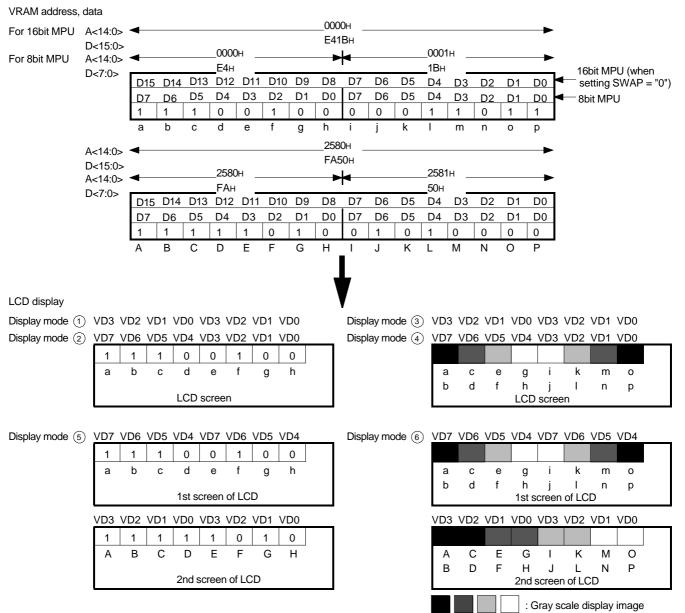
Description of LCD display

Relationships between control register setting and LCD display



Relationships between control register setting and LCD display

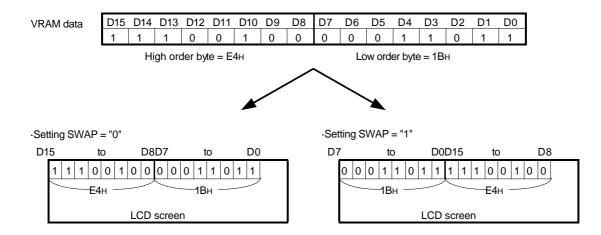
PREL Notice: This i	s not a final si hetric limits an	ARY pecification. e subject to change. Dec, 1999
Some part	Ver.3.1	Dec,1999


LCD CONTROLLER with VRAM

Relationships between display start address and LCD display

Relationships between display start address and LCD display

Relationships between VRAM address, data and LCD display


Notice: This	is not a final st netric limits an	ARY pecification e subject to change. Dec. 1999
Some bu	Ver.3.1	Dec,1999

LCD CONTROLLER with VRAM

Relationships between SWAP setting and LCD display

When 16bit MPU is in use, setting the SWAP register can modify the sending order of LCD display data in bytes.

SWAP setting	
0	For D<15:0>, sends VD <n:0> in order of upper / lower bytes.</n:0>
1	For D<15:0>, sends VD <n:0> in order of lower / upper order bytes.</n:0>

Relationships between LCD display mode and VD<n:0> pin

LCD screen

Single scan mode 4bit parallel Display mode $(1, 3)$	Dual scan mode 4bit parallel Display mode (5) , (6)
VD3 VD2 VD1 VD0	VD7 VD6 VD5 VD4
LCD screen	1st screen of LCD
	VD3 VD2 VD1 VD0
Single scan mode 8bit parallel Display mode $(2), (4)$	
	2nd screen of LCD
VD7 VD6 VD5 VD4 VD3 VD2 VD1 VD0	

MITSUBISHI < DIGITAL ASSP>

M66273FP

LCD CONTROLLER with VRAM

PRELIMINARY Notice: This is not a final specification. Notice: This is not a final specification change. Some parametric limits are subject to change. Ver.3.1 Dec,1999

Output signal on the LCD side

Example) Assuming 320 x 240 dots LCD is used in display mode \bigcirc (CR = 40 characters, LPW = 2 characters, SLT = 240 lines, DIV = division value 1, MT = 1)

(1) Output per li	ne "	
MAINCLK		Output each time one
CP		piece of display data is transferred.
VD<3:0>		4bit transfer
LP		Output when display data for a line is comp-letely sent.
(2) Output signa		
LP	$239 \qquad 240 \qquad 1 \qquad $	
FLM		Output when display data in the 1st line is
М		completely sent. Output reverse period
		of M signal can be set with the MT register.
(3) LCDENB ou		
MAINCLK		
LCDENB		
(4) Reset to 1st	screen/1st line	
RESET		
MAINCLK		
LCDENB LP		
FLM		
М		
СР		
	1st screen/1st line	
(5) 1st line to 2r MAINCLK		
LP		
FLM		
М		
СР		
	1st line 2nd line	
(6) 1st screen/2	40th line to 2nd screen/1st line	
MAINCLK		
LP		
FLM	Ľ"	
CP	L_ L	

PRELIMINAR Notice: This is not a final specificatic Some parametric limits are subject i Ver.3.1 Dec,1999

Description of cycle Steal

Basic timing

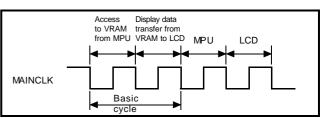
The basic timing for internal operation of the M66273 adopts 2 clocks of MAINCLK as a basic cycle to assign the 1st clock and 2nd clock to access from MPU to VRAM and transfer of display data from VRAM to the LCD side, respectively.

MAINCLK is reference clock for internal operation inputting division of MPUCLK and reference with rising edge of MPUCLK.

MPU access execution cycle (WAIT output period)

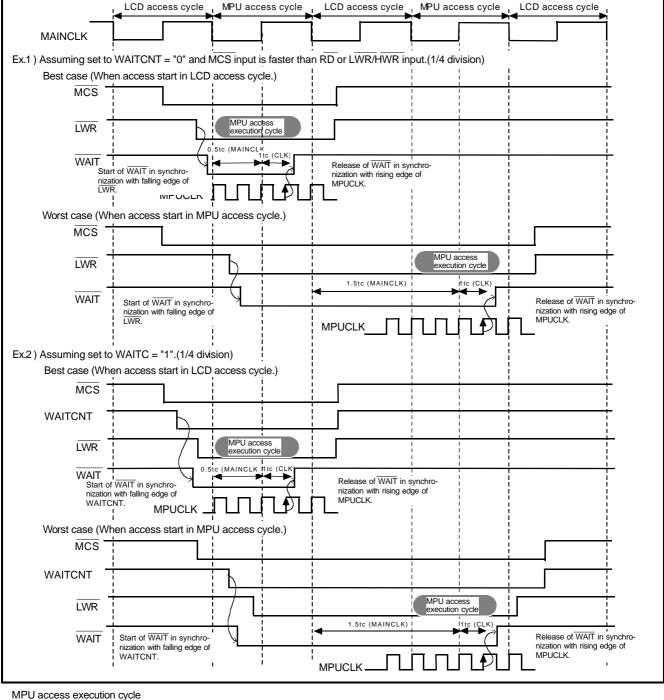
Writing/reading to/from VRAM in the display section takes,

Best case = 0.5tc(MAINCLK) + 1tc(CLK),


Worst case = 2.5tc(MAINCLK) + 1tc(CLK),

depending on the internal cycle steal status when access request from MPU starts.

MITSUBISHI < DIGITAL ASSP>


M66273FP

LCD CONTROLLER with VRAM

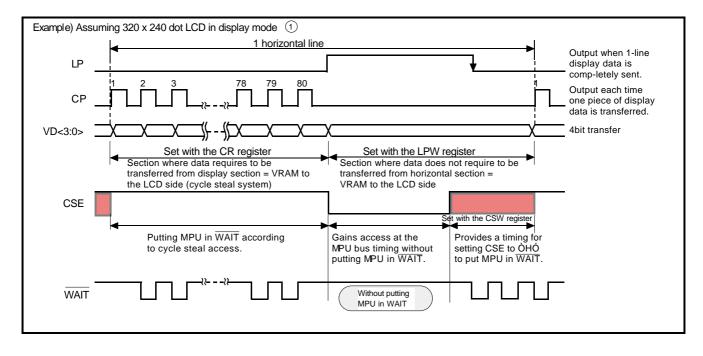
Basic timing

In this case, tc(CLK) = MPUCLK cycle time, tc(MAINCLK) = MAINCLK cycle time.

18

PRELIMINARY Notice: This is not a final specification. Notice: This is not a final specification change Notice: This is not a final specification. Some parametric limits are subject to change Ver.3.1 Dec, 1999 MITSUBISHI < DIGITAL ASSP>

M66273FP


LCD CONTROLLER with VRAM

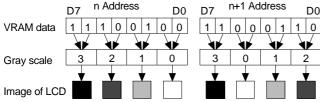
Description of cycle steal control function

The M66273 provides the cycle steal control function to efficiently carry out one-line data processing.

In the display section where display data requires to be transferred from built-in VRAM to the LCD side, this function adopts a cycle steal system to gain access to the MPU while putting the MPU in WAIT. In a horizontal synchronous section where display data does not

require to <u>be transferred</u> from VRAM to the LCD side, this function does not output WAIT in the section to avoid reducing the MPU throughput. However, since malfunction is restrained near the termination of horizontal synchronous section, the CSW register should be surely set to provide a period of access by the cycle steal system. (It need to set at least 1 cycle of MPU bus timing.)

LCD CONTROLLER with VRAM


Description of gray scale function

Set gray scale mode by register (GRAY="1").

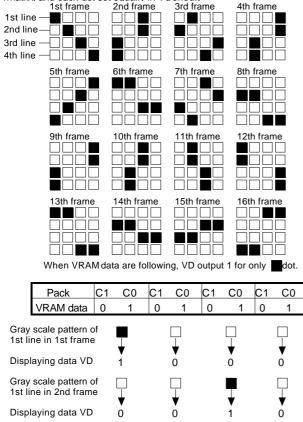
Gray scale assign 2bits of VRAM to 1dot of LCD and displaying 4density.

ex.) for 8bit-MPU	1 Address
-------------------	-----------

VRA	M data	D7 D6		D5	D4	D3	D2	D1	D0
Pack		C1	C0	C1	C0	C1	C0	C1	C0
C1 0 0 1	C0 0 1 0 1	Disp Follo Follo		F Iray so Iray so	lay cale pa cale pa				

Upper figure are image of gray scale display of LCD and VRAM data, actually controlling pseudo medium gray scale.

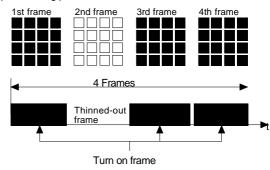
Setting of gray scale pattern table


Gray scale pattern table 0, 1 a used for controlling display density. It set to control register R17-R80 (SRAM configuration).

Gray scale pattern set 16 patterns for 1 medium gray scale (1 pattern = 4dots x 4lines matrix).

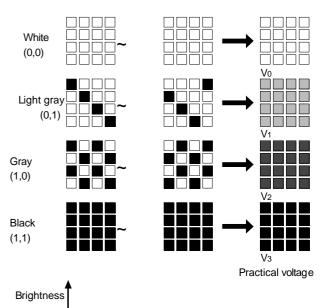
It need to set 32 patterns (64 byte) because 2 medium gray scale. Medium gray scale period is a maximum of 16 frames.

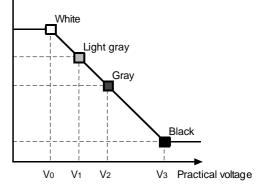
Example of gray scale pattern


The following are example of gray scale pattern. (Select 4dots from 1matrix, and each dot set equally in 1 period.)

Set the same pattern for each 4 or 8 frames period in 16 frames. So enable to decrease frame numbers of gray scale period.

Still more, set the same gray scale pattern table in frame unit, so enable to display thinned-out frame method.


When thinned-out 1 frame from continuous 4 frames, the following are example of setting pattern table.



When use thinned-out frame, distribute thinned-out equally, and avoid thinned-out continuous frame together.

Gray scale function use the features of liquid crystal changed brightness by practical voltage.

The following are gray scale patterns for each frame, and the relation between brightness and practical voltage.

LCD CONTROLLER with VRAM

Additional function for LCD module built-in system

(When use this function, recommend using ICOS to control I/O registers.) As all of the VRAM address in the M66273 are externally opened

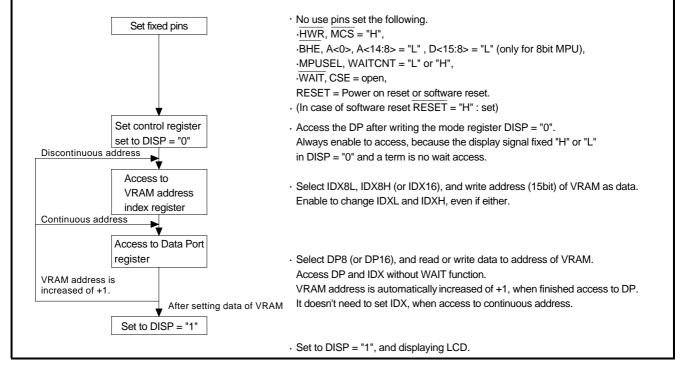
for addressing VRAM from MPU directly.

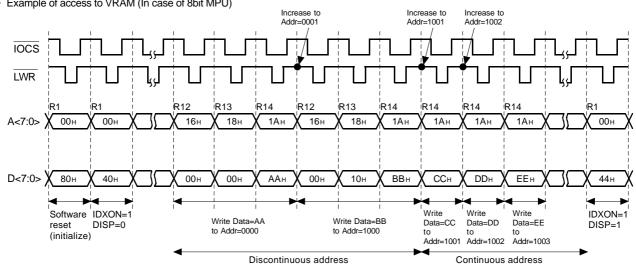
When consider the LCD module built-in system, connect pins are increased.

But the M66273 has an additional function for the LCD module built-in system by lessening connect pins.

Access the internal VRAM through the VRAM address index register in this function.

When use this function, need to set to IDXON = "0".


When use this function and access to VRAM, it need to set to DISP = "0".


· Method of accessing the internal VRAM

The following show the process of accessing VRAM.

· Interface pins with MPU and I/O register for access to VRAM.

	8bit MPU	16bit MPU
	A<7:1>	A<7:1>
	<u>D<7:0</u> >	<u>D<15</u> :0>
	IOCS	<u>IOCS</u>
Interface pins	LWR	LWR
intenace pins	RD	RD
	MPUCLK	MPUCLK
	(19 pins)	(27 pins)
	IDX8H, IDX8L	IDX16
I/O register	DP8	DP16

· Example of access to VRAM (In case of 8bit MPU)

LCD CONTROLLER with VRAM

ABSOLUTE MAXIMUM RATINGS (Ta=-20 to +75 $^\circ\!\!\!C$ unless otherwise noted)

PRELIMINARY Notice: This is not a final specification. Some parametric limits are subject to change.

Symbol	Parameter	Condition	Ratings	Unit
VDD	Supply voltage		-0.3 to +6.5	V
Vı	Input voltage		-0.3 to VDD+0.3	V
Vo	Output voltage		-0.3 to VDD+0.3	v
lo	Output current		±20	mA
Pd	Power dissipation		600	mW
Tstg	Storage temperature		-55 to +150	°C

RECOMMENDED OPERATING CONDITIONS (Ta=-20 to +75 °C unless otherwise noted)

C. make at	bol Parameter Condition			Limits		1.1	
Symbol	Parameter	Condition		Min.	Тур.	Max.	Unit
Vbb Supply voltage		5.0V support	4.5	5.0	5.5		
		3.0V support	2.7	3.0	3.3	V	
Vss	Supply voltage				0		V
VI	Input voltage			0		Vdd	V
Vo	Output voltage			0		Vdd	V
Topr	Operating temperature			-20	+25	+75	C
	to the second stars of second stars		Normal input			500	ns
tr, tf	Input rise, down time		Schmidt trigger input			5	ms

ELECTRICAL CHARACTERISTICS (5V version support specifications, Ta=-20 to +75°Cunless otherwise noted)

Symbol	Parameter		Condition		Limits Min.	Тур.	Max.	Unit
Vін	"H" input voltage		VDD = 5.5V		3.85		5.5	
VIL	"L" input voltage	Note 1	VDD = 4.5V		0		1.35	V
Vt+	Threshold voltage in positive direction)/ 5 0)/		2.3		3.7	
Vt-	Threshold voltage in negative direction	Note 2	VDD = 5.0V		1.25		2.3	V
Vон	"H" output voltage			Iон = -4mA	4.1			
Vol	"L" output voltage		VDD = 4.5V	IOL = 4mA			0.4	V
Ін	"H" input current			VI = VDD			10	
lı∟	"L" input current		VDD = 5.5V	VI = VSS			-10	uA
lozн	"H" output current in off status	-D<15:0>		Vo = Vdd			10	
lozl	"L" output current in off status	U<15.0>	VDD = 5.5V	Vo = Vss			-10	uA
1	Average supply current in operation		VDD = 5.5V, VI = VDD or VSS	Display mode 1,2,3,4			60	
IDD(A)	mode		fMAINCLK = 15MHz(MAX), Output =open	Display mode 5,6			80	mA
IDD(S)	Supply current in static mode		$VDD = 5.5V, \overline{IOCS}, \overline{MCS} = VDD$ Other VI = VDD or Vss fixed				200	uA

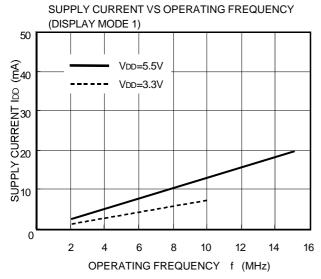
Notes 1: Normal input terminal --- A<14:0>, D<15:0>

2: Schmidt trigger input terminal --- All input pins except for A<14:0>, D<15:0>

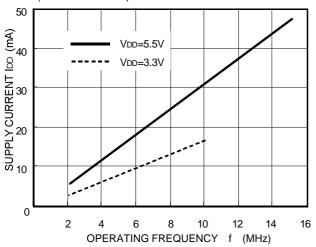
PRELIMINARY Notce: This is not a final specification. Notice: This is not a final specification. Some parametric limits are subject to change. Ver.3.1 Dec,1999

M66273FP

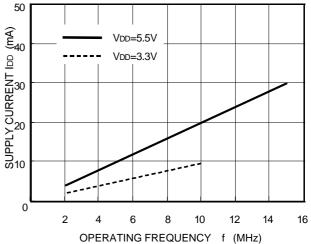
LCD CONTROLLER with VRAM


ELECTRICAL CHARACTERISTICS (3V version support specification, Ta=-20~+75°C unless otherwise noted)

C. make al	Parameter		Condition		Limits			1.1.4.14
Symbol	Parameter		Condition		Min.	Тур.	Max.	Unit
Vін	"H" input voltage		VDD = 3.3V		2.31		3.3	
VIL	"L" input voltage	Note 1	VDD = 2.7V		0		0.81	V
VT+	Threshold voltage in positive direction				1.27		2.18	.,
Vt-	Threshold voltage in negative direction	Note 2	VDD = 3.0V		0.45		1.5	V
Vон	"H" output voltage			Іон = -4mA	2.3			
Vol	"L" output voltage		VDD = 2.7V	IOL = 4mA			0.4	V
Іін	"H" input current			VI = VDD			10	
lı.	"L" input current		VDD = 3.3V	VI = VSS			-10	uA
lozн	"H" output current in off status	-D<15:0>		Vo = Vdd			10	
lozl	"L" output current in off status	0<13.02	VDD = 3.3V	Vo = Vss			-10	uA
_	Average supply current in operation		VDD = 3.3V, VI = VDD or VSS	Display mode 1 to 4			25	
IDD(A)	mode		fMAINCLK = 10MHz(MAX), Output = open	Display mode 5 and 6			35	mA
IDD(S)	Supply current in static mode		$V_{DD} = 3.3V, \overline{IOCS}, \overline{MCS} = V_{DD}$ Other VI = V_{DD} or V_{SS} fixed				200	uA


Notes 1: Normal input terminal ---- A<14:0>, D<15:0>

2: Schmidt trigger input terminal --- All input pins except for A<14:0>, D<15:0>


STANDARD CHARACTERISTICS (Ta=25℃)

Notice: This is not a final specification. Notice: This is not a final specification change Some parametric limits are subject to change Ver.3.1 Dec.1999

M66273FP

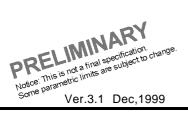
LCD CONTROLLER with VRAM

5V version support spcification

SWITCHING CHARACTERISTICS (VDD=5V±10%, Ta=-20~+75°C)

0 1 1		Test		Limits		
Symbol	Parameter	condition	Min.	Typ.	Max.	Unit
ta(IOCS-D) ta(MCS-D) ta(RD-D)	IOCS data access time MCS data access time RD data access time				70	ns
tdis(IOCS-D) tdis(MCS-D) tdis(RD-D)	Output disable time after IOCS Output disable time after MCS Output disable time after RD				20	ns
tpHL(MCS-WAIT) tpHL(WR-WAIT) tpHL(RD-WAIT) tpHL(WC-WAIT)	WAIT output propagation time after MCS WAIT output propagation time after WR WAIT output propagation time after RD WAIT output propagation time after WAITCNT				15	ns
tpLH(CLK-WAIT)	WAIT output propagation time after MPUCLK				15	ns
tpd(CLK-CP)	CP output propagation time after MPUCLK	CL=50pF			30	ns
tpLH(CLK-LP) tpHL(CLK-LP)	LP output propagation time after MPUCLK				30	ns
ta(VD)	VD access time				30	ns
tpLH(CLK-FLM) tpHL(CLK-FLM)	FLM output propagation time after MPUCLK				30	ns
tpd(CLK-M)	M output propagation time after MPUCLK				30	ns
tpLH(CLK-LE) tpHL(CLK-LE)	LCDENB output propagation time after MPUCLK				30	ns
tpLH(CLK-CSE) tpHL(CLK-CSE)	CSE output propagation time after MPUCLK				30	ns
tpd(D-WAIT)	Data definite time before cancelling WAIT		0			ns

TIMING REQUIREMENTS (VDD=5V±10%, Ta=-20~+75°C)


(1) Accessing to control register

		Test		Limits		
Symbol	Parameter	condition	Min.	Typ.	Max.	Unit
tW(CS) tW(LWR)	IOCS/MCSpulse width LWR pulse width		35			ns
tsu(D-CS) tsu(D-LWR)	Data set up time before rising edge of IOCS/MCS Data set up time before rising edge of LWR		20			ns
th(CS-D) th(LWR-D)	Data hold time after rising edge of IOCS/MCS Data hold time after rising edge of LWR		2			ns
tsu(A-CS) tsu(A-LWR) tsu(A-RD)	Address set up time before falling edge of IOCS/MCS Address set up time before falling edge of LWR Address set up time before falling edge of RD		10			ns
th(CS-A) th(LWR-A) th(RD-A)	Address hold time after rising edge of IOCS/MCS Address hold time after rising edge of LWR Address hold time after rising edge of RD		0			ns

(2) Accessing to VRAM

0 1 1		Test		Limits		
Symbol	Parameter	condition	Min.	Typ. Max.	Unit	
tW(MCS) tW(WR)	MCS pulse width WR pulse width		35			ns
tsu(D-MCS) tsu(D-WR)	Data set up time before rising edge of MCS Data set up time before rising edge of WR		20			ns
th(MCS-D) th(WR-D)	Data hold time after rising edge of MCS Data hold time after rising edge of WR		2			ns
tsu(A-MCS) tsu(A-WR) tsu(A-RD)	Address set up time before falling edge of MCS Address set up time before falling edge of WR Address set up time before falling edge of RD		10			ns
th(MCS-A) th(WR-A) th(RD-A)	Address hold time after rising edge of MCS Address hold time after rising edge of WR Address hold time after rising edge of RD		0			ns
tsu(D-CLKD)	Data set up time before rising edge of WAIT		tsu(CLK)+10			ns
tsu(MCS-WC)	MCS set up time before falling edge of WAITCNT		5			ns

MITSUBISHI < DIGITAL ASSP>

M66273FP

LCD CONTROLLER with VRAM

(3) Clock and accessing to LCD display

Cumhal	Dever	4 a z	Test		Limits		- 11
Symbol	Parame	ter	condition	Min.	Тур.	Max.	Unit
tc(CLK)	MPUCLK cycle time			50			ns
tWH(CLK)	MPUCLK "H" pulse wi	dth			tc(clk)		
twl(CLK)	MPUCLK "L" pulse width				2		ns
		Display mode 1,2,3,5,6			<u>tC(CLK)</u> (1/n)		ns
tC(CP)	CP syscle time Display mode 4	Display mode 4			$\frac{2 \cdot t_{C(CLK)}}{(1/n)}$		ns
tWH(CP)	CP "H" pulse width				tC(CLK)		
tWL(CP)	CP "L" pulse width	Display mode 1,2,3,5,6			2 · (1/n)		ns
tWH(CP)	CP "H" pulse width		-		_tc(clk)		
tWL(CP)	CP "L" pulse width	Display mode 4			(1/n)		ns
1	ELM pluce width	Display mode 1,2,3,5,6			<u>tс(сск) · срw</u> (1/n)		ns
tW(FLM)	FLM pluse width	Display mode 4			$\frac{2 \cdot t_{C(CLK)} \cdot L_{PW}}{(1/n)}$		ns

Note : Clock frequency of MPUCLK input is less than fmax = 20MHz.

1/n =Division of MPUCLK LPW =Setting value of LPW register

Limit of clock for the internal operation is fmax = 15MHz. When MPUCLK is more than 15MHz from external input, set clock for the internal operation up to 15MHz by using division of DIV register. Division is set with rising dege of MPUCLK input.

Notice: This is not a final specification. Notice: This is not a final specification change Some parametric limits are subject to change Ver.3.1 Dec. 1999

M66273FP

LCD CONTROLLER with VRAM

3V version support spcification

SWITCHING CHARACTERISTICS (VDD=3V±10%, Ta=-20~+75℃)

Symbol	Paramatar	Test		Limits		Unit
Symbol	Parameter	condition	Min.	Тур.	Max.	Unit
ta(IOCS-D) ta(MCS-D) ta(RD-D)	IOCS data access time MCS data access time RD data access time				100	ns
tdis(IOCS-D) tdis(MCS-D) tdis(RD-D)	Output disable time after IOCS Output disable time after MCS Output disable time after RD				30	ns
tpHL(MCS-WAIT) tpHL(WR-WAIT) tpHL(RD-WAIT) tpHL(WC-WAIT)	WAIT output propagation time after MCS WAIT output propagation time after WR WAIT output propagation time after RD WAIT output propagation time after WAITCNT				25	ns
tpLH(CLK-WAIT)	WAIT output propagation time after MPUCLK				25	ns
tpd(CLK-CP)	CP output propagation time after MPUCLK	CL=50pF			40	ns
tpLH(CLK-LP) tpHL(CLK-LP)	LP output propagation time after MPUCLK				40	ns
ta(VD)	VD access time				40	ns
tpLH(CLK-FLM) tpHL(CLK-FLM)	FLM output propagation time after MPUCLK				40	ns
tpd(CLK-M)	M output propagation time after MPUCLK				40	ns
tpLH(CLK-LE) tpHL(CLK-LE)	LCDENB output propagation time after MPUCLK				40	ns
tpLH(CLK-CSE) tpHL(CLK-CSE)	CSE output propagation time after MPUCLK				40	ns
tpd(D-WAIT)	Data definite time before cancelling WAIT		0			ns

TIMING REQUIREMENTS (VDD=3V±10%, Ta=-20~+75℃)

(1) Accessing to control register

0	5	Test		Limits		
Symbol	Parameter	condition	Min.	Typ.	Max.	Unit
tW(CS) tW(LWR)	IOCS/MCS pulse width LWR pulse width		50			ns
tsu(D-CS) tsu(D-LWR)			30			ns
th(CS-D) th(LWR-D)	Data hold time after rising edge of IOCS/MCS Data hold time after rising edge of LWR		2			ns
tsu(A-CS) tsu(A-LWR) tsu(A-RD)	VR) Address set up time before falling edge of LWR		15			ns
th(CS-A) th(LWR-A) th(RD-A)	Address hold time after rising edge of IOCS/MCS Address hold time after rising edge of LWR Address hold time after rising edge of RD		0			ns

(2) Accessing to VRAM

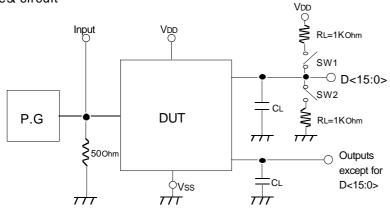
Symbol	Deveneter	Test		Limits		1.1.4.14
	Parameter	condition	Min. Typ. Max	Max.	Unit	
tW(MCS) tW(WR)	MCS pulse width WR pulse width		50			ns
tsu(D-MCS) tsu(D-WR)	Data set up time before rising edge of MCS Data set up time before rising edge of WR		30			ns
th(MCS-D) th(WR-D)	Data hold time after rising edge of MCS Data hold time after rising edge of WR		2			ns
tsu(A-MCS) tsu(A-WR) tsu(A-RD)	Address set up time before falling edge of MCS Address set up time before falling edge of WR Address set up time before falling edge of RD		15			ns
th(MCS-A) th(WR-A) th(RD-A)	Address hold time after rising edge of MCS Address hold time after rising edge of WR Address hold time after rising edge of RD		0			ns
tsu(D-CLK)	Data set up time before rising edge of WAIT		tc(CLK)+15			ns
tsu(MCS-WC)	MCS set up time before falling edge of WAITCNT		7			ns

PRELIMINAR Notice: This is not a final specification. Some parametric limits are subject to chan

M66273FP

LCD CONTROLLER with VRAM

(3) Clock and accessing to LCD display


Symbol	Parame	stor	Test		Limits		Unit
Symbol	Falalite		condition	Min.	Typ.	Max.	Unit
tc(CLK)	MPUCLK cycle time			50			ns
twH(CLK)	MPUCLK "H" pulse width MPUCLK "L" pulse width				tc(cLK)		
twl(CLK)					<u>tc(clk)</u> 2		ns
		Display mode 1,2,3,5,6			<u>tc(cLк)</u> (1/n)		ns
tC(CP)	CP syscle time	Display mode 4			<u>2 · tс(с∟к)</u> (1/n)		ns
twh(CP)	CP "H" pulse width	— Diaplay made 1 2 2 5 6			tc(cLK)		2
tWL(CP)	CP "L" pulse width	Display mode 1,2,3,5,6			2 · (1/n)		ns
tWH(CP)	CP "H" pulse width	— Diantau ana da 4			tC(CLK)		
tWL(CP)	CP "L" pulse width	Display mode 4	e 4 (1/n)			ns	
1) A ((= 1 A A)		Display mode 1,2,3,5,6			$\frac{\text{tc}(\text{clk}) \cdot \text{lpw}}{(1/n)}$		ns
tW(FLM)	FLM pluse width	Display mode 4			<u>2 · tC(CLK) · LPW</u> (1/n)		ns

Note : Clock frequency of MPUCLK input is less than fmax = 20MHz.

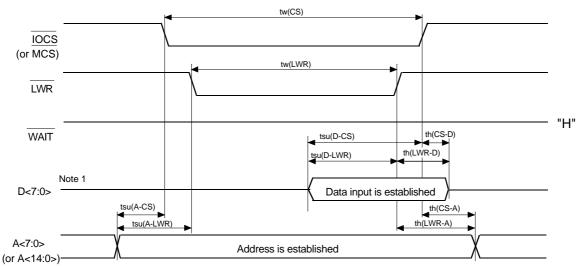
1/n =Division of MPUCLK LPW =Setting value of LPW register

Limit of clock for the internal operation is fmax = 10MHz. When MPUCLK is more than 10MHz from external input, set clock for the internal operation up to 10MHz by using division of DIV register. Division is set with rising dege of MPUCLK input.

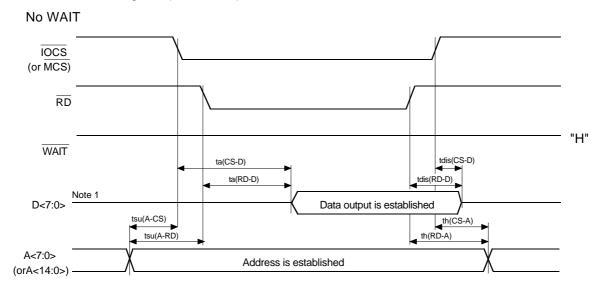
Test circuit

Parameter	SW1	SW2
tdis(∟z)	Closed	Open
tdis (HZ)	Open	Closed
ta(ZL)	Closed	Open
ta(ZH)	Open	Closed

(1) Input pulse level: 0 to 3V Input pulse rise/fall time: tr,tf=3ns Input decision voltage: 1.5V Output decision voltage: VDD/2 (However,tdis(LZ) is 10% of output amplitude and tdis(HZ) is 90% of that for dezision.)


(2) Load capacity CL include float capacity of connection and input capacity of probe.

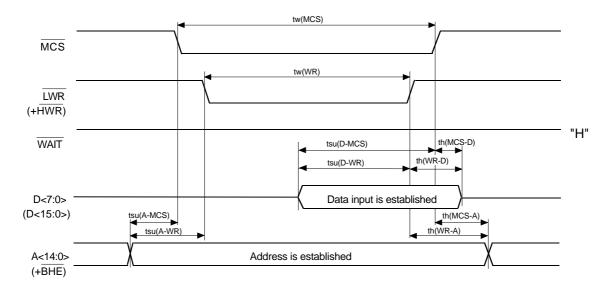
LCD CONTROLLER with VRAM


TIMING DIAGRAM

(1) Write to control register ($\overline{RD} = "H"$)

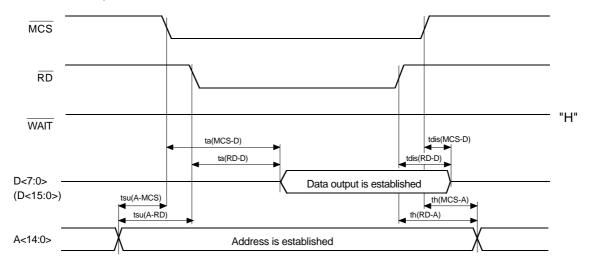
No WAIT

(2) Read from control register (\overline{LWR} = "H")


Note 1 : D<15:0> is used only when 16bit MPU controls the LCD module built-in type support function.

2 : Writing/reading operation for the control register is performed during "L" overlapping of IOCS or MCS and LWR or RD input signal. Limits of IOCS, MCS, LWR and RD are prescribed by the input signal of last change to "L" in starting access, and by the input signal of first change to "H" in ending access.

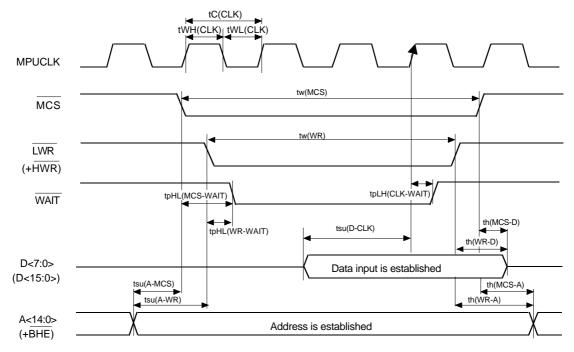
LCD CONTROLLER with VRAM


(3) Write to VRAM ($\overline{RD} = "H"$)

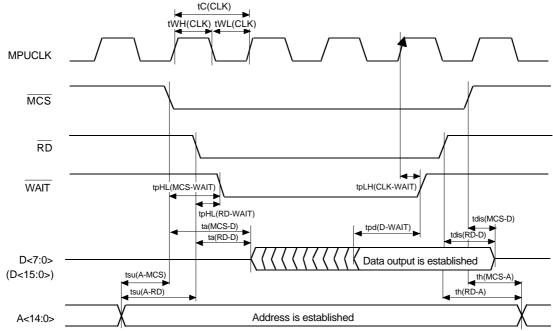
Term of non cycle steal access

(4) Read from VRAM $(\overline{LWR}, \overline{HWR} = "H")$

Term of non cycle steal access

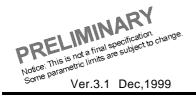

Note 3 : Writing/reading operation for VRAM during non cycle steal access is performed during "L" overlapping of MCS and LWR (+HWR) or RD input signal. Limits of MCS, LWR (+HWR) and RD are prescribed by the input signal of last change to "L" in starting access, and by the input signal of first change to "H" in ending access.

LCD CONTROLLER with VRAM

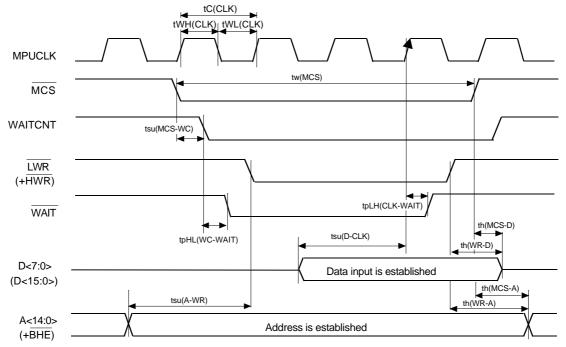

Notice: This is not a final specification. Notice: This is not a final specification. Some parametric limits are subject to change. Ver.3.1 Dec, 1999

(5) Write to VRAM ($\overline{RD} = "H"$, WAITCNT= "L" or "H" fixed)

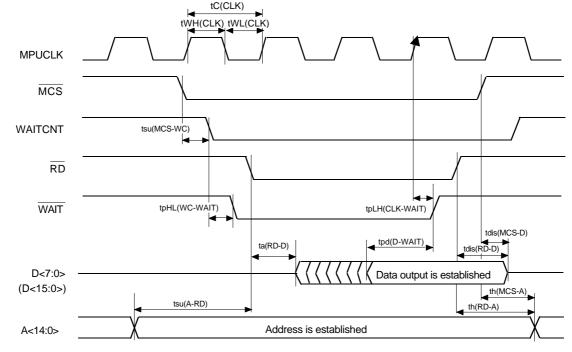
Term of cycle steal access (and When setting register WAITC to "0")


(6) Read from VRAM(LWR, HWR = "H", WAITCNT = "L" or "H" fiexed) Term of cycle steal access (and when setting segester WAITC to "0")

Note 4 :Writing/reading operation for VRAM during cycle steal access needs 0.5tc(MAINCLK) + 1tc(CLK) in best case or 2.5tc(MAINCLK)+1tc(CLK) in worst case, according to the condition of the internal cycle steal at starting access requested from MPU. Data output D is established before changing WAIT output.

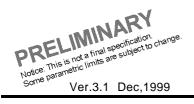

tc(MAINCLK) = Reference clock cycle time for internal operation after setting division of MPUCLK.

- 5 : Limits of MCS, LWR (+HWR) and RD are prescribed by the input signal of last change to "L" in starting access, and by the input signal of first change to "H" in ending access.
- 6 : Always once return MCS, LWR (+HWR) or RD to "H" after canceling WAIT output. In case of latching "L", as next WAIT does not output, this causes malfunction to occur.

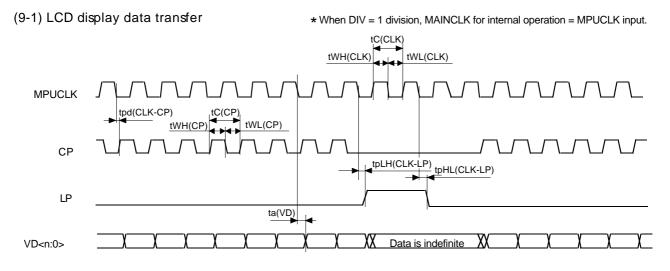

(7) Write to VRAM ($\overline{RD} = "H"$)

Term of cycle steal access (and When setting register WAITC to "1")

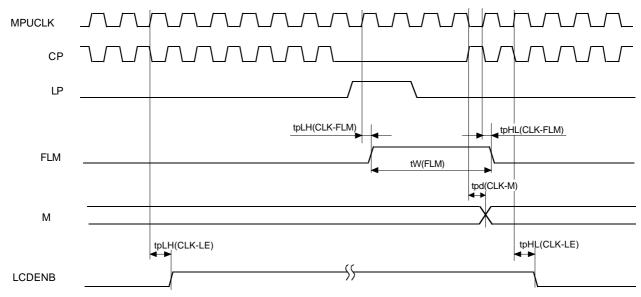
(8) Read from VRAM (\overline{LWR} , \overline{HWR} = "H")


Term of cycle steal access (and when setting register WAITC to "1")

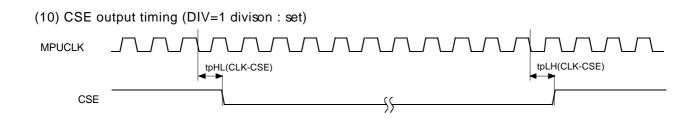
Note 7 : Writing/reading operation for VRAM during cycle steal access needs 0.5tc(MAINCLK) + 1tc(CLK) in best case or 2.5tc(MAINCLK)+1tc(CLK) in worst case, according to the condition of the internal cycle steal at starting access requested from MPU. Data output D is established before changing WAIT output.


tc(MAINCLK) = Reference clock cycle time for internal operation after setting division of MPUCLK.

- 8: When setting WAITC to "1", MCS is necessary to change "L" earier than LWR (+HWR), RD.
- Limits of MCS, LWR (+HWR) and RD are prescribed by the input signal of last change to "L" in starting access, and by the input signal of first change to "H" in ending access.
- 9 : Always once return MCS, LWR (+HWR) or RD to "H" after canceling WAIT output. In case of latching "L", as next WAIT does not output, this causes malfunction to occur.

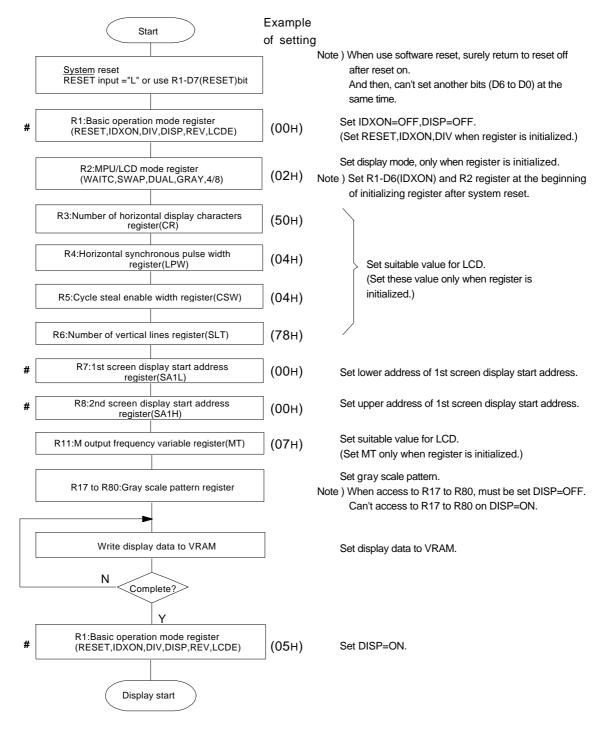


LCD CONTROLLER with VRAM


(9) Interface timing with LCD (DIV = 1 division : set)

(9-2) Control signal

Note 10: Output signal to LCD side is synchronized with MAINCLK (reference clock for internal operation). When division is set to 1/2 to 1/16 by DIV register, switching characteristics is defined by rising edge of MPUCLK.


Notice: This is not a final specification. Some parametric limits are subject to change Ver.3.1 Dec,1999 MITSUBISHI < DIGITAL ASSP>

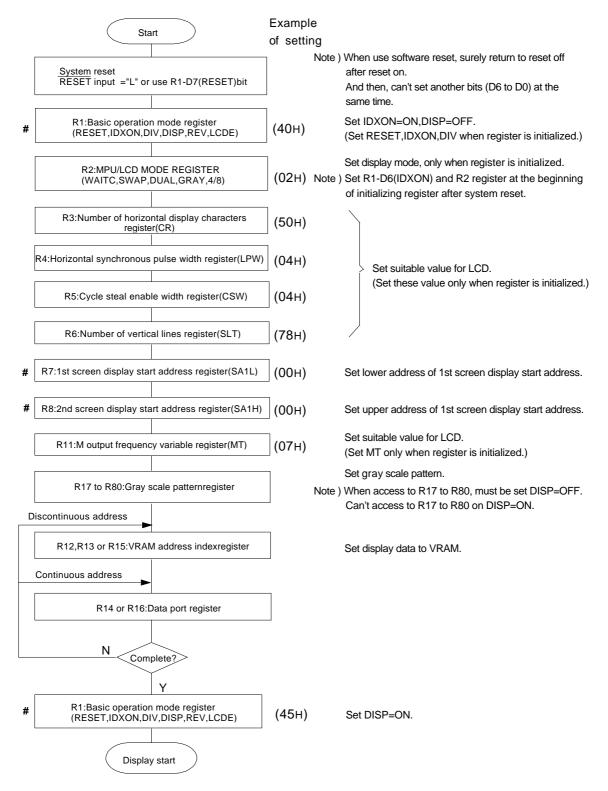
M66273FP

LCD CONTROLLER with VRAM

FLOWCHART

EXAMPLE OF INITIALIZE ON DISPLAY MODE 3 (STANDARD ACCESS)

Setting example suppose LCD size = 320x240dots and display mode 3 (Single scan, Gray scale, 4bit transfer).


Can change R1(DISP,REV,LCDE),R7(SA1L),R6(SA1h) registers value during display on.

PRELIMINARY Notice: This is not a final specification. Notice: This is not a final specification. Notice: This is not a final specification. Some parametric limits are subject to change Ver.3.1 Dec, 1999 MITSUBISHI < DIGITAL ASSP>

M66273FP

LCD CONTROLLER with VRAM

EXAMPLE OF INITIALIZE ON DISPLAY MODE 3 (LCD MODULE BUILT-IN ACCESS)

Setting example suppose LCD size = 320x240dots and display mode 3 (Single scan, Gray scale, 4bit transfer).

Can change R1(DISP,REV,LCDE),R7(SA1L),R6(SA1h) registers value during display on.