MITSUBISHI MICROCOMPUTERS 4282 Group

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

DESCRIPTION

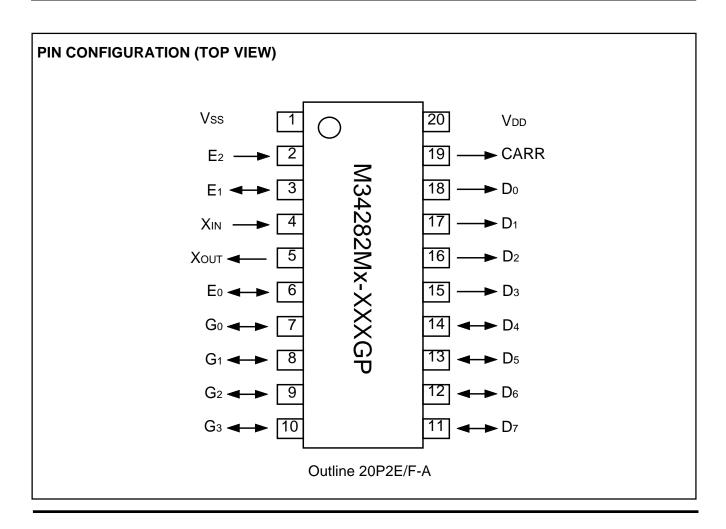
The 4282 Group enables fabrication of 8×7 key matrix and has the followin timers;

- an 8-bit timer which can be used to set each carrier wave and has two reload register
- an 8-bit timer which can be used to auto-control and has a reload register.

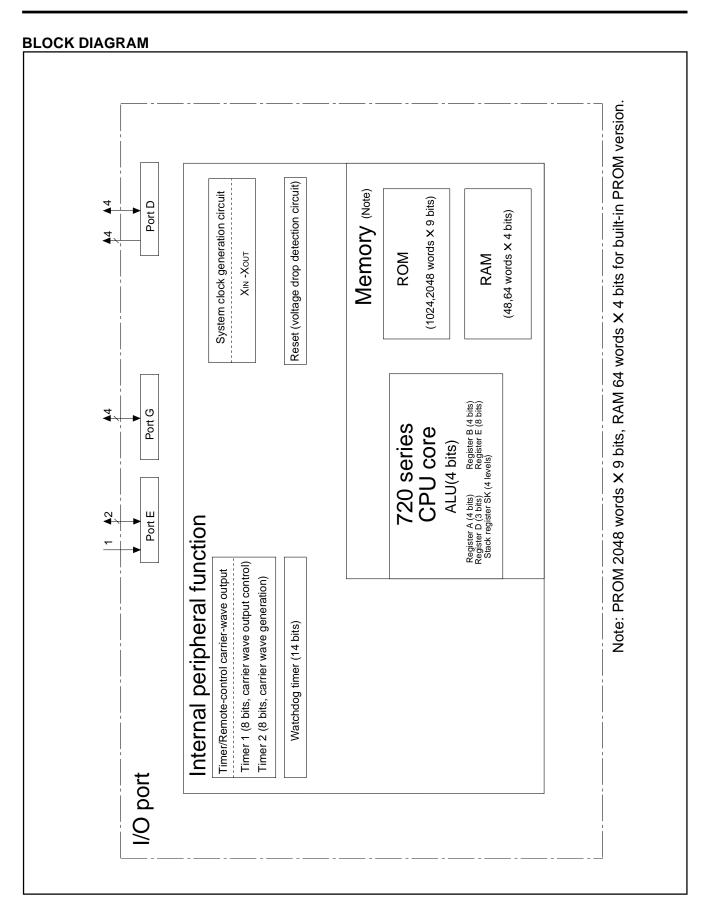
FEATURES

•	Number of basic instructions	. 68
•	Minimum instruction execution time 8.0) μs
	(at $f(XIN) = 4.0 \text{ MHz}$, system clock = $f(XIN)/8$)	

- Supply voltage 1.8 V to 3.6 V
- Subroutine nesting 4 levels


•	Timer
	Timer 1 8-bit timer
	(This has a reload register and carrier wave output auto-control
	function)

- (This has two reload registers and carrier wave output function)
- Logic operation function (XOR, OR, AND)
- · RAM back-up function
- Key-on wakeup function (ports D4-D7, E0-E2, G0-G3) 11
- Oscillation circuit Ceramic resonance
- Watchdog timer
- · Power-on reset circuit


APPLICATION

Various remote control transmitters

Product	ROM (PROM) size (× 9 bits)	RAM size (× 4 bits)	Package	ROM type
M34282M1-XXXGP	1024 words	48 words	20P2E/F-A	Mask ROM
M34282M2-XXXGP	2048 words	64 words	20P2E/F-A	Mask ROM
M34282E2GP	2048 words	64 words	20P2E/F-A	One Time PROM

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

PERFORMANCE OVERVIEW

Pa	aramete	r	Function		
Number of basic instructions			68		
Minimum instru	uction ex	recution time	8.0 μ s (f(XIN) = 4.0 MHz, system clock = f(XIN)/8, VDD = 3 V)		
Memory sizes	ROM	M34282M2/E2	2048 words X 9 bits		
		M34282M1	1024 words X 9 bits		
	RAM	M34282M2/E2	64 words X 4 bits		
		M34282M1	48 words X 4 bits		
Input/Output	D0-D3	Output	Four independent output ports		
ports	D4-D7	I/O	Four independent I/O ports with the pull-down function		
	E0-E2	Input	3-bit input port with the pull-down function		
	E0, E1	Output	2-bit output port (E ₀ , E ₁)		
	G0–G3	I/O	4-bit I/O port with the pull-down function		
	CARR	Output	1-bit output port; CMOS output		
Timer	Timer 1		8-bit timer with a reload register		
	Timer 2		8-bit timer with two reload registers		
Subroutine nes	sting		4 levels (However, only 3 levels can be used when the TABP p instruction is executed)		
Device structur	re		CMOS silicon gate		
Package			20-pin plastic molded SSOP (20P2E/F-A)		
Operating temp	perature	range	−20 °C to 85 °C		
Supply voltage			1.8 V to 3.6 V		
Power	Active	mode	400 μΑ		
dissipation			f(XIN) = 4.0 MHz, system clock = $f(XIN)/8$, $VDD = 3 V$		
(typical value)	RAM b	ack-up mode	0.1 μ A (at room temperature, VDD = 3 V)		

PIN DESCRIPTION

Pin	Name	Input/Output	Function
VDD	Power supply	_	Connected to a plus power supply.
Vss	Ground	_	Connected to a 0 V power supply.
XIN	System clock input	Input	I/O pins of the system clock generating circuit. Connect a ceramic resonator
Хоит	System clock output	Output	between pins XIN and XOUT. The feedback resistor is built-in between pins XIN and XOUT.
D0-D3	Output port D	Output	Each pin of port D has an independent 1-bit wide output function. The output
			structure is P-channel open-drain.
D4-D7	I/O port D	I/O	1-bit I/O port. For input use, set the latch of the specified bit to "0." When the built-
			in pull-down transistor is turned on, the key-on wakeup function using "H" level
			sense and the pull-down transistor become valid. The output structure is P-channel
			open-drain.
E0-E2	I/O port E	Output	2-bit (E ₀ , E ₁) output port. The output structure is P-channel open-drain.
		Input	3-bit input port. For input use (E0, E1), set the latch of the specified bit to "0."
			When the built-in pull-down transistor is turned on, the key-on wakeup function
			using "H" level sense and the pull-down transistor become valid. Port E2 has an
			input-only port and has a key-on wakeup function using "H" level sense and pull-
			down transistor.
G0-G3	I/O port G	I/O	4-bit I/O port. For input use, set the latch of the specified bit to "0." The output structure
			is P-channel open-drain. When the built-in pull-down transistor is turned on, the key-
			on wakeup function using "H" level sense and pull-down transistor become valid.
CARR	Carrier wave output	Output	Carrier wave output pin for remote control. The output structure is CMOS circuit.
	for remote control		

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

CONNECTIONS OF UNUSED PINS

Pin	Connection
D0-D7	Open or connect to VDD pin (Note 1).
E0, E1	Set the output latch to "1" and open, or
	connect to VDD pin (Note 2).
E ₂	Open or connect to Vss pin.
G0-G3	Set the output latch to "1" and open, or
	connect to VDD pin (Note 2).

Notes 1: Ports D4–D7: Set the bit 2 (PU02) of the pull-down control register PU1 to "0" by software and turn the pull-down transistor OFF.

2: Set the corresponding bits of the pull-down control register PU0 to "0" by software and turn the pull-down transistor OFF.

(Note in order to set the output latch to "1" to make pins open)

- After system is released from reset, a port is in a high-impedance state until the output latch of the port is set to "1" by software. Accordingly, the voltage level of pins is undefined and the excess of the supply current may occur.
- To set the output latch periodically is recommended because the value of output latch may change by noise or a program run away (caused by noise).

(Note when connecting to Vss and VDD)

• Connect the unused pins to Vss or Vpp at the shortest distance and use the thick wire against noise.

PORT FUNCTION

Port	Pin	Input/	Output structure	Control	Control	Control	Remark
1 011	F	Output	Output structure	bits	instructions	registers	Kemark
Port D	D0-D3	Output	P-channel open-drain	1 bit	SD		
		(4)			RD		
					CLD		
	D4-D7	I/O			SD	PU1	Pull-down function and
		(4)			RD		key-on wakeup function
					CLD		(programmable)
					SZD		
Port E	Eo	I/O	P-channel open-drain	Output:	OEA	PU0	Pull-down function and
	E1	(2)		2 bits	IAE		key-on wakeup function
				Input:			(programmable)
	E ₂	Input		3 bits	IAE		
		(1)					
Port G	G0-G3	I/O	P-channel open-drain	4 bits	OGA	PU0	Pull-down function and
		(4)			IAG		key-on wakeup function
							(programmable)
Port CARR	CARR	Output	CMOS	1 bit	SCAR		
		(1)			RCAR		

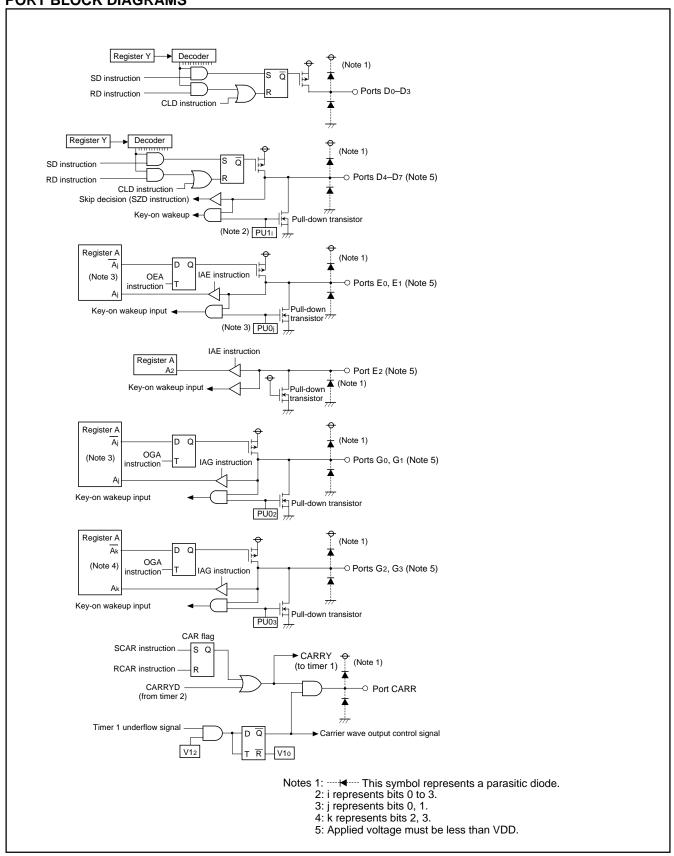
DEFINITION OF CLOCK AND CYCLE

• System clock (STCK)

The system clock is the source clock for controlling this product. It can be selected as shown below whether to use the CCK instruction.

CCK instruction	System clock	Instruction clock
When not using	f(XIN)/8	f(XIN)/32
When using	f(XIN)	f(XIN)/4

• Instruction clock (INSTCK)


The instruction clock is a signal derived by dividing the system clock by 4, and is the basic clock for controlling CPU. The one instruction clock cycle is equivalent to one machine cycle.

· Machine cycle

The machine cycle is the cycle required to execute the instruction.

PORT BLOCK DIAGRAMS

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

FUNCTION BLOCK OPERATIONS CPU

(1) Arithmetic logic unit (ALU)

The arithmetic logic unit ALU performs 4-bit arithmetic such as 4-bit data addition, comparison, and bit manipulation.

(2) Register A and carry flag

Register A is a 4-bit register used for arithmetic, transfer, exchange, and I/O operation.

Carry flag CY is a 1-bit flag that is set to "1" when there is a carry with the AMC instruction (Figure 1).

It is unchanged with both A n instruction and AM instruction. The value of Ao is stored in carry flag CY with the RAR instruction (Figure 2).

Carry flag CY can be set to "1" with the SC instruction and cleared to "0" with the RC instruction.

(3) Registers B and E

Register B is a 4-bit register used for temporary storage of 4-bit data, and for 8-bit data transfer together with register A. Register E is an 8-bit register. It can be used for 8-bit data transfer with register B used as the high-order 4 bits and register A as the low-order 4 bits (Figure 3).

(4) Register D

Register D is a 3-bit register.

It is used to store a 7-bit ROM address together with register A and is used as a pointer within the specified page when the TABP p, BLA p, or BMLA p instruction is executed (Figure 4).

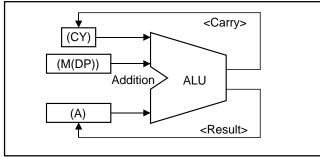


Fig. 1 AMC instruction execution example

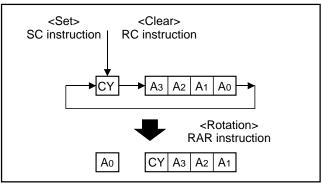


Fig. 2 RAR instruction execution example

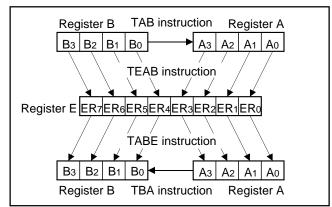


Fig. 3 Registers A, B and register E

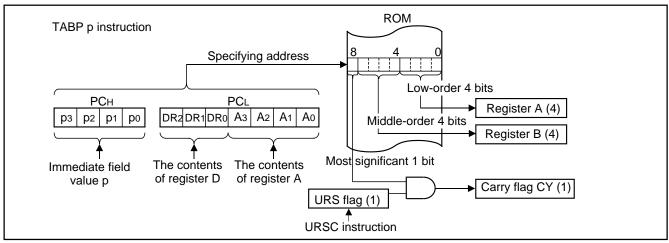


Fig. 4 TABP p instruction execution example

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

(5) Most significant ROM code reference enable flag (URS)

URS flag controls whether to refer to the contents of the most significant 1 bit (bit 8) of ROM code when executing the TABP p instruction. If URS flag is "0," the contents of the most significant 1 bit of ROM code is not referred even when executing the TABP p instruction. However, if URS flag is "1," the contents of the most significant 1 bit of ROM code is set to flag CY when executing the TABP p instruction (Figure 4). URS flag is "0" after system is released from reset and returned from RAM back-up mode. It can be set to "1" with the URSC instruction, but cannot be cleared to "0."

(6) Stack registers (SKs) and stack pointer (SP)

Stack registers (SKs) are used to temporarily store the contents of program counter (PC) just before branching until returning to the original routine when;

- performing a subroutine call, or
- executing the table reference instruction (TABP p).

Stack registers (SKs) are four identical registers, so that subroutines can be nested up to 4 levels. However, one of stack registers is used when executing a table reference instruction. Accordingly, be careful not to over the stack. The contents of registers SKs are destroyed when 4 levels are exceeded.

The register SK nesting level is pointed automatically by 2-bit stack pointer (SP).

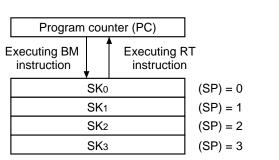

Figure 5 shows the stack registers (SKs) structure.

Figure 6 shows the example of operation at subroutine call.

(7) Skip flag

Skip flag controls skip decision for the conditional skip instructions and continuous described skip instructions.

Note: The 4282 Group just invalidates the next instruction when a skip is performed. The contents of program counter is not increased by 2. Accordingly, the number of cycles does not change even if skip is not performed. However, the cycle count becomes "1" if the TABP p, RT, or RTS instruction is skipped.

Stack pointer (SP) points "3" at reset or returning from RAM back-up mode. It points "0" by executing the first BM instruction, and the contents of program counter is stored in SK0. When the BM instruction is executed after four stack registers are used ((SP) = 3), (SP) = 0 and the contents of SK0 is destroyed.

Fig. 5 Stack registers (SKs) structure

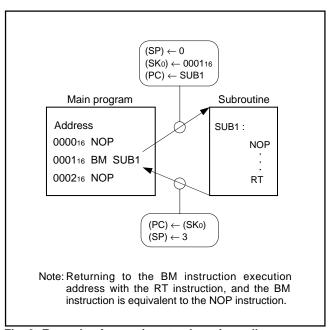


Fig. 6 Example of operation at subroutine call

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

(8) Program counter (PC)

Program counter (PC) is used to specify a ROM address (page and address). It determines a sequence in which instructions stored in ROM are read. It is a binary counter that increments the number of instruction bytes each time an instruction is executed. However, the value changes to a specified address when branch instructions, subroutine call instructions, return instructions, or the table reference instruction (TABP p) is executed.

Program counter consists of PC_H (most significant bit to bit 7) which specifies to a ROM page and PC_L (bits 6 to 0) which specifies an address within a page. After it reaches the last address (address 127) of a page, it specifies address 0 of the next page (Figure 7).

Make sure that the PC ${\rm H}$ does not exceed after the last page of the built-in ROM.

(9) Data pointer (DP)

Data pointer (DP) is used to specify a RAM address and consists of registers X and Y. Register X specifies a file and register Y specifies a RAM digit (Figure 8).

Register Y is also used to specify the port D bit position. When using port D, set the port D bit position to register Y certainly and execute the SD, RD, or SZD instruction (Figure 9).

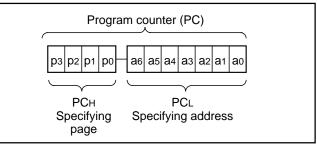


Fig. 7 Program counter (PC) structure

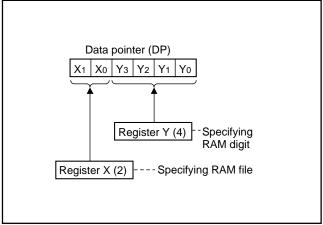


Fig. 8 Data pointer (DP) structure

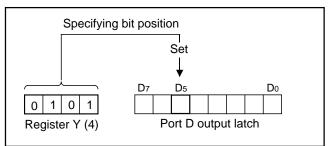


Fig. 9 SD instruction execution example

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

PROGRAM MEMORY (ROM)

The program memory is a mask ROM. 1 word of ROM is composed of 9 bits. ROM is separated every 128 words by the unit of page (addresses 0 to 127).

Table 1 ROM size and pages

Product	ROM size (X 9 bits)	Pages
M34282M2/E2	2048 words	16 (0 to 15)
M34282M1	1024 words	8 (0 to 7)

Page 2 (addresses 010016 to 017F16) is the special page for subroutine calls. Subroutines written in this page can be called from any page with the 1-word instruction (BM). Subroutines extending from page 2 to another page can also be called with the BM instruction when it starts on page 2.

ROM pattern of all addresses can be used as data areas with the TABP p instruction.

DATA MEMORY (RAM)

1 word of RAM is composed of 4 bits, but 1-bit manipulation (with the SB j, RB j, and SZB j instructions) is enabled for the entire memory area. A RAM address is specified by a data pointer. The data pointer consists of registers X and Y. Set a value to the data pointer certainly when executing an instruction to access RAM.

Table 2 shows the RAM size. Figure 11 shows the RAM map.

Table 2 RAM size

Product	RAM size
M34282M2/E2	64 words X 4 bits (256 bits)
M34282M1	48 words X 4 bits (192 bits)

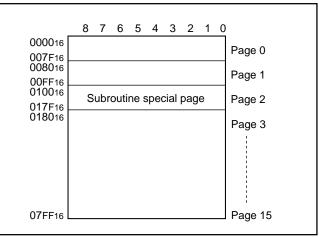


Fig. 10 ROM map of M34282M2/E2

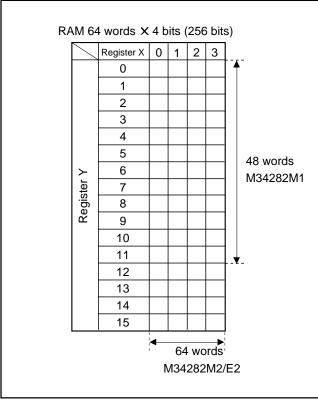


Fig. 11 RAM map

TIMERS

The 4282 Group has the programmable timer.

• Programmable timer

The programmable timer has a reload register and enables the frequency dividing ratio to be set. It is decremented from a setting value n. When it underflows (count to n+1), a timer 1 underflow flag is set to "1," new data is loaded from the reload register, and count continues (auto-reload function).

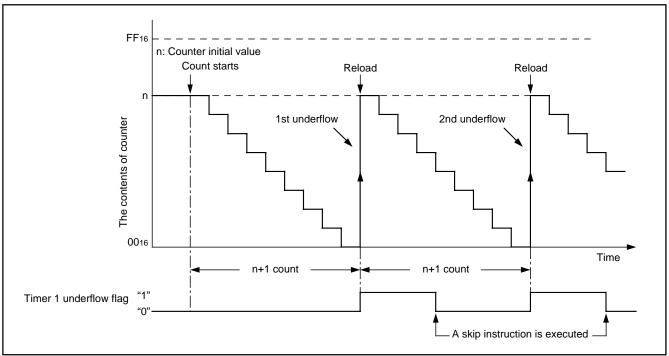


Fig. 12 Auto-reload function

The 4282 Group timer consists of the following circuit.

- Timer 1 : 8-bit programmable timer
- Timer 2 : 8-bit programmable timer

These timers can be controlled with the timer control registers V1 and V2.

Each timer function is described below.

Table 3 Function related timer

Circuit	Christian	Count course	Frequency	Use of output signal	Control
Circuit	Structure	Count source	dividing ratio	Use of output signal	register
Timer 1	8-bit programmable	Carrier wave output (CARRY)	1 to 256	Carrier wave output control	V1
	binary down counter	Bit 5 of watchdog timer			
Timer 2	8-bit programmable	• f(XIN)	1 to 256	Carrier wave output	V2
	binary down counter	• f(X _{IN})/2			
14-bit timer	14-bit fixed frequency	Instruction clock	16384	Watchdog timer	
				Timer 1 count source	

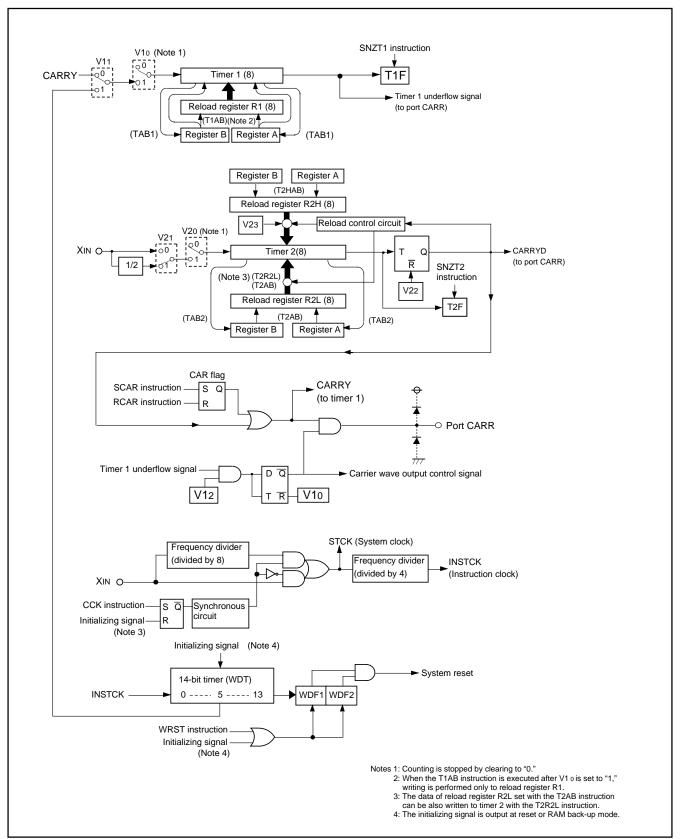


Fig. 13 Timers structure

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

Table 4 Control registers related to timer

Timer control register V1			reset: 0002	at RAM back-up : 0002	W
V12	Carrier ways autout auto control hit	0	Auto-control output by timer 1 is invalid		
V 12	Carrier wave output auto-control bit	1	Auto-control output	by timer 1 is valid	
V1 ₁	Timer 1 count source selection bit	0	Carrier wave output	it (CARRY)	
V 11	Timer I count source selection bit	1	Bit 5 of watchdog to	imer (WDT)	
\/4-	Timer 1 control bit	0	Stop (Timer 1 state	e retained)	·
V10		1	Operating		

Timer control register V1		at reset : 00002		at RAM back-up : 00002	W		
V13	Carrier ways "H" interval expansion hit	0	To expand "H" inte	rval is invalid			
V 13	Carrier wave "H" interval expansion bit	1	To expand "H" inte	erval is valid (when V2 ₂ =1 selected)			
\/4-			Carrier wave generation function invalid				
V 12	V12 Carrier wave generation function control bit		Carrier wave generation function valid				
\/4.	V/4 =		f(X _I N)				
V I 1	V11 Timer 2 count source selection bit		f(XIN)/2				
1/4	VA. Timor 2 control bit		Stop (Timer 2 state retained)				
V10	Timer 2 control bit	1	Operating				

Note: "W" represents write enabled.

(1) Control registers related to timer

• Timer control register V1

Register V1 controls the timer 1 count source and autocontrol function of carrier wave output from port CARR by timer 1. Set the contents of this register through register A with the TV1A instruction.

Timer control register V2

Register V2 controls the timer 2 count source and the carrier wave generation function by timer. Set the contents of this register through register A with the TV2A instruction.

(2) Precautions

Note the following for the use of timers.

Count source

Stop timer 1 or timer 2 counting to change its count source.

Watchdog timer

Be sure that the timing to execute the WRST instruction in order to operate WDT efficiently.

Writing to reload register R1

When writing data to reload register R1 while timer 1 is operating, avoid a timing when timer 1 underflows.

• Timer 1 count operation

When the bit 5 of the watchdog timer (WDT) is selected as the timer 1 count source, the error of maximum \pm 256 μ s (at the minimum instruction execution time : 8 μ s) is generated from timer 1 start until timer 1 underflow. When programming, be careful about this error.

Stop of timer 2

Avoid a timing when timer 2 underflows to stop timer 2.

Writing to reload register R2H

When writing data to reload register R2H while timer 2 is operating, avoid a timing when timer underflows.

Timer 2 carrier wave output function

When to expand "H" interval of carrier wave is valid, set "1" or more to reload register R2H.

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

(3) Timer 1

Timer 1 is an 8-bit binary down counter with the timer 1 reload register (R1).

When timer is stopped, data can be set simultaneously in timer 1 and the reload register (R1) with the T1AB instruction.

When timer is operating, data can be set to only reload register R1 with the T1AB instruction.

When setting the next count data to reload register R1 at operating, set data before timer 1 underflows.

Timer 1 starts counting after the following process;

- ① set data in timer 1,
- 2 select the count source with the bit 1 of register V1, and3 set the bit 0 of register V1 to "1."

Once count is started, when timer 1 underflows (the next count pulse is input after the contents of timer 1 becomes "0"), the timer 1 underflow flag (T1F) is set to "1," new data is loaded from reload register R1, and count continues (auto-reload function)

When a value set in reload register R1 is n, timer 1 divides the count source signal by n + 1 (n = 0 to 255).

When the bit 2 of register V1 is set to "1," the carrier wave output enable/disable interval of port CARR is alternately generated each timer 1 underflows (Figure 14).

Data can be read from timer 1 to registers A and B. When reading the data, stop the counter and then execute the TAB1 instruction.

(4) Timer 2

Timer 2 is an 8-bit binary down counter with the timer 2 reload registers (R2H and R2L).

Data can be set simultaneously in timer 2 and the reload register (R2L) with the T2AB instruction.

The contents of reload register (R2L) set with the T2AB instruction can be set again to timer 2 with the T2R2L instruction. Data can be set to reload register (R2H) with the T2HAB instruction.

Timer 2 starts counting after the following process;

- ① set data in timer 2,
- $\ensuremath{@}$ select the count source with the bit 1 of register V2, and
- ® select the valid/invalid of the carrier wave generation function by bit 2 of register V1 (when this function is valid, select the valid/invalid of the carrier wave "H" interval expansion by bit 3), and
- 4 set the bit 0 of register V1 to "1."

When the carrier wave generation function is invalid (V22="0"), the following operation is performed;

Once count is started, when timer 2 underflows (the next count pulse is input after the contents of timer 2 becomes "0"), the timer 2 underflow flag (T2F) is set to "1," new data is loaded from reload register R2L, and count continues (auto-reload function).

When a value set in reload register R2L is n, timer 2 divides the count source signal by $n+1\ (n=0\ to\ 255)$.

When the carrier wave generation function is valid (V2₂="1"), the carrier wave which has the "L" interval set to the reload register R2L and "H" interval set to the reload register R2H can be output (Figure 15).

After the count of the "L" interval of carrier wave is started, timer 2 underflows and the timer 2 underflow flag (T2F) is set

to "1". Then, the "H" interval data of carrier wave is reloaded from the reload register R2H, and count continues.

When timer underflows again after auto-reload, the T2F flag is set to "1". And then, the "L" interval data of carrier wave is reloaded from the reload register R2L, and count continues. After that, each timer underflows, data is reloaded from reload register R2H and R2L alternately.

When a value set in reload register R2H is n, "H" interval of carrier wave is as follows;

- When to expand "H" interval is invalid (V23 = "0"),
 Count source X (n+1), n = 0 to 255
- When to expand "H" interval is valid (V23 = "1"), Count source X (n+1.5), n = 1 to 255

When a value set in reload register R2L is m, "L" interval of carrier wave is as follows;

Count source X (m+1), m = 0 to 255

Data can be read from timer 2 to registers A and B. When reading the data, stop the counter and then execute the TAB2 instruction.

(5) Timer underflow flags (T1F, T2F)

Timer 1 underflow flag or timer 2 underflow flag is set to "1" when the timer 1 or timer 2 underflows. The state of flags T1F and T2F can be examined with the skip instruction (SNZT1, SNZT2).

Flags T1F and T2F are cleared to "0" when the next instruction is skipped with a skip instruction.

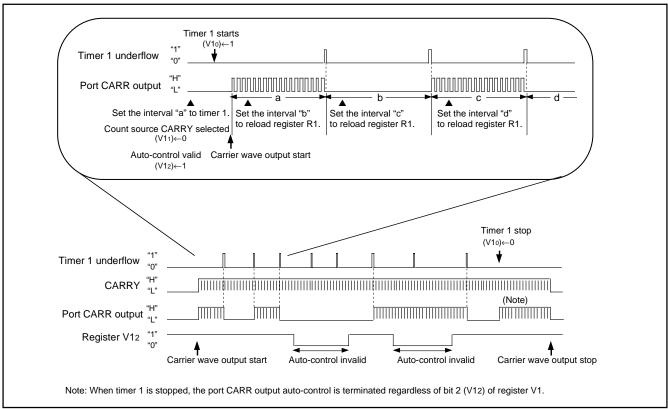
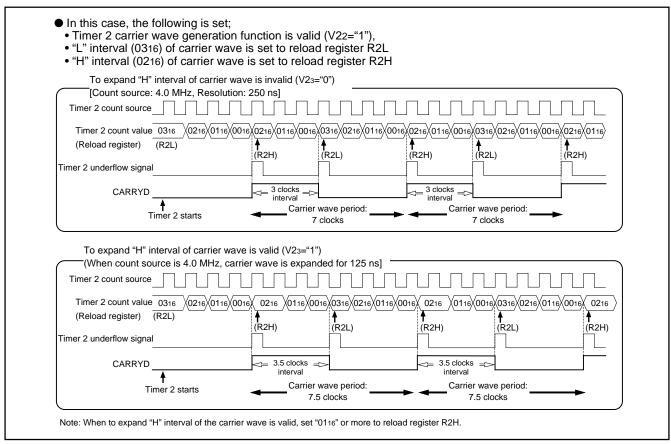
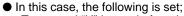
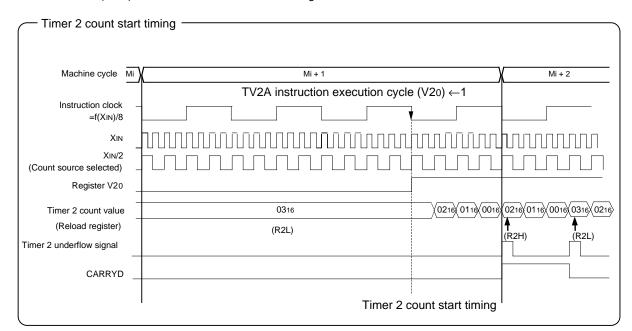
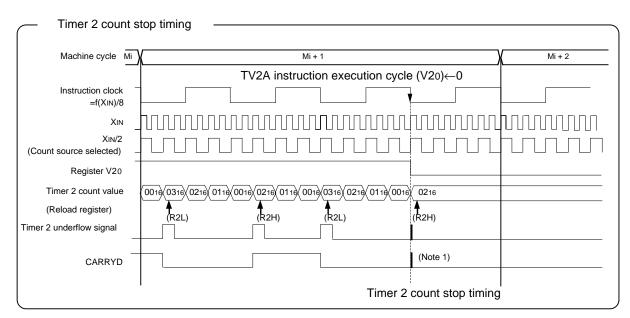


Fig. 14 Port CARR output control by timer 1


Fig. 15 Carrier wave generation example by timer 2



SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

- To expand "H" interval of carrier wave is invalid (V23 = "0"),
- Timer 2 carrier wave generation function is valid (V22="1"),
- Count source XIN/2 selected (V21="1"),
- "L" interval (0316) of carrier wave is set to reload register R2L
- "H" interval (0216) of carrier wave is set to reload register R2H

Notes 1: When the carrier wave generation function is vaild (V22="1"), avoid a timing when timer 2 underflows to stop timer 2. When the timer 2 count stop occurs at the same timing with the timer 2 underflows, hazard may occur in the carrier wave output waveform.

2: When the timer 2 is stopped during "H" output of carrier wave while the carrier wave generation function is valid, it is stopped after the "H" interval set by reload register R2H is output.

Fig. 16 Timer 2 count start/stop timing

WATCHDOG TIMER

Watchdog timer provides a method to reset and restart the system when a program runs wild. Watchdog timer consists of 14-bit timer (WDT) and watchdog timer flags (WDF1, WDF2).

Watchdog timer downcounts the instruction clock (INSTCK) as the count source immediately after system is released from reset. When the timer WDT count value becomes 000016 and underflow occurs, the WDF1 flag is set to "1." Then, when the WRST instruction is not executed before the timer WDT counts 16383, WDF2 flag is set to "1" and internal reset signal is generated and system reset is performed.

Execute the WRST instruction at period of 16383 machine cycle or less to keep the microcomputer operation normal.

Timer WDT is also used for generation of oscillation stabilization time. When system is returned from reset and from RAM back-up mode by key-input, software starts after the stabilization oscillation time until timer WDT downcounts to 3E0016 elapses.

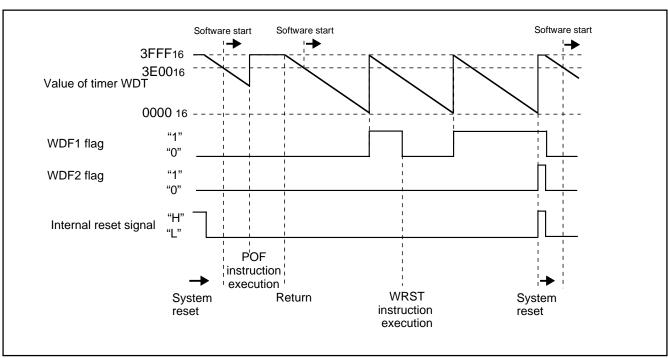


Fig. 17 Watchdog timer function

LOGIC OPERATION FUNCTION

The 4282 Group has the 4-bit logic operation function. The logic operation between the contents of register A and the low-order 4 bits of register E is performed and its result is stored in register A.

Each logic operation can be selected by setting logic operation selection register LO.

Set the contents of this register through register A with the TLOA instruction. The logic operation selected by register LO is executed with the LGOP instruction.

Table 5 shows the logic operation selection register LO.

Table 5 Logic operation selection register LO

Logic operation selection register LO		at reset : 002			at RAM back-up : 002	W	
		LO ₁	LO ₀		Logic operation function		
LO ₁	LO ₁		0	Exclusive logic OR operation (XOR)			
	Logic operation selection bits		1	OR operation (OR)			
LO ₀	LO ₀		0	AND operation (AND)			
				Not available			

Note: "W" represents write enabled.

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

RESET FUNCTION

The 4282 Group has the power-on reset circuit, though it does not have $\overline{\text{RESET}}$ pin. System reset is performed automatically at power-on, and software starts program from address 0 in page 0.

In order to make the built-in power-on reset circuit operate efficiently, set the voltage rising time until VDD=0 to 2.2 V is obtained at power-on 1ms or less.

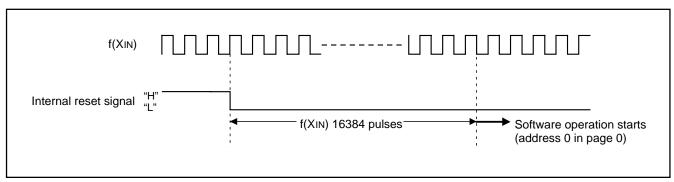


Fig. 18 Reset release timing

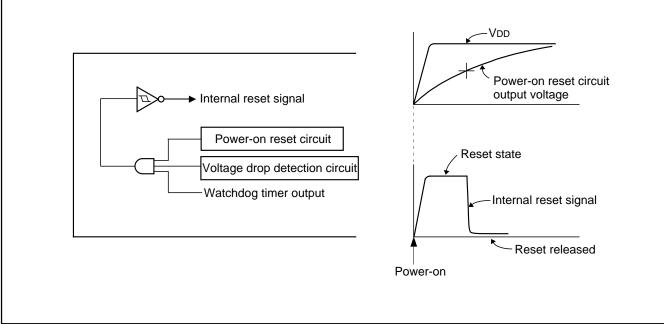


Fig. 19 Power-on reset circuit example

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

(1) Internal state at reset

Table 6 shows port state at reset, and Figure 20 shows internal state at reset (they are retained after system is released from reset).

The contents of timers, registers, flags and RAM except shown in Figure 20 are undefined, so set the initial value to them.

• Program counter (PC)	
Address 0 in page 0 is set to program counter.	
Power down flag (P)	
• Timer 1 underflow flag (T1F)	
• Timer 2 underflow flag (T2F)	
• Timer control register V10 0 0	
• Timer control register V20 0 0 0	
Port CARR output flag (CAR)	
Pull-down control register PU0	
Pull-down control register PU1	
Logic operation selection register LO	
Most significant ROM code reference enable flag (URS)	
• Carry flag (CY)	
• Register A	
• Register B	
• Register X	
• Register Y	
Stack pointer (SP)	

Fig. 20 Internal state at reset

Table 6 Port state at reset

Name	State at reset				
D0-D3	High impedance state				
D4-D7	High impedance state (Pull-down transistor OFF)				
G ₀ –G ₃	High impedance state (Pull-down transistor OFF)				
E0, E1	High impedance state (Pull-down transistor OFF)				
CARR	"L" output				

Note: The contents of all output latch is initialized to "0."

VOLTAGE DROP DETECTION CIRCUIT

The built-in voltage drop detection circuit is designed to detect a drop in voltage at operating and to reset the microcomputer if the supply voltage drops below the specified value (Typ. 1.50 V) or less.

The voltage drop detection circuit is stopped and power dissipation is reduced in the RAM back-up mode with the initialized CPU stopped.

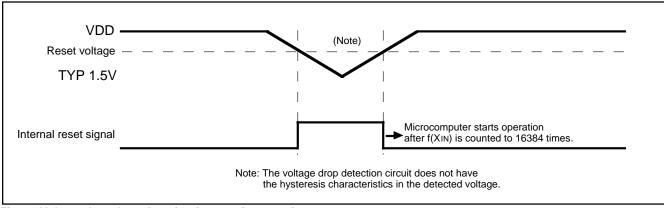


Fig. 21 Voltage drop detection circuit operation waveform

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

RAM BACK-UP MODE

The 4282 Group has the RAM back-up mode.

When the POF instruction is executed, system enters the RAM back-up state.

As oscillation stops retaining RAM, the functions and states of reset circuit at RAM back-up mode, power dissipation can be reduced without losing the contents of RAM. Table 7 shows the function and states retained at RAM back-up. Figure 22 shows the state transition.

(1) Warm start condition

When the external wakeup signal is input after the system enters the RAM back-up state by executing the POF instruction, the CPU starts executing the software from address 0 in page 0. In this case, the P flag is "1."

(2) Cold start condition

The CPU starts executing the software from address 0 in page 0 when any of the following conditions is satisfied .

- reset by power-on reset circuit is performed
- reset by watchdog timer is performed
- reset by voltage drop detection circuit is performed In this case, the P flag is "0."

(3) Identification of the start condition

Warm start (return from the RAM back-up state) or cold start (return from the normal reset state) can be identified by examining the state of the power down flag (P) with the SNZP instruction.

Table 7 Functions and states retained at RAM back-up

Function	RAM back-up
Program counter (PC), registers A, B,	×
carry flag (CY), stack pointer (SP) (Note 2)	^
Contents of RAM	0
Port CARR	×
Ports D ₀ –D ₇	0
Ports E ₀ , E ₁	0
Port G	0
Timer control registers V1, V2	×
Pull-down control registers PU0, PU1	0
Logic operation selection register LO	×
Timer 1 function, Timer 2 function	×
Timer underflow flags (T1F, T2F)	×
Watchdog timer (WDT)	×
Watchdog timer flags (WDF1, WDF2)	×
Most significant ROM code reference enable flag (URS)	×

Notes 1: "O" represents that the function can be retained, and "X" represents that the function is initialized.

Registers and flags other than the above are undefined at RAM back-up, and set an initial value after returning.

2:The stack pointer (SP) points the level of the stack register and is initialized to "112" at RAM back-up.

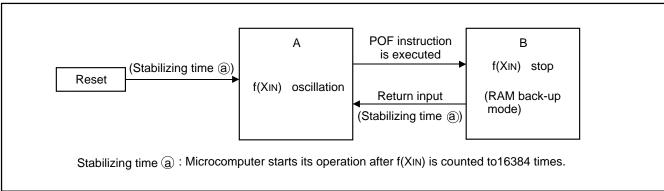


Fig. 22 State transition

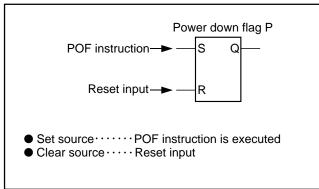


Fig. 23 Set source and clear source of the P flag

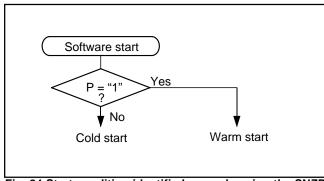


Fig. 24 Start condition identified example using the SNZP instruction

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

(4) Return signal

An external wakeup signal is used to return from the RAM back-up mode. Table 8 shows the return condition for each return source.

Table 8 Return source and return condition

. Return source	Return condition	Remarks
Ports D4-D7	Return by an external "H" level	Only key-on wakeup function of the port whose pull-down transistor is
	input.	turned ON by register PU1 is valid.
Ports E ₀ , E ₁ , G	Return by an external "H" level	Only key-on wakeup function of the port whose pull-down transistor is
	input.	turned ON by register PU0 is valid.
Ports E ₂	Return by an external "H" level	Key-on wakeup function is always valid.
	input.	

(5) Pull-down control register

Registers PU0 and PU1 are 4-bit registers and control the ON/OFF of pull-down transistor and key-on wakeup function for ports E0, E1, G and ports D4–D7.

Set the contents of register PU0 or PU1 through register A with the TPU0A or TPU1A instruction, respectively.

Table 9 Pull-down control registers

Pull-down control register PU0		at	reset: 00002	at RAM back-up : state retained	W	
PU03	Ports G ₂ , G ₃ pull-down transistor control	0	Pull-down transisto	r OFF, key-on wakeup invalid		
P 003	bit	1 Pull-down transistor ON, key-on wakeup valid		r ON, key-on wakeup valid		
PU0 ₂	Ports G ₀ , G ₁ pull-down transistor control	0 Pull-down transistor OFF, key-on wakeup invalid				
P U U 2	bit		Pull-down transistor ON, key-on wakeup valid			
PU0 ₁	DIIO. D. 4 F III I		Pull-down transistor OFF, key-on wakeup invalid			
PUU1	PU01 Port E ₁ pull-down transistor control bit		Pull-down transistor ON, key-on wakeup valid			
PU0 ₀	DLIOS Dort Convill down transistar control bit		Pull-down transistor OFF, key-on wakeup invalid			
F 000	Port E ₀ pull-down transistor control bit	1	Pull-down transistor ON, key-on wakeup valid			

	Pull-down control register PU1		reset : 00002	at RAM back-up : state retained	W	
DUIA	Port De pull down transistar control hit	0	Pull-down transistor OFF, key-on wakeup invalid			
PU13	Port D ₇ pull-down transistor control bit	1	Pull-down transisto	r ON, key-on wakeup valid		
PU12	DIM Det Des III les descrites content in		Pull-down transistor OFF, key-on wakeup invalid			
F 0 12	Port D ₆ pull-down transistor control bit	1	Pull-down transisto	r ON, key-on wakeup valid		
PU1 ₁	DIA. Dest Described and transfer and talk it		Pull-down transistor OFF, key-on wakeup invalid			
	PU11 Port D ₅ pull-down transistor control bit		Pull-down transistor ON, key-on wakeup valid			
PU10	Port D4 pull-down transistor control bit	0	Pull-down transistor OFF, key-on wakeup invalid			
F010		1	Pull-down transistor ON, key-on wakeup valid			

Note: "W" represents write enabled.

CLOCK CONTROL

The clock control circuit consists of the following circuits.

- · System clock generating circuit
- · Control circuit to stop the clock oscillation
- Control circuit to return from the RAM back-up state

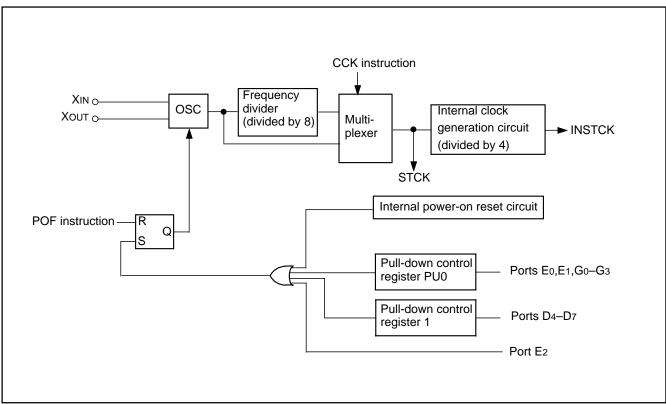


Fig. 25 Clock control circuit structure

System clock signal $f(X_{IN})$ is obtained by externally connecting a ceramic resonator. Connect this external circuit to pins X_{IN} and X_{OUT} at the shortest distance as shown Figure 26.

A feedback resistor is built-in between XIN pin and XOUT pin.

ROM ORDERING METHOD

Please submit the information described below when ordering Mask ROM.

- (1) Mask ROM Order Confirmation Form*
- (2) Mark Specification Form
- (3) Data to be written to ROM, in EPROM form (three identical copies) or one floppy disk.
- * For the mask ROM confirmation, refer to the "Mitsubishi MCU Technical Information" Homepage (http://www.infomicom.maec.co.jp/indexe.htm).

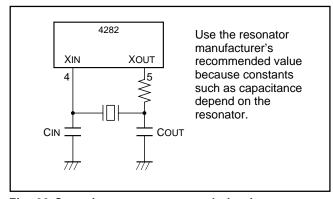


Fig. 26 Ceramic resonator external circuit

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

LIST OF PRECAUTIONS

Noise and latch-up prevention

Connect a capacitor on the following condition to prevent noise and latch-up;

- connect a bypass capacitor (approx. 0.01 μF) between pins Vpd and Vss at the shortest distance,
- · equalize its wiring in width and length, and
- · use the thickest wire.

In the One Time PROM version, port E2 is also used as VPP pin. Connect this pin to Vss through the resistor about 5 k Ω which is assigned to E2/VPP pin as close as possible at the shortest distance.

② Notes on unused pins

(Note in order to set the output latch to "0" to make pins open)

- After system is released from reset, a port is in a highimpedance state until the output latch of the port is set to "0" by software.
 - Accordingly, the voltage level of pins is undefined and the excess of the supply current may occur.
- To set the output latch periodically is recommended because the value of output latch may change by noise or a program run away (caused by noise).

(Note when connecting to Vss and VDD)

 Connect the unused pins to Vss and VDD at the shortest distance and use the thick wire against noise.

3 Timer

- Count source
 - Stop timer 1 or timer 2 counting to change its count source.
- Watchdog timer
 - Be sure that the timing to execute the WRST instruction in order to operate WDT efficiently.
- Writing to reload register R1
 - When writing data to reload register R1 while timer 1 is operating, avoid a timing when timer 1 underflows.
- Timer 1 count operation
 - When the bit 5 of the watchdog timer (WDT) is selected as the timer 1 count source, the error of maximum \pm 256 μ s (at the minimum instruction execution time : 8 μ s) is generated from timer 1 start until timer 1 underflow. When programming, be careful about this error.
- Stop of timer 2
 - Avoid a timing when timer 2 underflows to stop timer 2.
- · Writing to reload register R2H
 - When writing data to reload register R2H while timer 2 is operating, avoid a timing when timer underflows.
- Timer 2 carrier wave output function
 When to expand "H" interval of carrier wave is valid, set "1"
 or more to reload register R2H.

Program counter

Make sure that the program counter does not specify after the last page of the built-in ROM.

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

INSTRUCTIONS

The 4282 Group has the 68 instructions. Each instruction is described as follows;

- (1) List of instruction function
- (2) Machine instructions (index by alphabet)
- (3) Machine instructions (index by function)
- (4) Instruction code table

SYMBOL

The symbols shown below are used in the following list of instruction function and the machine instructions.

Symbol	Contents	Symbol	Contents
Α	Register A (4 bits)	D	Port D (8 bits)
В	Register B (4 bits)	E	Port E (3 bits)
DR	Register D (3 bits)	G	Port G (4 bits)
ER	Register E (8 bits)	CARR	Port CARR (1 bit)
V1	Timer control register V1 (3 bits)	CAR	CAR flag (1 bit)
V2	Timer control register V2 (4 bits)		
PU0	Pull-down control register PU0 (4 bits)	х	Hexadecimal variable
PU1	Pull-down control register PU1 (4 bits)	у	Hexadecimal variable
LO	Logic operation selection register LO (2 bits)	р	Hexadecimal variable
		n	Hexadecimal constant which represents the
x	Register X (2 bits)		immediate value
Υ	Register Y (4 bits)	j	Hexadecimal constant which represents the
DP	Data pointer (6 bits)		immediate value
	(It consists of registers X and Y)	A3A2A1A0	Binary notation of hexadecimal variable A
PC	Program counter (11 bits)		(same for others)
РСн	High-order 4 bits of program counter		
PC∟	Low-order 7 bits of program counter	\leftarrow	Direction of data movement
sĸ	Stack register (11 bits X 4)	\leftrightarrow	Data exchange between a register and memory
SP	Stack pointer (2 bits)	?	Decision of state shown before "?"
CY	Carry flag	()	Contents of registers and memories
R1	Timer 1 reload register	_	Negate, Flag unchanged after executing
T1	Timer 1		instruction
T1F	Timer 1 underflow flag	M(DP)	RAM address pointed by the data pointer
R2H	Timer 2 reload register	а	Label indicating address a6 a5 a4 a3 a2 a1 a0
R2L	Timer 2 reload register	р, а	Label indicating address a6 a5 a4 a3 a2 a1 a0
T2	Timer 2		in page p3 p2 p1 p0
T2F	Timer 2 underflow flag	С	Hex. number C + Hex. number x (also same for
WDT	Watchdog timer	+	others)
WDF1	Watchdog timer flag 1	x	
WDF2	Watchdog timer flag 2		
URS	Most significant ROM code reference enable flag		
Р	Power down flag		
STCK	System clock		
INSTCK	Instruction clock		

Note: The 4282 Group just invalidates the next instruction when a skip is performed. The contents of program counter is not increased by 2. Accordingly, the number of cycles does not change even if skip is not performed. However, the cycle count becomes "1" if the TABP p, RT, or RTS instruction is skipped.

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

LIST OF INSTRUCTION FUNCTION

Grouping	Mnemonic	Function	Page	Groupin	g Mnemonic	Function	Page
	TAB	(A) ← (B)	38		LA n	(A) ← n	31
						n = 0 to 15	
	TBA	(B) ← (A)	40		TARR	(CD) . (CD) . 4	30
ē	TAY	$(A) \leftarrow (Y)$	40		TABP p	$(SP) \leftarrow (SP) + 1$ $(SK(SP)) \leftarrow (PC)$	39
ansf		(A) ← (T)	40			(PC _H) ← p p=0 to 15	
Register to register transfer	TYA	$(Y) \leftarrow (A)$	42			$(PCL) \leftarrow (DR_2-DR_0, A_3-A_0)$	
giste						When URS=0	
o re	TEAB	$(ER7-ER4) \leftarrow (B)$	41			$(B) \leftarrow (ROM(PC))$ 7 to 4	
ter t		$(ER_3-ER_0) \leftarrow (A)$				$(A) \leftarrow (ROM(PC))$ 3 to 0	
egis	TABE	$(B) \leftarrow (ER_7-ER_4)$	39			When URS=1 (CY) ← (ROM(PC))8	
ď	IADL	$(A) \leftarrow (ER_3 - ER_0)$	39			$(B) \leftarrow (ROM(PC))7 \text{ to } 4$	
		(7.) (2.10 2.10)				$(A) \leftarrow (ROM(PC))$ 3 to 0	
	TDA	$(DR_2-DR_0) \leftarrow (A_2-A_0)$	40			$(PC) \leftarrow (SK(SP))$	
						(SP) ← (SP) − 1	
,n	LXY x, y	$(X) \leftarrow x, x = 0 \text{ to } 3$	31		0.0.4	(4) (4) (4)	0.7
sses		$(Y) \leftarrow y, y = 0 \text{ to } 15$		tion	AM	$(A) \leftarrow (A) + (M(DP))$	27
RAM addresses	INY	$(Y) \leftarrow (Y) + 1$	31	Arithmetic operation	AMC	$(A) \leftarrow (A) + (M(DP)) + (CY)$	27
۾ ا		(1) (1) 1		0 0	7	$(CY) \leftarrow Carry$	
RAI	DEY	$(Y) \leftarrow (Y) - 1$	30	meti			
				\rith	A n	$(A) \leftarrow (A) + n$	27
	TAM j	$(A) \leftarrow (M(DP))$	40			n = 0 to 15	
		$(X) \leftarrow (X) \text{ EXOR}(j)$ j = 0 to 3			sc	(CY) ← 1	35
		J = 0 to 3			30	(01) ← 1	33
	XAM j	$(A) \longleftrightarrow (M(DP))$	43		RC	(CY) ← 0	33
		$(X) \leftarrow (X) EXOR(j)$					
		j = 0 to 3			SZC	(CY) = 0 ?	37
	VAMD:	(A) (M/DD))	42		CNAA	(Λ) . $(\overline{\Lambda})$	30
	XAMD j	$(A) \longleftrightarrow (M(DP))$ $(X) \longleftrightarrow (X) \to (X) \to (X) \to (X)$	43		CMA	$(A) \leftarrow (\overline{A})$	30
RAM to register transfer		j = 0 to 3			RAR	\rightarrow CY \rightarrow A3A2A1A0 \rightarrow	33
trar		$(Y) \leftarrow (Y) - 1$					
ster					LGOP	Logic operation	31
regi	XAMI j	$(A) \longleftrightarrow (M(DP))$	43			instruction	
A to		$(X) \leftarrow (X) \text{ EXOR}(j)$ j = 0 to 3				XOR, OR, AND	
RA		$J = 0.003$ $(Y) \leftarrow (Y) + 1$			SB j	(Mj(DP)) ← 1	34
						j = 0 to 3	
				tion	RB j	$(Mj(DP)) \leftarrow 0$	33
)era		j = 0 to 3	
				Bit operation	SZB j	(Mj(DP)) = 0 ?	37
				<u>@</u>	SZDJ	j = 0 to 3	3,

Grouping	Mnemonic	Function	Page		Groupina	Mnemonic	Function	Page
	SEAM	(A) = (M(DP)) ?	36		G.Gap.i.g	TV1A	$(V12-V10) \leftarrow (A2-A0)$	42
Comparison operation	SEA n	(A) = n ? n = 0 to 15	35			TAB1	(B) ← (T17–T14) (A) ← (T13–T10)	39
peration	B a BL p, a	$(PCL) \leftarrow a_6-a_0$ $(PCH) \leftarrow p$ $(PCL) \leftarrow a_6-a_0$	27 28			T1AB	at timer 1 stop (V10=0): $(R17-R14) \leftarrow (B)$ $(T17-T14) \leftarrow (B)$ $(R13-R10) \leftarrow (A)$ $(T13-T10) \leftarrow (A)$	37
Branch operation	BA a	$(PCL) \leftarrow (a6-a4, A3-A0)$ $(PCH) \leftarrow p$	28				at timer 1 operating (V10=1): $ (R17-R14) \leftarrow (B) $ $ (R13-R10) \leftarrow (A) $	
	ВМа	$(PCL) \leftarrow (a_6-a_4, A_3-A_0)$ $(SP) \leftarrow (SP) + 1$ $(SK(SP)) \leftarrow (PC)$ $(PCH) \leftarrow 2$ $(PCL) \leftarrow a_6-a_0$	28			SNZT1	$(T1F) = 1$? After skipping the next instruction $(T1F) \leftarrow 0$	36
ration	BML p, a	(SP) ← (SP) + 1	29			TV2A	(V23−V20) ← (A3−A0)	42
Subroutine operation		$(SK(SP)) \leftarrow (PC)$ $(PCH) \leftarrow p p = 0 \text{ to } 15$ $(PCL) \leftarrow a_6 - a_0$				TAB2	(B) ← (T27–T24) (A) ← (T23–T20)	39
Subra	BMLA p,	$(SP) \leftarrow (SP) + 1$ $(SK(SP)) \leftarrow (PC)$ $(PCH) \leftarrow p p = 0 \text{ to } 15$ $(PCL) \leftarrow (a_6-a_4, A_3-A_0)$	29		Timer operation	T2AB	$(R2L7-R2L4) \leftarrow (B)$ $(T27-T24) \leftarrow (B)$ $(R2L3-R2L0) \leftarrow (A)$ $(T23-T20) \leftarrow (A)$	38
operation	RT	$(PC) \leftarrow (SK(SP))$ $(SP) \leftarrow (SP) - 1$	34	_		Т2НАВ	$(R2H_7-R2H_4) \leftarrow (B)$ $(R2H_3-R2H_0) \leftarrow (A)$	38
Return oper	RTS	(PC) ← (SK(SP)) (SP) ← (SP) – 1	34			T2R2L	$(T27-T24) \leftarrow (R2L7-R2L4)$ $(T27-T24) \leftarrow (R2L3-R2L0)$	38
Re						SNZT2	(T2F) = 1 ? After skipping the next instruction (T2F) ← 0	36

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

LIST OF INSTRUCTION FUNCTION (CONTINUED)

LIST	<u>LIST OF INSTRUCTION FUNCTION (CONTINUE</u>								
Grouping	Mnemonic	Function	Page						
	CLD RD	$(D) \leftarrow 0$ $(D(Y)) \leftarrow 0$ $(Y) = 0 \text{ to } 7$	29 34						
ation	SD	$(D(Y)) \leftarrow 1$ $(Y) = 0 \text{ to } 7$	35						
Input/Output operation	SZD	(D(Y)) = 0 ? (Y) = 4 to 7	37						
nbut/Ou	OEA	(E1, E0) ← (A1, A0)	32						
-	IAE	$(A_2-A_0) \leftarrow (E_2-E_0)$	30						
	OGA	$(G) \leftarrow (A)$	32						
	IAG	(A) ← (G)	30						
ve ation	SCAR	(CAR) ← 1	35						
Carrier wave control operation	RCAR	(CAR) ← 0	33						
	NOP	(PC) ← (PC) + 1	32						
	POF	RAM back-up	32						
	SNZP	(P) = 1 ?	36						
ration	сск	STCK changes to f(XIN)	29						
Other opera	TLOA	(LO1, LO₀) ← (A1, A₀)	41						
Othe	URSC	(URS) ← 1	42						
	TPU0A	(PU03–PU0₀) ← (A3–A₀)	41						
	TPU1A	(PU13–PU10) ← (A3–A0)	41						
	WRST	(WDF1) ← 0	43						

MACHINE INSTRUCTIONS (INDEX BY ALPHABET)

<u>`</u>	and accumulator)					
Instrunction code	D8 D0 0 1 0 1 0 n3 n2 n1 n0 2	0 A n	Number of words	Number of cycles	Flag CY	Skip condition
	0 1 0 1 0 113 112 111 110 2	16	1	1	_	Overflow = 0
Operation:	$(A) \leftarrow (A) + n$ n = 0 to 15		Grouping: Description	register A.	value n in	the immediate field t
				changed. Skips the	next instru	y flag CY remains ur ction when there is n t of operation.
AM (Add ad	ccumulator and Memory)					
Instrunction code	D8 D0 0 0 0 1 0 1 0 2	0 0 A 16	Number of words	Number of cycles	Flag CY	Skip condition
		16	1	1	_	_
Operation:	$(A) \leftarrow (A) + (M(DP))$		Grouping:	Arithmetic		
			Description			f M(DP) to register A egister A. The contents
AMC (Add a	accumulator, Memory and Carry)					
Instrunction	D8 D0		Number of	Number of	Flag CY	Skip condition
code	0 0 0 0 0 1 0 1 1	0 0 B ₁₆	words 1	cycles 1	0/1	
Operation:	$(A) \leftarrow (A) + (M(DP)) + (CY)$		Grouping:	Arithmetic	operation	
	(CY) ← Carry		Description		ster A. Sto	f M(DP) and carry flag res the result in regis Y.
B a (Branch	n to address a)					
Instrunction code	D8 D0 1 1 a6 a5 a4 a3 a2 a1 a0	1 8 a 16	Number of words	Number of cycles	Flag CY	Skip condition
		<u> </u>	1	1	_	_
Operation:	(PCL) ← a6-a0		Grouping: Description	Branch op		: Branches to address
- por unioni						

BΔ a (Bran	ch to address a + Accumulator)					
Instrunction	D8 D0		Number of	Number of	Flag CY	Skip condition
code		0 0 1	words	cycles	- 3	
	1 1 26 25 24 23 22 21 20	1 8 2	2	2	_	-
		' +a ^a 16	Grouping:	Branch ope	eration	
Operation:	(PCL) ← a6–a4, A3–A0		Description	(a ₆ a ₅ a ₄ A ing the low	3 A2 A1 A0) v-order 4 b	: Branches to address determined by replac- bits of the address a in th register A.
BL p, a (Br	anch Long to address a in page p)					
Instrunction	D8 D0		Number of words	Number of cycles	Flag CY	Skip condition
0000		16	2	2	-	-
	1 1 a6 a5 a4 a3 a2 a1 a0 ₂	$\begin{bmatrix} 1 & 8 \\ +a \end{bmatrix}$ a $\begin{bmatrix} 16 \end{bmatrix}$	Grouping:	Branch ope	eration	
Operation:	(PCH) ← (P)			: Branch out	of a page	: Branches to address
	(PCL) ← a6-a0			a in page p		
			Note:	p is 0 to 7 p is 0 to 15		
DIAn o/E	Propob Long to address a in page	2)				
Instrunction	Branch Long to address a in page D8 D0	J)	Number of	Number of	Flor CV	Ckin condition
code			words	cycles	Flag CY	Skip condition
0000		0 1 0 16	2	2	_	-
	1 1 a6 a5 a4 p3 p2 p1 p0 ₂	$\begin{bmatrix} 1 & 8 & p \\ +a & p \end{bmatrix}_{16}$	Grouping:	Branch ope	eration	
Operation:	$(PCH) \leftarrow (P)$		Description	: Branch wit	hin a page	: Branches to address
	(PCL) ← (a6-a4, A3-A0)			•		determined by replac-
				page p with		oits of the address a in
			Note:	p is 0 to 7	-	
				p is 0 to 15	for M342	82M2/E2.
RM a (Bran	ch and Mark to address a in page	2)				
Instrunction	D8 D0		Number of words	Number of cycles	Flag CY	Skip condition
code	1 0 a6 a5 a4 a3 a2 a1 a0 ₂	1 a a ₁₆	1	1	_	_
Operation:	$(SK(SP)) \leftarrow (PC)$		Grouping:	Subroutine	call opera	ation
орегинот.	$(SP) \leftarrow (SP) + 1$					in page 2 : Calls the
	(PCH) ← 2			subroutine	at address	s a in page 2.
	(PCL) ← a6–a0					

Instrunction	D8							D ₀			ge p			Number of	Number of	Flag CY	Skip condition
code	0 0	1	4	<u>.</u> T		20	<u></u>	20			7	_	٦	words	cycles	Flag C1	Skip condition
0000		1			p3		p1	p0 ₂		0	7	р	o 	2	2	-	-
	1 0	a 6	a 5	a4	a 3	a2	a1	a0 2		1	а	а	16	Grouping:	Subroutine	call opera	ation
Operation:	(SK(SP (SP) ←														: Call the su		Calls the subroutine a
	(PCH) ← (PCL) ←	- p												Note:	p is 0 to 7 p is 0 to 15		
BMLA p, a	(Brancl	n an	d Ma	ırk	Lon	g to	a	ddres	s a	in p	age	p)					
Instrunction code	D8 0 0	1			0		0	Do		0	5	0	7	Number of words	Number of cycles	Flag CY	Skip condition
	1 0	a ₆					p ₁	p ₀ ₂		1	а	р	16 	2	2	_	-
						F-1	F -	2			-	F	_ 16	Grouping:	Subroutine		
Operation:	(SK(SP) (SP) ←													Description			Calls the subroutine a A2 A1 A0) determined
	(SP) ← (PCH) ←	, ,	+ 1												•		order 4 bits of addres
	(PCL) ←	•	-a4, A	з–А	0)									Note:	a in page p	with regis	ster A.
														Note.	p is 0 to 15		
CCK (Chan	ge syst	em	Cloc	k to	f(>	(IN))							1			
Instrunction	D8			.	.	<u>. </u>	_	D ₀			_	_	7	Number of words	Number of cycles	Flag CY	Skip condition
code	0 0	1	0	1	1	0	0	1 2		0	5	9	16	1	1	_	_
Operation:	Change	to S	TCK :	= f(X	(IN)									Grouping:	Other oper	ration	
														Description		xecute this	ck (STCK) from f(XIN)/the instruction at address
CLD (CLea	r port D)												I			
Instrunction	D8 0	0	0	1	0	0	0	D0		0	1	1	7	Number of words	Number of cycles	Flag CY	Skip condition
				.				2		Ľ	•		_ 16	1	1	_	-
Operation:	(D) ← 1													Grouping:	Input/Outp	ut operation	on
														Description	: Clears (0)	to port D (high-impedance state)

CMA (CoM	plement of Accumulator)					
Instrunction code	D8 D0 0 0 0 0 1 1 1 0 0 2	0 1 C 16	Number of words	Number of cycles	Flag CY	Skip condition
		16	1	1	_	_
Operation:	$(A) \leftarrow \overline{(A)}$		Grouping:	Arithmetic		
			Description			mplement for register
				A's content	ts in registe	er A.
DEY (DEcre	ement register Y)					
Instrunction code	D8 D0	0 1 7	Number of words	Number of cycles	Flag CY	Skip condition
		16	1	1	_	(Y) = 15
Operation:	$(Y) \leftarrow (Y) - 1$		Grouping:	RAM addre	esses	
			Description			contents of register Y.
						action, when the con-
				is skipped.		15, the next instruction
IAE (Input A	Accumulator from port E)					
Instrunction	D8 D0		Number of	Number of	Flag CY	Skip condition
code	0 0 1 0 1 0 1 1 0 2	0 5 6 16	words 1	cycles 1	_	_
Operation:	$(A2-A0) \leftarrow (E2-E0)$		Grouping:	Input/Outp	ut operatio	
-	(12 7.6) ((22 26)		Description			ts of port E to register
				A.		
<u> </u>	Accumulator from port G)				I	
Instrunction code	D8 D0		Number of words	Number of cycles	Flag CY	Skip condition
Couc	0 0 0 1 0 1 0 0 0 2	0 2 8 16	1	1	-	-
Operation:	$(A) \leftarrow (G)$		Grouping:	Input/Outp	ut operatio	n
			Description	: Transfers t A.	he conten	ts of port G to register

INY (INcren	nent register Y)					
Instrunction	D8 D0 0 0 0 0 1 0 0 1 1	0 1 3 40	Number of words	Number of cycles	Flag CY	Skip condition
		0 1 3 16	1	1	-	(Y) = 0
Operation:	(Y) ← (Y) + 1		Grouping: Description	sult of ad	he content Idition, w	es of register Y. As a rehen the contents of e next instruction is
LA n (Load	n in Accumulator)		'			
Instrunction code	D8 D0 0 1 0 1 1 n3 n2 n1 n0 2	0 B n 40	Number of words	Number of cycles	Flag CY	Skip condition
	0 1 0 1 1 113 112 111 110 2	16	1	1	_	Continuous description
Operation:	$(A) \leftarrow n$ n = 0 to 15		Grouping: Description	register A. When the coded and struction	value n in LA instruct d executed is exec	the immediate field to tions are continuously d, only the first LA in- uted and other LA d continuously are
LGOP (Loc	Gic OPeration between accumulator a	and register E)				
Instrunction	D8 D0		Number of words	Number of cycles	Flag CY	Skip condition
code	0 0 1 0 0 0 0 0 1 2	0 4 1 1 16	1	1	_	-
Operation:	Logic operation XOR, OR, AND		Grouping: Description	logic oper tween the	the logic ation sele content	operation selected by oction register LO best of register A and as the result in register
LXY x, y (L	oad register X and Y with x and y)		'			
Instrunction code	D8 D0 0 1 1 x1 x0 y3 y2 y1 y0	0 C y 16	Number of words	Number of cycles	Flag CY	Skip condition
	0 1 X X	+X ⁷ 16	1	1	_	Continuous description
Operation:	$(X) \leftarrow x$, $x = 0$ to 3 $(Y) \leftarrow y$, $y = 0$ to 15		Grouping: Description	register X, field to reg tions are connected only the fi	value x in and the vagister Y. Vontinuousl rst LXY in	the immediate field to alue y in the immediate when the LXY instruc- y coded and executed, astruction is executed actions coded continu-

NOP (No O	Peration)					
Instrunction	D8 D0	0 0 0 16	Number of words	Number of cycles	Flag CY	Skip condition
		16	1	1	-	_
Operation:	(PC) ← (PC) + 1		Grouping:	Other oper		
			Description	: No operation	on	
	ut port E from Accumulator)					
Instrunction	D8 D0		Number of words	Number of cycles	Flag CY	Skip condition
code	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	0 8 4 16	1	1	_	
			'	'	_	-
Operation:	$(E1,E0) \leftarrow (A1,A0)$		Grouping:	Input/Outp		
			Description	: Outputs the	e contents	of register A to port E.
	ut port G from Accumulator)			<u> </u>		
Instrunction	D8 D0		Number of words	Number of cycles	Flag CY	Skip condition
code	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	0 8 0 16	1	1		
			'	'	-	<u>-</u>
Operation:	$(G) \leftarrow (A)$		Grouping:	Input/Outp		
			Description	: Outputs the	e contents	of register A to port G.
POF (Powe	•				- ov.	
Instrunction code	D8 D0		Number of words	Number of cycles	Flag CY	Skip condition
coue		0 0 D 16	1	1	_	_
Operation:	RAM back-up		Grouping:	Other oper		
			Description	: Puts the sy	stem in R	AM back-up state.

RAR (Rotat	te Accu	mula	tor Rig	ght)										
Instrunction code	D8	0	0 1		1 0	D ₀		0 1	D	7	Number of words	Number of cycles	Flag CY	Skip condition
		0	0 1	'	1 0	2	L	0 1		_ 16	1	1	0/1	-
Operation:	⊢ [<u>∑Y</u>]→[A3A2A1	Ao							Grouping: Description		oit of the co	ontents of register A in
RB j (Rese	t Bit)													
Instrunction code	D8 0	1	0 0	1	1 j ₁	D0 j0 2	Γ	0 4	C]16	Number of words	Number of cycles	Flag CY	Skip condition
						2					1	1	-	
Operation:	(Mj(DP) j = 0 to										Grouping: Description		the conten	ts of bit j (bit specifie e immediate field) (
RC (Reset (Carry fl	ag)				D ₀					Number of	Number of	Flag CY	Skip condition
code	0 0	0	0 0	0	1 1	0 2		0 0	6	16	words	cycles 1	0	- -
Operation:	(CY) ←	0									Grouping: Description	Arithmetic : Clears (0)		g CY.
RCAR (Res	set CAF	R flag))											
Instrunction	D8		· 		1 1	D0		0 0		<u> </u>	Number of words	Number of cycles	Flag CY	Skip condition
RCAR (Res Instrunction code			0 0	0	1 1	D0 0 2		0 8	6				Flag CY	Skip condition

DD (Deset	nort Donocified by register V					
	port D specified by register Y)			Ni is a second	FI 0)/	01: 1:::
Instrunction code	D8 D0 0 0 1 0 1 0 0 2	0 1 4 16	Number of words	Number of cycles	Flag CY	Skip condition
	2	10	1	1	_	_
Operation:	$(D(Y)) \leftarrow 0$		Grouping:	Input/Outp	ut operatio	n
	However,		Description	: Clears (0)	to a bit of p	oort D specified by reg
	(Y) = 0 to 7			ister Y (hig	_l h-impedar	nce state).
RT (ReTurr	n from subroutine)					
Instrunction code	D8 D0 0 0 1 0 0 0 1 0 0	0 4 4	Number of words	Number of cycles	Flag CY	Skip condition
		16	1	2	_	_
Operation:	(SP) ← (SP) − 1		Grouping:	Return ope	eration	
	$(PC) \leftarrow (SK(SP))$					outine to the routine
				called the	subroutine	
RTS (ReTuinstrunction code	D8 D0 0 0 1 0 0 0 1 0 1	0 4 5	Number of words	Number of cycles	Flag CY	Skip condition
		16	1	2	_	Skip at uncondition
Operation:	$(SP) \leftarrow (SP) - 1$		Grouping:	Return ope		
	$(PC) \leftarrow (SK(SP))$		Description		subroutine	outine to the routine, and skips the next in on.
SB j (Set B	•		1	1	T	
Instrunction code	D8 D0 0 1 0 1 1 1 j1 j0 2	0 5 C +j 16	Number of words	Number of cycles	Flag CY	Skip condition
		[1	1	_	-
Operation:	$(Mj(DP)) \leftarrow 0$		Grouping:	Bit operation	on	
	j = 0 to 3		Description			of bit j (bit specified by lediate field) of M(DP).

SC (Set Car	rrv f	lan)														
nstrunction	D8	iag)						D0					Number of	Number of	Flag CY	Skip condition
code	0	0	0	0 0	0	1				0	0	7 16	words	cycles	l ag c i	
			<u> </u>	0 0	10	1 ' 1	'	1 2		0	<u> </u>	<u>′</u> 16	1	1	1	-
Operation:	(CY) ← ´	1										Grouping:	Arithmetic	operation	
														: Sets (1) to		CY.
SCAR (Set	CAF	R fla	g)										<u> </u>			
nstrunction code	D8	1	0	0 0	0	1		D ₀		0	8	7 16	Number of words	Number of cycles	Flag CY	Skip condition
								1 2		-		16	1	1	_	_
Operation:	(CA	R) ←	- 1										Grouping:	Carrier wa	ve control	operation
													Description	: Sets (1) to	port CAR	R output flag (CAR
SD (Set port	t D	spe	cifie	d by r	egis	ter Y	')									
nstrunction	D8							Do_				_	Number of	Number of	Flag CY	Skip condition
code	0	0	0	0 1	0	1	0	1 2		0	1	5 16	words 1	cycles 1	_	_
Operation:	(D()	/)) ←	- 1	-									Grouping:	Input/Outp	ut operation	on
		= 0 tc												<u> </u>		rt D specified by re
														ter Y.		
SEA n (Skip	Eq.	ual,	Acc	umul	ator	with	imn	nedia	ate c	lata	n)					
nstrunction	D8	0	0	1 0	0	1		D ₀		0	2	5 46	Number of words	Number of cycles	Flag CY	Skip condition
									 			16	2	2	_	(A) = n, n = 0 to
	0	1	0	1 1	n3	n2	n1	no ₂		0	В	n16	Grouping:	Compariso	on operatio	n
-		= n ? 0 to											Description		gister A is	uction when the dequal to the value
															-	

SEAM (Skir	p Equal, Accumulator with Memory)					
Instrunction	D8 D0 0 0 0 1 0 0 1 1 0	0 2 6 46	Number of words	Number of cycles	Flag CY	Skip condition
		0 2 0 16	1	1	_	(A) = (M(DP))
Operation:	(A) = (M(DP)) ?		Grouping:	Compariso	n operation	า
			Description			uction when the con qual to the contents o
SNZP (Skip	o if Non Zero condition of Power dow	n flag)				
Instrunction	D8 D0		Number of words	Number of cycles	Flag CY	Skip condition
		0 0 3 16	1	1	-	(P) = 1
Operation:	(P) = 1 ?		Grouping:	Other oper	ation	
						tion when P flag is "1" remains unchanged.
· · · · ·	ip if Non Zero condition of Timer 1 u	nderflow flag)			[FL 0)/	01: 1::
Instrunction code	D8 D0		Number of words	Number of cycles	Flag CY	Skip condition
code		0 4 2 16	1	1	_	(T1F) = 1
Operation:	(T1F) = 1 ?		Grouping:	Timer oper	ration	
•	After skipping, (T1F) ← 0			: Skips the tents of T1	next instru F flag is "1	uction when the con ." (0) to T1F flag.
						(,,
SNZT2 (Sk	ip if Non Zero condition of Timer 2 in	errupt request	flag)			
Instrunction	ip if Non Zero condition of Timer 2 in		flag) Number of words	Number of cycles	Flag CY	Skip condition
SNZT2 (Sk Instrunction code	•	errupt request	Number of		Flag CY	
Instrunction	D8 D0	0 5 2	Number of words	cycles	_	Skip condition

SZB j (Skip	o if Zero, Bit)					
Instrunction code	D8 D0 0 0 0 1 0 0 0 j1 j0 0	0 2 j ₁₆	Number of words	Number of cycles	Flag CY	Skip condition
	0 0 0 1 0 0 0 1 10	0 2 j ₁₆	1	1	-	(Mj(DP)) = 0 j = 0 to 3
Operation:	(Mj(DP)) = 0 ?		Grouping:	Bit operation	on	,
-	j = 0 to 3		Description	•		uction when the con-
						cified by the value j in of M(DP) is "0."
SZC (Skip	if Zero, Carry flag)					
Instrunction code	D8 D0	0 2 F	Number of words	Number of cycles	Flag CY	Skip condition
		16	1	1	_	(CY) = 0
Operation:	(CY) = 0 ?		Grouping:	Arithmetic	operation	
			Description	: Skips the tents of ca		uction when the con- is "0."
<u>. </u>	if Zero, port D specified by register Y	<u>(</u>)				
Instrunction code	D8 D0 0 0 1 0 0 1 0 0	0 2 4	Number of words	Number of cycles	Flag CY	Skip condition
	0 0 0 1 0 1 0 1 1	0 2 B ₁₆	2	2	_	(D(Y)) = 0 (Y) = 4 to 7
Operation:	(D(Y)) = 0?		Grouping:	Input/Outp	ut operatio	n
	(Y) = 4 to 7		Description	: Skips the r D specified		ction when a bit of porter Y is "0."
T1AB (Trai	nsfer data to timer 1 and register R1	from Accumula	tor and reg	ister B)		
Instrunction code	D8 D0 0 0 1 1 1 1 1 2	0 4 7	Number of words	Number of cycles	Flag CY	Skip condition
		16	1	1	-	_
Operation:	at timer 1 stop (V10=0)		Grouping:	Timer oper		
	$(R17-R14) \leftarrow (B), (R13-R10) \leftarrow (A)$ $(T17-T14) \leftarrow (B), (T13-T10) \leftarrow (A)$ at timer 1 operating $(V10=1)$ $(R17-R14) \leftarrow (B), (R13-R10) \leftarrow (A)$		Description	tents of re and reload At timer 1	gister A an register R operating of register	e o), transfers the cond register B to timer 11.(V10 = 1), transfers the A and register B to re

T2AB (Tran	nsfer data to timer 2 and register R2	I from Accumul	ator and re	aister R)		
Instrunction code	D8 D0		Number of words	Number of cycles	Flag CY	Skip condition
	0 1 0 0 0 1 0 0 0	0 8 8 16	1	1	_	-
Operation:	(R2L7–R2L4) ← (B)		Grouping:	Timer oper	ration	
	$(R2L3-R2L0) \leftarrow (A)$		Description	: Transfers	the conten	s of registers A and E
	(T27−T24) ← (B)			to timer 2 a	and timer 2	reload register R2L.
	(T23−T20) ← (A)					
T2HAB (Tra	ansfer data to register R2H Accumu	lator from regist	er B)			
Instrunction code	D8 D0 0 1 0 0 1	0 8 9	Number of words	Number of cycles	Flag CY	Skip condition
		16	1	1	-	-
Operation:	(R2H7−R2H4) ← (B)		Grouping:	Timer oper	ration	
	(R2H3−R2H0) ← (A)			: Transfers	the conte	nts of register A and
				register B	to reload re	gister R2H.
Instrunction	nsfer data to timer 2 from register R		Number of words	Number of cycles	Flag CY	Skip condition
code		0 5 3 16	1	1	_	_
Operation:	(T27–T24) ← (R2L7–R2L4)		Grouping:	Timer oper	ration	
	$(T23-T20) \leftarrow (R2L3-R2L0)$				the conte	nts of reload registe
`	efer data to Accumulator from registe	er B)	Niah an af	Ni	Flar CV	Oldin annulition
Instrunction code	D8 D0 0 0 1 1 1 1 0 2	0 1 E ₁₆	Number of words	Number of cycles	Flag CY	Skip condition
		10	1	1	_	_
Operation:	$(A) \leftarrow (B)$		Grouping:	Register to		
			Description	ister A.	the conten	ts of register B to reg

Date	Skip condition
TAB2 (Transfer data to Accumulator and register B from timer 2) Instrunction code Ds Do Number of yords Number of yords Number of yords Number of yords Timer operation Operation: (B) ← (T27-T24) (A) ← (T23-T20) Grouping: Timer operation Timer operation Description: Transfers the contents ters A and B. TABE (Transfer data to Accumulator and register B from register E) Instrunction Ds Do Number of yords Number of yords Number of yords Flag CY Number of yords Number of yords Number of yords Flag CY Flag CY Number of yords Number of yords Number of yords Flag CY Flag CY	Skip condition
	Skip condition
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Skip condition
TAB2 (Transfer data to Accumulator and register B from timer 2) Instrunction Code D8 D0 O 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Skip condition
	<u> </u>
	<u> </u>
	<u> </u>
Code 0 0 1 0 <th>- -</th>	- -
	of timer 2 to regis-
$(A) \leftarrow (T23-T20) \\ \hline \textbf{TABE} \ (Transfer \ data \ to \ Accumulator \ and \ register \ B \ from \ register \ E) \\ \hline \textbf{Instrunction} D8 \qquad \qquad D0 \qquad \qquad Number \ of Number \ of Value \ Code $	s of timer 2 to regis-
TABE (Transfer data to Accumulator and register B from register E) Instrunction D8 D0 Number of Number of Stage CY code 0 0 0 1 0 1 0 1 0 0 0 2 A 45	s of timer 2 to regis-
TABE (Transfer data to Accumulator and register B from register E) Instrunction D8 D0 Number of Variable CY code 0 0 0 1 0 1 0 1 0 0 0 2 A 46	
Instrunction	
	Skip condition
Operation: (B) \leftarrow (ER7–ER4) Grouping: Register to register trans	nsfer
(A) ← (ER3–ER0) Description: Transfers the contents of isters A and B.	of register E to reg-
TABP p (Transfer data to Accumulator and register B from Program memory in page p) Instrunction D8 D0 Number of Number of Flag CY	Ckin oondition
code 0 1 0 0 1 p3 p2 p1 p0 0 9 p words cycles	Skip condition
1 3 - 0/1	-
$(PCH) \leftarrow p, \ p = 0 \ \text{to} \ 7, \ (PCL) \leftarrow (DR2-DR0, \ A3-A0)$ When URS = 0, $(B) \leftarrow (ROM(PC))7 \ \text{to} \ 4, \ (A) \leftarrow (ROM(PC))3 \ \text{to} \ 0$ When URS = 1, $(CY) \leftarrow (ROM(PC))8$ $(B) \leftarrow (ROM(PC))7 \ \text{to} \ 4, \ (A) \leftarrow (ROM(PC))3 \ \text{to} \ 0$ (SP) $\leftarrow (SP) - 1, \ (PC) \leftarrow (SK(SP))$ Description: Transfers bits 7 to 4 to register B and B A when URS flag is cleared to "0." The ROM pattern in address (DR2 DR1 DR field by registers A and D in page p. Transfers bit 8 of ROM pattern is transfer.	ese bits 7 to 0 are the Ro A ₃ A ₂ A ₁ A ₀) speci-
Note: p is 0 to 7 for M34282M1, URS flag is set to "1" (after the URSC ins	
p is 0 to 15 for M34282M2/E2. (One of stack is used when the TABP p ins	struction is executed)

TAM j (Tran	nsfer da	ta to Ad	ccun	nula	itor f	rom I	Memo	ry)						
Instrunction	D8					Do					Number of	Number of	Flag CY	Skip condition
code	0 0	1 1	0	0	1 j	1 j0	2	0	6	4 j 16	words 1	cycles 1	_	_
Operation:	$(A) \leftarrow (A)$ $(X) \leftarrow (X)$ $(A) \leftarrow (X)$ $(A) \leftarrow (X)$ $(A) \leftarrow (X)$ $(A) \leftarrow (A)$ $(A) $	()EXOR(j)								Grouping: Description	register A performed	ferring the , an exclu between re mediate fie	e contents of M(DP) to sive OR operation is egister X and the value eld, and stores the re-
TAY (Trans	fer data	to Acc	umu	ılato	r fro	m red	aister	Y)						
Instrunction code	D8 0	0 0	1	1		Do) 	0	1	F ₁₆	Number of words	Number of cycles	Flag CY	Skip condition
				•		•					1	1	_	_
Operation:	(A) ← (Y)									Grouping: Description	Register to: Transfers t ter A.		ansfer s of register Y to regis-
TBA (Trans	sfer data	to rea	ister	Bf	rom	Accu	mula	tor)						
Instrunction code	D8 0 0	0 0	0	1		Do	7	0	0	E 16	Number of words	Number of cycles	Flag CY	Skip condition
	0 0		101	'	'	1 0	<u></u>		0	16	1	1	-	-
Operation:	(B) ← (A	()									Grouping: Description	Register to : Transfers t ter B.		ansfer s of register A to regis-
TDA (Trans	sfer data	to rea	ister	· D f	rom	Accu	mula	tor)						
Instrunction code		0 1	0	1		Do	7	0	2	9 16	Number of words	Number of cycles	Flag CY	Skip condition
				•			2		_	16	1	1	-	-
Operation:	(DR2-D	R0) ← (A	\2-A0	o)							Grouping: Description	Register to : Transfers t ter D.		ansfer s of register A to regis-
											1			

TEAB (Tran	nsfer data to register E from Accumul	ator and regist	er B)			
Instrunction code	D8 D0 0 0 0 0 1 1 0 1 0	0 1 A 16	Number of words	Number of cycles	Flag CY	Skip condition
		16	1	1	-	-
Operation:	(ER7–ER4) ← (B)		Grouping:	Register to	register tr	ansfer
-	(ER3–ER0) ← (A)		Description	: Transfers	the conte	nts of register A and
				register B t	o register	E.
TLOA (Tran	sfer data to register LO from Accumu	ulator)				
Instrunction code	D8 D0 0 0 1 0 1 1 0 0 0	0 5 8 46	Number of words	Number of cycles	Flag CY	Skip condition
		16	1	1	-	_
Operation:	$(LO1, LO0) \leftarrow (A1, A0)$		Grouping:	Other opera	ation	
			Description	: Transfers ti operation s		s of register A to logic gister LO.
TPU0A (Tra	ansfer data to register PU0 from Accu	ımulator)	l			
Instrunction	D8 D0	,	Number of	Number of	Flag CY	Skip condition
code	0 1 0 0 0 1 1 1 1 2	0 8 F ₁₆	words	cycles		
			1	1	-	
Operation:	$(PU03-PU00) \leftarrow (A3-A0)$		Grouping:	Other oper	ation	
			Description	: Transfers t up control I		ts of register A to pull- JO.
TPU1A (Tra	ansfer data to register PU1 from Accu	imulator)				
Instrunction code	D ₈ D ₀	0 8 E	Number of words	Number of cycles	Flag CY	Skip condition
		16	1	1	-	-
Operation:	(PU13–PU10) ← (A3–A0)		Grouping: Description		he conten	ts of register A to pull-
				up control I	egister PC	<i>)</i> 1.

TV1A (Tran	sfer data to register V1 from Accumulator)	<u> </u>				
Instrunction	D8 D0		Number of words	Number of cycles	Flag CY	Skip condition
code		5 B 16	1	1	_	_
Operation:	(V12−V10) ← (A2−A0)		Grouping:	Timer oper		s of register A to regis
			·	ter V1.		
TV2A (Tran	nsfer data to register V2 from Accumulator))				
Instrunction code	D8 D0	5 A	Number of words	Number of cycles	Flag CY	Skip condition
		<u>3 A</u> 16	1	1	_	_
Operation:	(V23−V20) ← (A3−A0)		Grouping:	Timer oper		
			Description	: Transfers t ter V2.	he content	s of register A to regis
TYA (Trans Instrunction code	fer data to regiser Y from Accumulator) D8 D0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 0 0	0 C 16	Number of words	Number of cycles	Flag CY	Skip condition
Operation:	$(Y) \leftarrow (A)$		Grouping:	Register to	register tra	ansfer
Operation.						s of register A to regis
URSC (Sets	s Upper ROM Code reference enable flag)	<u> </u>				
Instrunction	D8 D0	8 2	Number of words	Number of cycles	Flag CY	Skip condition
		16	1	1	_	-
Operation:	(URS) ← 1		Grouping: Description	Other oper		ant ROM code refer-

WRST (Wa				- /		D-					Number of	Number of	Flor OV	Ckin condition
Instrunction code	D8		0 0		4 4	D ₀					Number of words	Number of cycles	Flag CY	Skip condition
code	0 0	0	0 0	1	1 1	1	2	0	0	F16	1	1	_	-
Operation:	(WDF1)	← 0									Grouping:	Other oper	ation	
•	,											•		og timer flag (WDF1).
XAM j (eXc	hange i	Accı	ımulat	or ar	nd Mei	mory	data	a)						
Instrunction code	D8	1	1 0	0	0 j1	Do jo		0	6		Number of words	Number of cycles	Flag CY	Skip condition
			. -		- ,	,,-	2			16	1	1	_	_
Operation:	(A) ←—:)M) +	OP))								Grouping:	RAM to reg	gister trans	sfer
	$(X) \leftarrow (X)$		OR(j)								Description			ne contents of M(DP
	j = 0 to	3												egister A, an exclusive
														ormed between regis in the immediate field
													-	in register X.
												and otoroo	tilo roodit	in regioter 7t.
XAMD j (eX	Change	Ac	cumula	ator a	and M	emo	ry da	ıta aı	nd D	ecrer	nent registe	er Y and sk	ip)	
Instrunction	D8		T			D ₀					Number of	Number of	Flag CY	Skip condition
code	0 0	1	1 0	1	1 j1	j0	2	0	6	C Ej16	words 1	cycles 1	_	(Y) = 15
Operation:	(A) ←→	(M(E)P))								Grouping:	RAM to reg	ister trans	fer
-	$(X) \leftarrow (X)$										Description	: After exch	anging th	e contents of M(DP)
	j = 0 to	3	•											egister A, an exclusive ormed between regis
	(Y) ← (`	r) – 1												in the immediate field
														in register X.
														contents of register Y action, when the con-
														15, the next instruction
												is skipped.		
VARILLY X	-1	Δ.					.1 4	_	.1.1				<u> </u>	
		Acc	umulat	or a	nd Me		y dat	a an	d Inc	reme	, <u> </u>	Y and skip		Older and Prince
XAMI j (eXo	change D8 0 0	Acc	umulat		nd Me	Do io		a an			ent register Number of words		Flag CY	Skip condition
Instrunction	D8					Do io	y dat			reme	Number of	Y and skip		Skip condition (Y) = 0
Instrunction code	D8	1	1 0			Do io					Number of words 1 Grouping:	Y and skip Number of cycles 1 RAM to reg	Flag CY - gister trans	(Y) = 0
Instrunction code	$ \begin{array}{c c} D8 \\ \hline 0 & 0 \end{array} $ $ \begin{array}{c c} (A) \longleftrightarrow \\ (X) \longleftrightarrow (X) $	1 (M(E K)EX(1 0			Do io					Number of words	Y and skip Number of cycles 1 RAM to rec After exch	Flag CY - gister trans anging th	(Y) = 0 fer e contents of M(DP)
Instrunction code	$ \begin{array}{c c} D8 \\ \hline 0 & 0 \end{array} $ $ \begin{array}{c c} (A) \longleftarrow \\ (X) \longleftarrow (X) \longrightarrow (X) $	1 (M(E K)EX(1 0 DP)) DR(j)			Do io					Number of words 1 Grouping:	Y and skip Number of cycles 1 RAM to rec After exch with the co	Flag CY - gister trans anging the	(Y) = 0 fer e contents of M(DP) egister A, an exclusive
Instrunction code	$ \begin{array}{c c} D8 \\ \hline 0 & 0 \end{array} $ $ \begin{array}{c c} (A) \longleftrightarrow \\ (X) \longleftrightarrow (X) $	1 (M(E K)EX(1 0 DP)) DR(j)			Do io					Number of words 1 Grouping:	Y and skip Number of cycles 1 RAM to rec After exch with the co OR operati ter X and tl	Flag CY - gister trans anging th ntents of r ion is perf he value j	(Y) = 0 fer e contents of M(DP) egister A, an exclusive ormed between regis in the immediate field
Instrunction code	$ \begin{array}{c c} D8 \\ \hline 0 & 0 \end{array} $ $ \begin{array}{c c} (A) \longleftarrow \\ (X) \longleftarrow (X) \longrightarrow (X) $	1 (M(E K)EX(1 0 DP)) DR(j)			Do io					Number of words 1 Grouping:	Y and skip Number of cycles 1 RAM to rec After exch with the co OR operatiter X and to and stores	Flag CY - gister trans anging th ntents of r ion is perf he value j the result	(Y) = 0 fer e contents of M(DP) egister A, an exclusive ormed between regis in the immediate field in register X.
	$ \begin{array}{c c} D8 \\ \hline 0 & 0 \end{array} $ $ \begin{array}{c c} (A) \longleftarrow \\ (X) \longleftarrow (X) \longrightarrow (X) $	1 (M(E K)EX(1 0 DP)) DR(j)			Do io					Number of words 1 Grouping:	Y and skip Number of cycles 1 RAM to rec After exch with the co OR operatiter X and to and stores Adds 1 to to	Flag CY pister trans anging the ntents of r ion is perf he value j the result he content	(Y) = 0 fer e contents of M(DP) egister A, an exclusive ormed between regis in the immediate field

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

MACHINE INSTRUCTIONS (INDEX BY FUNCTION)

Parameter	r	Instruction code					ds der of der of der of									
Type of instructions	Mnemonic	D8	D7	D ₆	D ₅	D4	Dз	D ₂	D ₁	D ₀	Hexa no	adec tatio	imal on	Number of words	Number c cycles	Function
	TAB	0	0	0	0	1	1	1	1	0	0	1	Е	1	1	(A) ← (B)
er	ТВА	0	0	0	0	0	1	1	1	0	0	0	Ε	1	1	(B) ← (A)
transf	TAY	0	0	0	0	1	1	1	1	1	0	1	F	1	1	(A) ← (Y)
egister	TYA	0	0	0	0	0	1	1	0	0	0	0	С	1	1	$(Y) \leftarrow (A)$
Register to register transfer	TEAB	0	0	0	0	1	1	0	1	0	0	1	Α	1	1	$(ER7-ER4) \leftarrow (B) (ER3-ER0) \leftarrow (A)$
Regis	TABE	0	0	0	1	0	1	0	1	0	0	2	Α	1	1	(B) ← (ER7–ER4) (A) ← (ER3–ER0)
	TDA	0	0	0	1	0	1	0	0	1	0	2	9	1	1	$(DR_2-DR_0) \leftarrow (A_2-A_0)$
	LXY x, y	0	1	1	X 1	X 0	у з	y 2	y 1	y 0	0	C +x	-	1	1	$(X) \leftarrow x, x = 0 \text{ to } 3$ $(Y) \leftarrow y, y = 0 \text{ to } 15$
RAM addresses	INY	0	0	0	0	1	0	0	1	1	0	1	3	1	1	(Y) ← (Y) + 1
<u> </u>	DEY	0	0	0	0	1	0	1	1	1	0	1	7	1	1	$(Y) \leftarrow (Y) - 1$
	TAM j	0	0	1	1	0	0	1	j1	jo	0	6	4 +j	1	1	$(A) \leftarrow (M(DP))$ $(X) \leftarrow (X) EXOR(j)$ j = 0 to 3
ransfer	XAM j	0	0	1	1	0	0	0	j1	jo	0	6	j	1		$(A) \leftarrow \rightarrow (M(DP))$ $(X) \leftarrow (X) EXOR(j)$ j = 0 to 3
RAM to register transfer	XAMD j	0	0	1	1	0	1	1	j1	jo	0	6	C +j	1		$(A) \longleftrightarrow (M(DP))$ $(X) \longleftrightarrow (X) EXOR(j)$ $j = 0 \text{ to } 3$ $(Y) \longleftrightarrow (Y) - 1$
	XAMI j	0	0	1	1	0	1	0	j1	jo	0	6	8 +j	1	l	$ \begin{aligned} &(A) \longleftrightarrow (M(DP)) \\ &(X) \longleftarrow (X) \ EXOR(j) \\ &j = 0 \ to \ 3 \\ &(Y) \longleftarrow (Y) + 1 \end{aligned} $

Skip condition	Carry flag CY	Detailed description
_	-	Transfers the contents of register B to register A.
_	_	Transfers the contents of register A to register B.
_	_	Transfers the contents of register Y to register A.
_	_	Transfers the contents of register A to register Y.
_	_	Transfers the contents of registers A and B to register E.
-	_	Transfers the contents of register E to registers A and B.
-	_	Transfers the contents of register A to register D.
Continuous description	_	Loads the value x in the immediate field to register X, and the value y in the immediate field to register Y.
description		When the LXY instructions are continuously coded and executed, only the first LXY instruction is executed and other LXY instructions coded continuously are skipped.
(Y) = 0	_	Adds 1 to the contents of register Y. As a result of addition, when the contents of register Y is 0, the next instruction is skipped.
(Y) = 15	_	Subtracts 1 from the contents of register Y. As a result of subtraction, when the contents of register Y is 15, the next instruction is skipped.
-	_	After transferring the contents of M(DP) to register A, an exclusive OR operation is performed between register X and the value j in the immediate field, and stores the result in register X.
_	_	After exchanging the contents of M(DP) with the contents of register A, an exclusive OR operation is performed between register X and the value j in the immediate field, and stores the result in register X.
(Y) = 15	_	After exchanging the contents of M(DP) with the contents of register A, an exclusive OR operation is performed between register X and the value j in the immediate field, and stores the result in register X. Subtracts 1 from the contents of register Y. As a result of subtraction, when the contents of register Y is 15, the next instruction is skipped.
(Y) = 0	_	After exchanging the contents of M(DP) with the contents of register A, an exclusive OR operation is performed between register X and the value j in the immediate field, and stores the result in register X. Adds 1 to the contents of register Y. As a result of addition, when the contents of register Y is 0, the next instruction is skipped.

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

MACHINE INSTRUCTIONS (CONTINUED)

Parameter			Instruction code							r of s	r of s					
Type of instructions	Mnemonic	D8	D7	D ₆	D ₅	D4	Dз	D ₂	D ₁	D ₀		adec otatio	imal on	Number of words	Number of cycles	Function
	LA n	0	1	0	1	1	nз	n ₂	n1	n ₀	0	В	n	1	1	(A) ← n n = 0 to 15
	ТАВР р	0	1	0	0	1	рз	p2	p1	po	0	9	p	1	3	$(SK(SP)) \leftarrow (PC)$ $(SP) \leftarrow (SP) + 1$ $(PCH) \leftarrow p, p=0 \text{ to } 7 \text{ (Note)}$ $(PCL) \leftarrow (DR_2-DR_0, A_3-A_0)$ When URS=0, $(B) \leftarrow (ROM(PC))7 \text{ to } 4$ $(A) \leftarrow (ROM(PC))3 \text{ to } 0$ When URS=1, $(CY) \leftarrow (ROM(PC))8$ $(B) \leftarrow (ROM(PC))7 \text{ to } 4$ $(A) \leftarrow (ROM(PC))7 \text{ to } 4$ $(A) \leftarrow (ROM(PC))3 \text{ to } 0$ $(SP) \leftarrow (SP) - 1$ $(PC) \leftarrow (SK(SP))$
tion	АМ	0	0	0	0	0	1	0	1	0	0	0	Α	1	1	$(A) \leftarrow (A) + (M(DP))$
Arithmetic operation	AMC	0	0	0	0	0	1	0	1	1	0	0	В	1	1	$(A) \leftarrow (A) + (M(DP)) + (CY)$ $(CY) \leftarrow Carry$
Arithr	A n	0	1	0	1	0	nз	n ₂	n1	n o	0	Α	n	1	1	$(A) \leftarrow (A) + n$ n = 0 to 15
	SC	0	0	0	0	0	0	1	1	1	0	0	7	1	1	(CY) ← 1
	RC	0	0	0	0	0	0	1	1	0	0	0	6	1	1	(CY) ← 0
	SZC	0	0	0	1	0	1	1	1	1	0	2	F	1	1	(CY) = 0 ?
	СМА	0	0	0	0	1	1	1	0	0	0	1	С	1	1	$(A) \leftarrow (\overline{A})$
	RAR	0	0	0	0	1	1			1	0	1	D	1	1	\rightarrow CY \rightarrow A ₃ A ₂ A ₁ A ₀
	LGOP	0	0	1	0	0	0	0	0	1	0	4	1	1	1	Logic operation instruction XOR, OR, AND

Note: p is 0 to 7 for M34282M1, p is 0 to 15 for M34282M2/E2.

Skip condition	Carry flag CY	Detailed description
Continuous description	_	Loads the value n in the immediate field to register A. When the LA instructions are continuously coded and executed, only the first LA instruction is executed and other LA instructions coded continuously are skipped.
_	_	Transfers bits 7 to 4 to register B and bits 3 to 0 to register A when URS flag is cleared to "0." These bits 7 to 0 are the ROM pattern in address (DR ₂ DR ₁ DR ₀ A ₃ A ₂ A ₁ A ₀) specified by registers A and D in page p.
	0/1	Transfers bit 8 of ROM pattern is transferred to flag CY when URS flag is set to "1" (after the URSC instruction is executed). (One of stack is used when the TABP p instruction is executed.)
-	_	Adds the contents of M(DP) to register A. Stores the result in register A. The contents of carry flag CY remains unchanged.
-	0/1	Adds the contents of M(DP) and carry flag CY to register A. Stores the result in register A and carry flag CY.
Overflow = 0	_	Adds the value n in the immediate field to register A. The contents of carry flag CY remains unchanged. Skips the next instruction when there is no overflow as the result of operation.
-	1	Sets (1) to carry flag CY.
-	0	Clears (0) to carry flag CY.
(CY) = 0	-	Skips the next instruction when the contents of carry flag CY is "0."
_	-	Stores the one's complement for register A's contents in register A.
_	0/1	Rotates 1 bit of the contents of register A including the contents of carry flag CY to the right.
_	_	Executes the logic operation selected by logic operation selection register LO between the contents of register A and register E, and stores the result in register A.

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

MACHINE INSTRUCTIONS (CONTINUED)

Parameter		Instruction code							r of s	r of s						
Type of instructions	Mnemonic	D8	D7	D ₆	D ₅	D4	Дз	D ₂	D ₁	D ₀		adec otati		Number of words	Number of cycles	Function
	SB j	0	0	1	0	1	1	1	j1	j o	0	5	C +j	1	1	$(Mj(DP)) \leftarrow 1$ j = 0 to 3
Bit operation	RB j	0	0	1	0	0	1	1	j1	jo	0	4	C +j	1		$(Mj(DP)) \leftarrow 0$ $j = 0 \text{ to } 3$
Bit	SZB j	0	0	0	1	0	0	0	j1	jo	0	2	j	1	1	(Mj(DP)) = 0 ? j = 0 to 3
uo c	SEAM	0	0	0	1	0	0	1	1	0	0	2	6	1	1	(A) = (M(DP)) ?
Comparison operation	SEA n	0	0	0	1	0	0	1	0	1	0	2	5	2	2	(A) = n ?
Con		0	1	0	1	1	пз	n ₂	n1	n ₀	0	В	n			n = 0 to 15
	Ва	1	1	a 6	a 5	a 4	a 3	a 2	a ₁	a 0	1	8	а	1	1	(PCL) ← a6-a0
	BL p, a	0	0	0	1	1	рз	p 2	p 1	p o	0	+a 3	р	2	2	(РСн) ← р (РС∟) ← a6–a0 (Note)
ration		1	1	a 6	a 5	a 4	a 3	a 2	a1	a 0	1	8 +a	а			
Branch operation	ВА а	0	0	0	0	0	0	0	0	1	0	0	1	2	2	(PCL) ← (a6–a4, A3–A0)
Braı		1	1	a 6	a 5	a 4	a 3	a 2	a 1	a 0	1	8 +a	а			
	BLA p, a	0	0	0	0	1	0	0	0	0	0	1	0	2	2	(РСн) ← р (РС∟) ← (а6–а₄, Аз–А₀)
		1	1	a 6	a 5	a4	рз	p ₂	p 1	p ₀	1	8 +a	р			(Note)

Note: p is 0 to 7 for M34282M1, p is 0 to 15 for M34282M2/E2.

Skip condition	Carry flag CY	Detailed description
_	-	Sets (1) the contents of bit j (bit specified by the value j in the immediate field) of M(DP).
-	_	Clears (0) the contents of bit j (bit specified by the value j in the immediate field) of M(DP).
(Mj(DP)) = 0 j = 0 to 3	_	Skips the next instruction when the contents of bit j (bit specified by the value j in the immediate field) of M(DP) is "0."
(A) = (M(DP))	-	Skips the next instruction when the contents of register A is equal to the contents of M(DP).
(A) = n n = 0 to 15	_	Skips the next instruction when the contents of register A is equal to the value n in the immediate field.
_	-	Branch within a page : Branches to address a in the identical page.
-	_	Branch out of a page : Branches to address a in page p.
_	_	Branch within a page: Branches to address (a ₆ a ₅ a ₄ A ₃ A ₂ A ₁ A ₀) determined by replacing the low-order 4 bits of the address a in the identical page with register A.
_	_	Branch out of a page: Branches to address (a ₆ a ₅ a ₄ A ₃ A ₂ A ₁ A ₀) determined by replacing the low-order 4 bits of the address a in page p with register A.

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

MACHINE INSTRUCTIONS (CONTINUED)

Parameter			Instruction code											r of s	r of s	
Type of instructions	Mnemonic	D8	D7	D ₆	D ₅	D4	Дз	D ₂	D ₁	D ₀	Hex	adec otati		Number of words	Number of cycles	Function
	ВМ а	1	0	a 6	a 5	a 4	a 3	a 2	a1	a ₀	1	а	а	1	1	$(SK(SP)) \leftarrow (PC)$ $(SP) \leftarrow (SP) + 1$ $(PCH) \leftarrow 2$ $(PCL) \leftarrow a_{6}-a_{0}$
oeration	BML p, a	0	0	1	1	1	рз	p ₂	p 1	p ₀	0	7	р	2	2	$(SK(SP)) \leftarrow (PC)$ $(SP) \leftarrow (SP) + 1$ $(PCH) \leftarrow p$
Subroutine operation		1	0	a 6	a 5	a 4	a 3	a 2	a ₁	a 0	1	а	а			(PCL) ← a6-a0 (Note)
Sul	BMLA p, a	0	0	1	0	1	0	0	0	0	0	5	0	2	2	$(SK(SP)) \leftarrow (PC)$ $(SP) \leftarrow (SP) + 1$
		1	0	a 6	a 5	a 4	рз	p ₂	p ₁	p ₀	1	а	р			(PC _H) ← p (PC _L) ← (a ₆ –a ₄ , A ₃ –A ₀) (Note)
oeration	RT	0	0	1	0	0	0	1	0	0	0	4	4	1	2	$(SP) \leftarrow (SP) - 1$ $(PC) \leftarrow (SK(SP))$
Return operation	RTS	0	0	1	0	0	0	1	0	1	0	4	5	1	2	$(SP) \leftarrow (SP) - 1$ $(PC) \leftarrow (SK(SP))$
	T1AB	0	0	1	0	0	0	1	1	1	0	4	7	1	1	at timer 1 stop (V10=0) $ (R17-R14) \leftarrow (B), (R13-R10) \leftarrow (A) \\ (T17-T14) \leftarrow (B), (T13-T10) \leftarrow (A) \\ \text{at timer 1 operating (V10=1)} \\ (R17-R14) \leftarrow (B), (R13-R10) \leftarrow (A) $
uc	TAB1	0	0	1	0	1	0	1	1	1	0	5	7	1	1	(B) ← (T17–T14) (A) ← (T13–T10)
peratio	TV1A	0	0	1	0	1	1	0	1	1	0	5	В	1	1	$(V12-V10) \leftarrow (A2-A0)$
Timer operation	SNZT1	0	0	1	0	0	0	0	1	0	0	4	2	1	1	(T1F) = 1? After skipping the next instruction $(T1F) \leftarrow 0$
	T2AB	0	1	0	0	0	1	0	0	0	0	8	8	1	1	$(R2L7-R2L4) \leftarrow (B)$ $(R2L3-R2L0) \leftarrow (A)$ $(T27-T24) \leftarrow (B)$, $(T23-T20) \leftarrow (A)$

Note: p is 0 to 7 for M34282M1, and p is 0 to 15 for M34282M2/E2.

Skip condition	Carry flag CY	Detailed description
_	-	Call the subroutine in page 2 : Calls the subroutine at address a in page 2.
-	_	Call the subroutine : Calls the subroutine at address a in page p.
-	_	Call the subroutine: Calls the subroutine at address (a6 a5 a4 A3 A2 A1 A0) determined by replacing the low-order 4 bits of address a in page p with register A.
-	_	Returns from subroutine to the routine called the subroutine.
Skip at uncondition	_	Returns from subroutine to the routine called the subroutine, and skips the next instruction at uncondition.
_	-	At timer 1 stop (V10 = 0), transfers the contents of register A and register B to timer 1 and reload
		register R1.
		At timer 1 operating (V1 ₀ = 1), transfers the contents of register A and register B to reload register R1.
-	-	Transfers the contents of timer 1 to registers A and B.
_	_	
		Transfers the contents of register A to registers V1.
(T1F) = 1	-	
		Skips the next instruction when the contents of T1F flag is "1." After skipping, clears (0) to T1F flag.
_	_	Transfers the contents of register A and register B to timer 2 and reload register R2L.

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

MACHINE INSTRUCTIONS (CONTINUED)

Parameter			Instruction code											er of ds er of er of es of es		
Type of instructions	Mnemonic	D8	D7	D ₆	D ₅	D4	Dз	D ₂	D ₁	D ₀	Hexa	adec tati		Number of words	Number of cycles	Function
	TAB2	0	0	1	0	0	0	0	0	0	0	4	0	1	1	(B) ← (T27–T24), (A) ← (T23–T20)
	TV2A	0	0	1	0	1	1	0	1	0	0	5	Α	1	1	(V23−V20) ← (A3−A0)
Timer operation	SNZT2	0	0	1	0	1	0	0	1	0	0	5	2	1	1	(T2F) = 1? After skipping the next instruction $(T2F) \leftarrow 0$
Time	Т2НАВ	0	1	0	0	0	1	0	0	1	0	8	9	1	1	$(R2H_7-R2H_4) \leftarrow (B)$ $(R2H_3-R2H_0) \leftarrow (A)$
	T2R2L	0	0	1	0	1	0	0	1	1	0	5	3	1	1	(T27–T24) ← (R2L7–R2L4) (T23–T20) ← (R2L3–R2L0)
fion	SCAR	0	1	0	0	0	0	1	1	1	0	8	7	1	1	(CAR) ← 1
Carrier wave control operation	RCAR	0	1	0	0	0	0	1	1	0	0	8	6	1	1	(CAR) ← 0
	CLD	0	0	0	0	1	0	0	0	1	0	1	1	1	1	(D) ← 0
	RD	0	0	0	0	1	0	1	0	0	0	1	4	1	1	$(D(Y)) \leftarrow 0$ $(Y) = 0 \text{ to } 7$
	SD	0	0	0	0	1	0	1	0	1	0	1	5	1	1	$(D(Y)) \leftarrow 1$ $(Y) = 0 \text{ to } 7$
uc	SZD	0	0	0	1	0	0	1	0	0	0	2	4	2	2	(D(Y)) = 0 ?
perati		0	0	0	1	0	1	0	1	1	0	2	В			(Y) = 4 to 7
Input/Output operation	OEA	0	1	0	0	0	0	1	0	0	0	8	4	1	1	(E1, E0) ← (A1, A0)
Input/C	IAE	0	0	1	0	1	0	1	1	0	0	5	6	1	1	$(A_2-A_0) \leftarrow (E_2-E_0)$
	OGA	0	1	0	0	0	0	0	0	0	0	8	0	1	1	$(G) \leftarrow (A)$
	IAG	0	0	0	1	0	1	0	0	0	0	2	8	1	1	$(A) \leftarrow (G)$

Skip condition	Carry flag CY	Detailed description
-	_	Transfers the contents of timer 2 to registers A and B.
-	_	Transfers the contents of register A to registers V2.
(T2F) = 1	_	Skips the next instruction when the contents of T2F flag is "1." After skipping, clears (0) to T2F flag.
-	_	Transfers the contents of register A and register B to reload register R2H.
-	_	Transfers the contents of reload register R2L to timer 2.
-	-	Sets (1) to port CARR output flag (CAR).
-	_	Clears (0) to port CARR output flag (CAR).
_	-	Clears (0) to port D (high-impedance state).
_	-	Clears (0) to a bit of port D specified by register Y (high-impedance state).
-	_	Sets (1) to a bit of port D specified by register Y.
(D(Y)) = 0 (Y) = 4 to 7	_	Skips the next instruction when a bit of port D specified by register Y is "0."
-	_	Outputs the contents of register A to port E.
_	-	Transfers the contents of port E to register A.
_	_	Outputs the contents of register A to port G.
_	-	Transfers the contents of port G to register A.

Parameter						Ir	nstru	ıctio	n co	de				er of Is	er of	
Type of instructions	Mnemonic	D8	D7	D ₆	D ₅	D4	Дз	D ₂	D ₁	D ₀	Hex	adec otati		Number of words	Number of cycles	Function
	NOP	0	0	0	0	0	0	0	0	0	0	0	0	1	1	(PC) ← (PC) + 1
	POF	0	0	0	0	0	1	1	0	1	0	0	D	1	1	RAM back-up
	SNZP	0	0	0	0	0	0	0	1	1	0	0	3	1	1	(P) = 1 ?
Other operation	ССК	0	0	1	0	1	1	0	0	1	0	5	9	1	1	STCK changes to f(XIN)
Other	TLOA	0	0	1	0	1	1	0	0	0	0	5	8	1	1	$(LO_1,LO_0) \leftarrow (A_1,A_0)$
	URSC	0	1	0	0	0	0	0	1	0	0	8	2	1	1	(URS) ← 1
	TPU0A	0	1	0	0	0	1	1	1	1	0	8	F	1	1	(PU03−PU0₀) ← (A3−A₀)
	TPU1A	0	1	0	0	0	1	1	1	0	0	8	Ε	1	1	(PU13−PU10) ← (A3−A0)
	WRST	0	0	0	0	0	1	1	1	1	0	0	F	1	1	(WDF1) ← 0

Skip condition	Carry flag CY	Detailed description
_	-	No operation
-	_	Puts the system in RAM back-up state.
(P) = 1	_	Skips the next instruction when P flag is "1." After skipping, P flag remains unchanged.
-	_	System clock (STCK) changes to f(XIN) from f(XIN)/8. Execute this CCK instruction at address 0 in page 0.
-	_	Transfers the contents of register A to the logic operation selection register LO.
-	-	Sets the most significant ROM code reference enable flag (URS) to "1."
-	-	Transfers the contents of register A to register PU0.
-	_	Transfers the contents of register A to register PU1.
-	-	Initializes the watchdog timer flag (WDF1).

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

INSTRUCTION CODE TABLE

			<u> </u>	JULL	_													
D8-D4	00000	00001	00010	00011	00100	00101	00110	00111	01000	01001	01010	01011	01100	01101	01110	01111	10000 10111	11000 11111
Hex.	00	01	02	03	04	05	06	07	08	09	0A	0B	0C	0D	0E	0F	10–17	18–1F
0	NOP	BLA	SZB 0	BL	TAB2	BMLA	XAM 0	BML	OGA	TABP 0	A 0	LA 0	LXY 0,0	LXY 1,0	LXY 2,0	LXY 3,0	ВМ	В
1	ВА	CLD	SZB 1	BL	LGOP	_	XAM 1	BML	_	TABP 1	A 1	LA 1	LXY 0,1	LXY 1,1	LXY 2,1	LXY 3,1	ВМ	В
2		1	SZB 2	BL	SNZT1	SNZT2	XAM 2	BML	URSC	TABP 2	A 2	LA 2	LXY 0,2	LXY 1,2	LXY 2,2	LXY 3,2	ВМ	В
3	SNZP	INY	SZB 3	BL	_	T2R2L	XAM 3	BML	_	TABP 3	A 3	LA 3	LXY 0,3	LXY 1,3	LXY 2,3	LXY 3,3	ВМ	В
4	_	RD	SZD	BL	RT	_	TAM 0	BML	OEA	TABP 4	A 4	LA 4	LXY 0,4	LXY 1,4	LXY 2,4	LXY 3,4	ВМ	В
5		SD	SEAn	BL	RTS	_	TAM 1	BML	_	TABP 5	A 5	LA 5	LXY 0,5	LXY 1,5	LXY 2,5	LXY 3,5	ВМ	В
6	RC		SEAM	BL		IAE	TAM 2	BML	RCAR	TABP 6	A 6	LA 6	LXY 0,6	LXY 1,6	LXY 2,6	LXY 3,6	ВМ	В
7	sc	DEY	_	BL	T1AB	TAB1	TAM 3	BML	SCAR	TABP 7	A 7	LA 7	LXY 0,7	LXY 1,7	LXY 2,7	LXY 3,7	ВМ	В
8	l	1	IAG	BL*	_	TLOA	XAMI 0	BML*	T2AB	TABP 8*	A 8	LA 8	LXY 0,8	LXY 1,8	LXY 2,8	LXY 3,8	ВМ	В
9		_	TDA	BL*	_	ССК	XAMI 1	BML*	Т2НАВ	TABP 9*	A 9	LA 9	LXY 0,9	LXY 1,9	LXY 2,9	LXY 3,9	ВМ	В
А	AM	TEAB	TABE	BL*	_	TV2A	XAMI 2	BML*	_	TABP 10*	A 10	LA 10	LXY 0,10	LXY 1,10	LXY 2,10	LXY 3,10	ВМ	В
В	AMC	_	_	BL*	_	TV1A	XAMI 3	BML*	_	TABP 11*	A 11	LA 11	LXY 011	LXY 1,11	LXY 2,11	LXY 3,11	ВМ	В
С	TYA	СМА	_	BL*	RB 0	SB 0	XAMD 0	BML*	_	TABP 12*	A 12	LA 12	LXY 0,12	LXY 1,12	LXY 2,12	LXY 3,12	ВМ	В
D	POF	RAR	_	BL*	RB 1	SB 1	XAMD 1	BML*		TABP 13*	A 13	LA 13	LXY 0,13	LXY 1,13	LXY 2,13	LXY 3,13	ВМ	В
Е	TBA	TAB		BL*	RB 2	SB 2	XAMD 2	BML*	TPU1A	TABP 14*	A 14	LA 14	LXY 0,14	LXY 1,14	LXY 2,14	LXY 3,14	ВМ	В
F	WRST	TAY	SZC	BL*	RB 3	SB 3	XAMD 3	BML*	TPU0A	TABP 15*	A 15	LA 15	LXY 0,15	LXY 1,15	LXY 2,15	LXY 3,15	ВМ	В
	D8-D4 Hex. notation 0 1 2 3 4 5 6 7 8 9 A B C D E	08-D4 00000 1 Hex. 00 0 NOP 1 1 BA 2 3 SNZP 4 4 — 5 6 RC 7 7 SC 8 9 — A A AM B B AMC C C TYA D POF E TBA	Da D4 00000 00001 NOP BLA 1 BA CLD 2 — — 3 SNZP INY 4 — RD 5 — SD 6 RC — 7 SC DEY 8 — — 9 — — A AM TEAB B AMC — C TYA CMA D POF RAR E TBA TAB	08-D4 00000 00001 00010 1 Hex. 00 01 02 0 NOP BLA SZB O SZB 1 SZB 1 2 — — SZB 2 SZB 3 3 SNZP INY SZB 3 4 — RD SZD 5 — SD SEAN 6 RC — SEAM 7 SC DEY — 8 — — IAG 9 — — TDA A AM TEAB TABE B AMC — — C TYA CMA — D POF RAR — E TBA TAB —	OB-D4 00000 00001 00010 00011 Hex. notation 00 01 02 03 0 NOP BLA SZB O BL O SZB BL O SZD	Hex. notation 00 01 02 03 04 0 NOP BLA SZB O SZB BL LGOP 1 BA CLD SZB BL LGOP 2 — — SZB BL SNZT1 3 SNZP INY SZB BL RT BL RT 4 — RD SZD BL RT 5 — SD SEAN BL RTS 6 RC — SEAM BL — 7 SC DEY — BL T1AB 8 — — BL T1AB 8 — — BL T1AB 9 — — BL T1AB 9 — — TDA BL* — A AM TEAB TABE BL* — — B AMC — — BL* — C TYA CMA — BL* RB 0 POF RAR — BL* RB 1 E TBA TAB — BL* RB	OB-D4 00000 00001 00010 00011 00100 00101 OB-D4 00 01 02 03 04 05 OB-D4 NOP BLA SZB OB BL OB DA	Nober Nobe	NOP BLA SZB BL TAB2 BMLA XAM BML	Next 10000 10001 10010 10010 10010 10011 10100 10100 10011 10100 10100 10100 10100 10011 10100 10100 10100 10100 10011 101000 101000 101000 101000 101000 101000 101000 101000 101000 101000 101000 101000 1	Normation Norm	NOP BLA SZB BL TAB2 BMLA XAM BML OGA TABP A A A A A A A A A	Nop	De-D4 00000 00001 00010 00011 00101 00111 01000 01001 01010 01011 01100 Hex. 00	De-Da 00000 00001 00010 0011 00100 00101 00111 01000 01001 01010 01011 01100 01101	De-Da 00000 00001 00010 00011 00100 00101 00110 01101 01100 01011 01011 01100 01011 0101	De-Dat Double D	

The above table shows the relationship between machine language codes and machine language instructions. D3–D0 show the low-order 4 bits of the machine language code, and D8–D4 show the high-order 5 bits of the machine language code. The hexadecimal representation of the code is also provided. There are one-word instructions and two-word instructions, but only the first word of each instruction is shown. Do not use the code marked "–."

The codes for the second word of a two-word instruction are described below.

	Th	The second word										
BL	1	1 a a a	aaaa									
BML	1	0 a a a	aaaa									
BA	1	1aaa	aaaa									
BLA	1	1 a a a	рррр									
BMLA	1	0 a a a	рррр									
SEA	0	1011	nnnn									
SZD	0	0010	1011									

* cannot be used in the M34282M1.

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

REGISTER STRUCTURE

	Timer control register V1	at	t reset : 0002	at RAM back-up : 0002	W
V12	Carrier ways autout auto control hit	0	Auto-control output	by timer 1 is invalid	
V 12	Carrier wave output auto-control bit	1	Auto-control output	by timer 1 is valid	
V1 ₁	Timer 1 count source selection bit	0	Carrier wave output	it (CARRY)	
V 11	Timer i count source selection bit	1	Bit 5 of watchdog to	imer (WDT)	
\/4-	Timer 1 control hit	0	Stop (Timer 1 state	e retained)	
V10	Timer 1 control bit	1	Operating		

	Timer control register V1	at	reset: 00002	at RAM back-up : 00002	W				
V13	Carrier ways "H" interval expansion bit	0	To expand "H" interval is invalid						
V 13	Carrier wave "H" interval expansion bit	1	To expand "H" inte	To expand "H" interval is valid (when V2 ₂ =1 selected)					
\/4-	Comics was a constitut function control his	0	0 Carrier wave generation function invalid						
V12	Carrier wave generation function control bit	1	Carrier wave gener	ration function valid					
V1 ₁	Times 2 count course calcution hit	0	f(XIN)						
V I 1	Timer 2 count source selection bit	1	f(XIN)/2						
\//.	Times 2 control hit	0	Stop (Timer 2 state	e retained)					
V10	Timer 2 control bit	1	Operating						

Lo	gic operation selection register LO		а	t reset : 002	at RAM back-up : 002	W			
		LO ₁	LO ₀		Logic operation function				
LO ₁		0	0	Exclusive logic OR	operation (XOR)				
	Logic operation selection bits	0	1	OR operation (OR)					
LO ₀		1	0	AND operation (AND)					
		1	1	Not available					

Pull-down control register PU0		at reset : 00002		at RAM back-up : state retained	W
PU03	Ports G ₂ , G ₃ pull-down transistor control	0	0 Pull-down transistor OFF, key-on wakeup invalid		
P 003	bit	1	Pull-down transistor ON, key-on wakeup valid		
PU02	Ports G ₀ , G ₁ pull-down transistor control	0	Pull-down transistor OFF, key-on wakeup invalid		
PU02	bit	1	1 Pull-down transistor ON, key-on wakeup valid		
PU0 ₁	0 Pull-down transistor OFF, key-on wakeup invalid				
PU01 Port E1 pull-down transistor control bit 1 Pull-down transistor ON, key-on wakeup valid					
Pullos Port Fo mult down transistor OFF, key-on wakeup invalid					
PU00 Port E ₀ pull-down transistor control bit		1	Pull-down transisto	r ON, key-on wakeup valid	

Pull-down control register PU1		at reset : 00002		at RAM back-up : state retained	W	
DUIA	Dort D. will down transister central hit	0 Pull-down transistor OFF, key-on wakeup invalid		r OFF, key-on wakeup invalid		
PU13 Port D ₇ pull-down transistor control bit		1	Pull-down transistor ON, key-on wakeup valid			
DIA. Dest Described and transfer and trail bit		0	Pull-down transistor OFF, key-on wakeup invalid			
PU12	PU12 Port D ₆ pull-down transistor control bit		Pull-down transisto	r ON, key-on wakeup valid		
DUA. Dort D. avil down transistan control bit		0	Pull-down transistor OFF, key-on wakeup invalid			
PU11 Port D ₅ pull-down transistor control bit			Pull-down transistor ON, key-on wakeup valid			
PU10 Port D4 pull-down transistor control bit		0	Pull-down transistor OFF, key-on wakeup invalid			
-010	Port D ₄ pull-down transistor control bit	1	Pull-down transistor ON, key-on wakeup valid			

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

ABSOLUTE MAXIMUM RATINGS

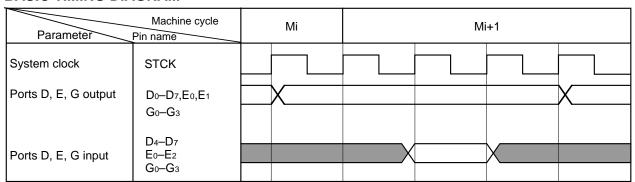
Symbol	Parameter	Conditions	Ratings	Unit
Vdd	Supply voltage		-0.3 to 5	V
Vı	Input voltage		-0.3 to VDD+0.3	V
Vo	Output voltage		-0.3 to VDD+0.3	V
Pd	Power dissipation	Ta = 25 °C	300	mW
Topr	Operating temperature range		-20 to 85	°C
Tstg	Storage temperature range		-40 to 125	°C

RECOMMENDED OPERATING CONDITIONS

(Ta = -20 °C to 85 °C, VDD = 1.8 V to 3.6 V, unless otherwise noted)

Cumbal	D-		O a a little a a	Limits			Unit
Symbol	Pa	rameter	Conditions	Min.	Тур.	Max.	Unit
Vdd	Supply voltage			1.8		3.6	V
VRAM	RAM back-up voltage (at	RAM back-up mode)		1.1		3.6	V
Vss	Supply voltage				0		V
VIH	"H" level input voltage Po	rts D4-D7, E, G	VDD = 3.0 V	0.7Vdd		VDD	V
ViH	"H" level input voltage XIN	1	VDD = 3.0 V	0.8Vpp		VDD	V
VIL	"L" level input voltage Por	rts D4–D7, E, G	VDD = 3.0 V	0		0.2VDD	V
VIL	"L" level input voltage XIN		VDD = 3.0 V	0		0.2VDD	V
loн(peak)	"H" level peak output curr	ent Ports D, E ₁ , G	VDD = 3.0 V			-4	mA
loн(peak)	"H" level peak output curr	ent Port Eo	VDD = 3.0 V			-24	mA
loн(peak)	"H" level peak output curr	ent CARR	VDD = 3.0 V			-20	mA
loL(peak)	"L" level peak output curre	ent CARR	VDD = 3.0 V			4	mA
Iон(avg)	"H" level average output of	current Ports D, E ₁ , G	VDD = 3.0 V			-2	mA
Iон(avg)	"H" level average output of	current Port Eo	VDD = 3.0 V			-12	mA
Iон(avg)	"H" level average output	current CARR	VDD = 3.0 V			-10	mA
loL(avg)	"L" level average output of	current CARR	VDD = 3.0 V			2	mA
f(XIN)	System clock frequency	when STCK = f(XIN)/8 selected	Ceramic resonance			4	MHz
		when STCK = f(XIN) selected	Ceramic resonance			500	kHz
VDET	Voltage drop detection cir	rcuit detection voltage		1.10		1.80	V
			Ta=25 °C	1.40	1.50	1.56	1
TDET	Voltage drop detection cir	rcuit low voltage	When supply voltage passes		0.2	1.2	ms
	determination time		the detected voltage at ±50V/s.				
TPON	Power-on reset circuit val	lid power source rising time	VDD = 0 to 2.2 V			1	ms

Note: The average output current ratings are the average current value during 100 ms.



ELECTRICAL CHARACTERISTICS

(Ta = -20 °C to 85 °C, V_{DD} = 3 V, unless otherwise noted)

Cumhal	Parameter	Took conditions		l lmi4		
Symbol		Test conditions	Min.	Тур.	Max.	Unit
Vol	"L" level output voltage Port CARR	IoL = 2 mA			0.9	V
Vol	"L" level output voltage Хоит	IoL = 0.2 mA			0.9	V
Vон	"H" level output voltage Ports D, E1, G	Iон = −2 mA	2.1			V
Vон	"H" level output voltage Port Eo	Iон = −12 mA	1.5			V
Vон	"H" level output voltage CARR	Iон = −10 mA	1.0			V
Vон	"H" level output voltage Хоит	Iон = −0.2 mA	2.1			V
lıL	"L" level input current Ports D4-D7, E, G	Vı = Vss			-1	μΑ
Іін	"H" level input current Ports Eo, E1	VI = VDD			1	μΑ
		Pull-down transistor in off-state				
loz	Output current at off-state Ports D, E ₀ , E ₁ , G	Vo = Vss			-1	μΑ
Idd	Supply current (when operating)	f(XIN) = 4.0 MHz		400	800	μΑ
		f(XIN) = 500 kHz		250	500	μΑ
	Supply current (at RAM back-up)			1	3	μΑ
		Ta = 25 °C		0.1	0.5	μΑ
Rрн	Pull-down resistor value Ports D4-D7, E, G	VDD = 3 V, VI = 3 V	75	150	300	kΩ
Rosc	Feedback resistor value between XIN-XOUT		700		3200	kΩ

BASIC TIMING DIAGRAM

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

BUILT-IN PROM VERSION

In addition to the mask ROM versions, the 4282 Group has the One Time PROM versions whose PROMs can only be written to and not be erased.

The built-in PROM version has functions similar to those of the mask ROM versions, but it has PROM mode that enables writing to built-in PROM.

Table 10 shows the product of built-in PROM version. Figure 27 and 28 show the pin configurations of built-in PROM versions. The One Time PROM version has pin-compatibility with the mask ROM version.

Table 10 Product of built-in PROM version

Product	PROM size	RAM size	Package	ROM type
Troduct	(X 9 bits)	(X 4 bits)	1 ackage	NOW type
M34282E2GP	2048 words	64 words	20P2E/F-A	One Time PROM [shipped in blank]

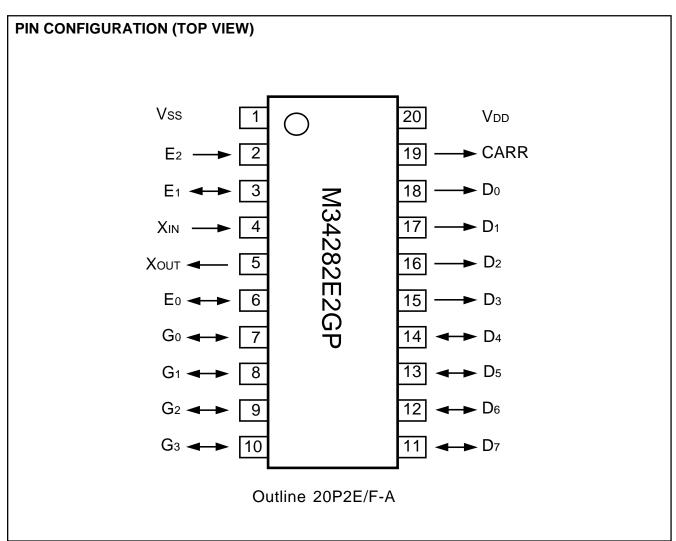


Fig. 27 Pin configuration of built-in PROM version

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

(1) PROM mode (serial input/output)

The M34282E2GP has a PROM mode in addition to a normal operation mode. It has a function to serially input/output the command codes, addresses, and data required for operation (e.g., read and program) on the built-in PROM using only a few pins. This mode can be selected by setting pins SDA (serial data input/output), SCLK (serial clock input), PGM and VPP to "H" after connecting wires as shown in Figure 28 and powering on the VDD pin, and then applying 12.5V to the VPP pin.

In the PROM mode, three types of software commands (read, program, and program verify) can be used. Clock-synchronous serial I/O is used, beginning from the LSB (LSB first).

Refer to the "Mitsubishi Microcomputer Development Support Tools" Hompage (http://www.tool-spt.maec.co.jp/index_e.htm).

about the serial programmer for the Mitsubishi single-chip microcomputers.

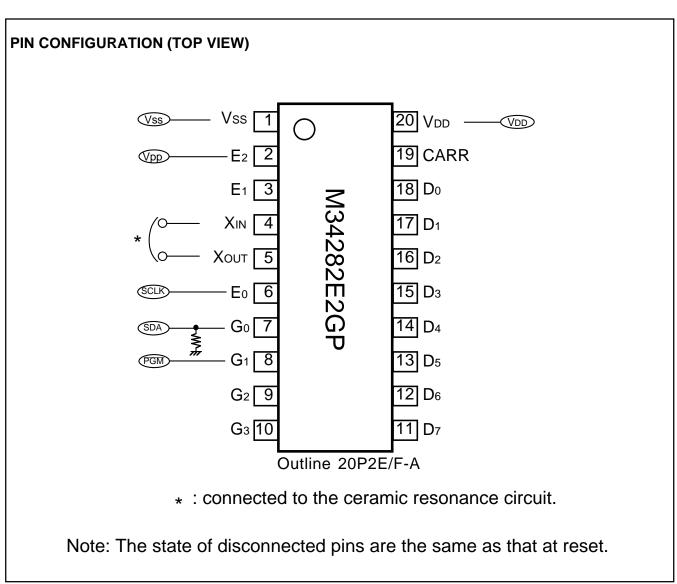


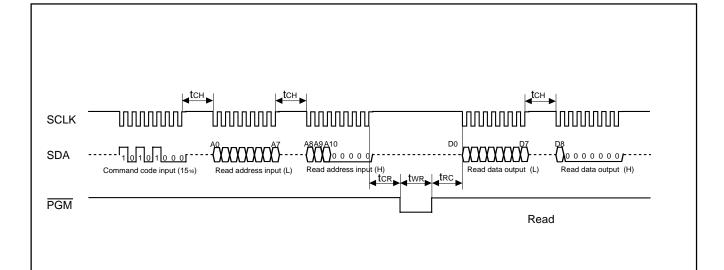
Fig. 28 Pin configuration of built-in PROM version (continued)

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

(2) Functional outline

In the PROM mode, data is transferred with the clocksynchronous serial input/output. The input data is read through the SDA pin into the internal circuit synchronously with the rising edge of the serial clock pulse. The output data is output from the SDA pin synchronously with the falling edge of the serial clock pulse. Data is transferred in units of 8 bits. In the first transfer, the command code is input. Then, address input or data input/output is performed according to the contents of the command code. Table 11 shows the software command used in the PROM mode. The following explains each software command.

Table 11 Software command


Number of transfer	First command	Second	Third	Counth	
Command code input		Second	ITIIIG	Fourth	
Read	1516	Read address L (input)	Read address H (input)	Read data L (output)	
Program	2516	Program address L (input)	Program address H (input)	Program data L (input)	
Program verify	3516	Program address L (input)	Program address H (input)	Program data L (input)	

Number of transfer Command	Fifth	Sixth	Seventh
Read	Read data H (output)		
Program	Program data H (input)		
Program verify	Program data H (input)	Verify data L (output)	Verify data H (output)

(3) Read

Input the command code 15 $_{16}$ in the first transfer. Proceed and input the low-order 8 bits and the high-order 8 bits of the address and pull the \overline{PGM} pin to "L." When this is done, the contents of input address is read and stored into the internal data latch.

When the \overline{PGM} pin is released back to "H" and serial clock is input to the SCLK pin, the low-order 8 bits and high-order 8 bits of read data which have been stored into the data latch, are serially output from the SDA pin.

Note: When outputting the read data, the SDA pin is switched for output at the first falling of the serial clock. The SDA pin is placed in the high-impedance state during the th(c-E) period after the last rising edge of the serial clock (at the 16th bit).

Fig. 29 Timing at reading

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

(4) Program

Input command code 25₁₆ in the first transfer. Proceed and input the low-order 8 bits and high-order 8 bits of the address and the low-order 8 bits and high-order 8 bits of program data,

and pull the $\overline{\text{PGM}}$ pin to "L." When this is done, the program data is programmed to the specified address.

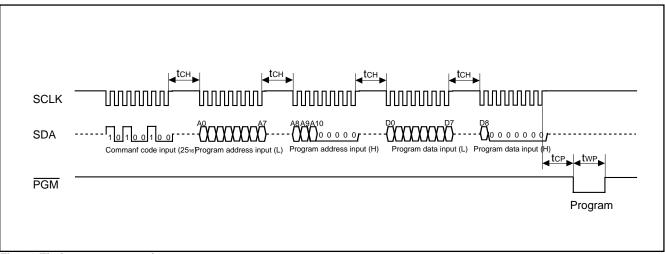


Fig. 30 Timing at programming

(5) Program verify

Input command code 35_{16} in the first transfer. Proceed and input the low-order 8 bits and high-order 8 bits of the address and the low-order 8 bits and high-order 8 bits of program data, and pull the \overline{PGM} pin to "L." When this is done, the program data is programmed to the specified address. Then, when the \overline{PGM} pin is pulled to "L" again after it is released back to "H," the address programmed with the program command is read

and verified and stored into the internal data latch. When the PGM pin is released back to "H" and serial clock is input to the SCLK pin, the verify data that has been stored into the data latch is serially output from the SDA pin.

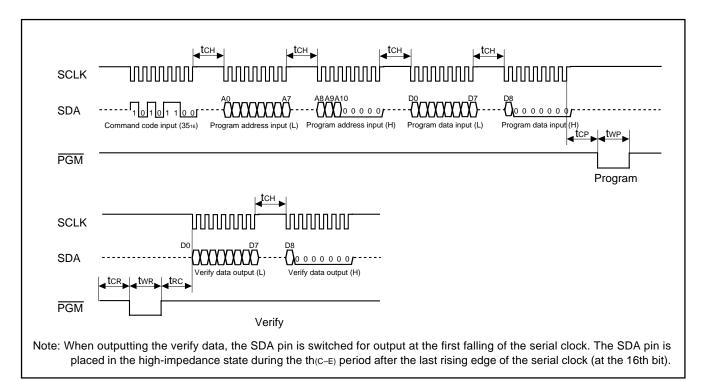
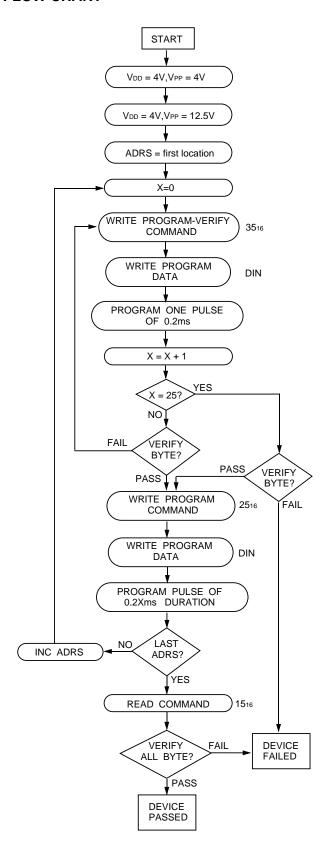
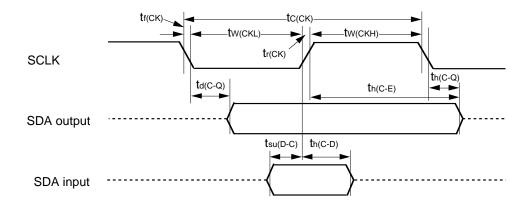



Fig. 31 Timing at program verifying

PROGRAM ALGORITHM FLOW CHART



TIMING REQUIREMENT CONDITION AND SWITCHING CHARACTERISTICS

 $(Ta = 25 \, ^{\circ}C, \, V_{DD} = 4.0 \, V, \, V_{PP} = 12.5 \, V)$

Symbol	Parameter	Lin	nits	Unit	
Symbol	Parameter	Min.	Max.	Offic	
tсн	Serial transfer width time	2.0		μs	
tcr	Read wait time after transfer	2.0		μs	
twr	Read pulse width	500		ns	
trc	Transfer wait time after read	2.0		μs	
tcp	Program wait time after transfer	2.0		μs	
twp	Program pulse width	0.19	0.21	ms	
towp	Added program pulse width	0.19	5.25	ms	
tc(ck)	SCLK input cycle time	1.0		μs	
tw(ckh)	SCLK "H" pulse width	450		ns	
tw(ckl)	SCLK "L" pulse width	450		ns	
tr(CK)	SCLK rising time	40		ns	
tf(CK)	SCLK falling time	40		ns	
td(C-Q)	SDA output delay time	0	180	ns	
th(C-Q)	SDA output hold time	0		ns	
th(C-E)	SDA output hold time (only for 16th bit)	100		ns	
tsu(D-C)	SDA input set-up time	60		ns	
th(C-D)	SDA input hold time	180		ns	

TIMING DIAGRAM

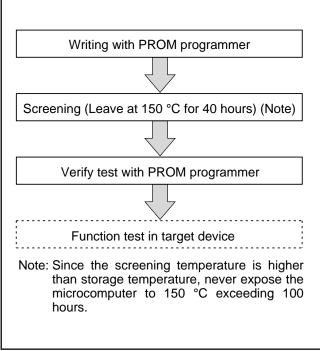
Measurement condition

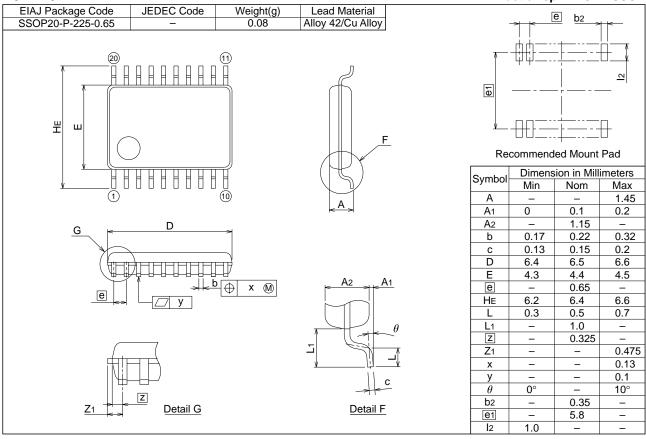
Output timing voltage: VOL = 0.8 V, VOH = 2.0 V Input timing voltage: VIL = 0.2 VDD, VIH = 0.8 VDD

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

(6) Notes on handling

- ① A high-voltage is used for writing. Take care that overvoltage is not applied. Take care especially at turning on the power.
- ② For the One Time PROM version, Mitsubishi Electric corp. does not perform PROM writing test and screening in the assembly process and following processes. In order to improve reliability after writing, performing writing and test according to the flow shown in Figure 32 before using is recommended.



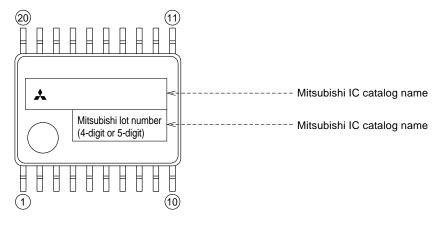

Fig. 32 Flow of writing and test of the product shipped in blank

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

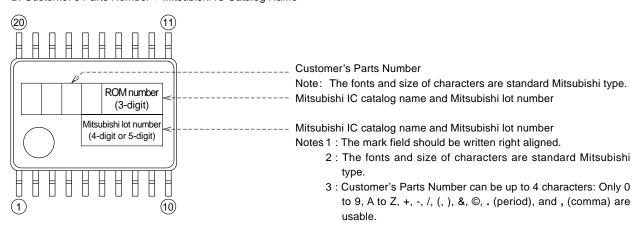
PACKAGE OUTLINE

20P2E/F-A

Plastic 20pin 225mil SSOP



20P2E/F-A (20-PIN SSOP) MARK SPECIFICATION FORM


Mitsubishi IC catalog name	
----------------------------	--

Please choose one of the marking types below (A, B), and enter the Mitsubishi IC catalog name and the special mark (if needed).

A. Standard Mitsubishi Mark

B. Customer's Parts Number + Mitsubishi IC Catalog Name

MITSUBISHI MICROCOMPUTERS

4282 Group

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

Keep safety first in your circuit designs!

Mitsubish Electric Corporation puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage. Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of non-flammable material or (iii) prevention against any malfunction or mishap.

Notes regarding these materials

- These materials are intended as a reference to assist our customers in the selection of the Mitsubishi semiconductor product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Mitsubishi Electric Corporation or a third party.

 Mitsubishi Electric Corporation assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data, diagrams, charts or circuit application examples
- contained in these materials.

 All information contained in these materials, including product data, diagrams and charts, represent information on products at the time of publication of these materials, and are subject to change by Mitsubishi
- All information contained in these materials, including product data, diagrams and charts, represent information or products at the time of publication of these materials, and are subject to change by miscuosin Electric Corporation without notice due to product improvements or other reasons. It is therefore recommended that customers contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor for the latest product information before purchasing a product listed herein.

 Mitsubishi Electric Corporation semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.

 The prior written approval of Mitsubishi Electric Corporation is necessary to reprint or reproduce in whole or in part these materials.

 If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination.
- approved destination.
- Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited.

 Please contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor for further details on these materials or the products contained therein.

REVISION DESCRIPTION LIST

4282 GROUP DATA SHEET

Rev. No.	Revision Description	Rev. date
1.0	First Edition	000619
1.1	Page 12 (2) Precautions revised.	000725
	Page 13 (3) Timer 1, (4) Timer 2 revised.	
	Page 22 ③ Timer revised.	
1.2	Pages 7, 8, 14, 18, 21: Character fonts errors revised.	000823
1.3	All pages:	010703
	"PRELIMINARY Notice: This is not a final specification. Some parametric limits are subject to change." eliminated.	
	Page 1: Product name table; "Under development" eliminated.	
	Page 9: 48 words \times 4 bits (128 bits) \rightarrow 48 words \times 4 bits (192 bits)	
	Page 21: ROM ORDERING METHOD revised.	
	Page 61: "Mitsubishi Microcomputer Development Support Tools" Hompage	
	(http://www.tool-spt.m <u>es</u> c.co.jp/index_e.htm)	
	\rightarrow (http://www.tool-spt.maec.co.jp/index_e.htm)	