MITSUBISHI <Dig./Ana.INTERFACE> M62015L,FP M62016L,FP

LOW POWER 2 OUTPUT SYSTEM RESET IC

PIN CONFIGURATION (TOP VIEW)

RESET 1

Cd 2

Vcc 3

NC 4

5 Vcc

4 Cd

2 | INT

Outline 5P5T

Outline 8P2S-A

NC: NO CONNECTION

3 RESET

GND

8 INT

7 GND

6 NC

5 NC

DESCRIPTION

The M62015, M62016 are semiconductor integrated circuits whose optimum use is for the detection of the rise and fall in the power supply to a microcomputer system in order to reset or release the microcomputer system.

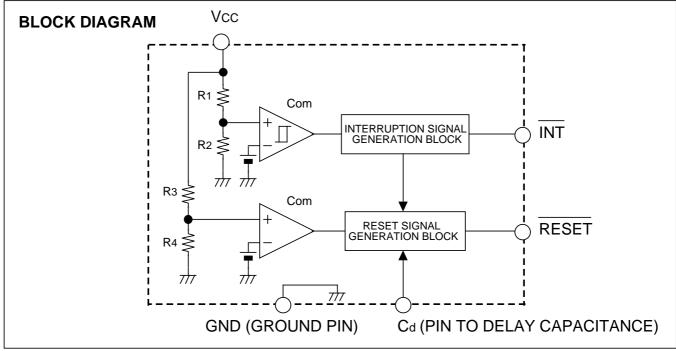
The M62015, M62016 carry out voltage detection in 2 steps and have 2 output pins. As Bi-CMOS process and low power dissipating circuits are employed, they output optimum signals through each output pin to a system that requires RAM backup.

These ICs also support the backup mode of Mitsubishi microcomputer the M16C.

FEATURES

• Bi-CMOS process realizes a configuration of low current dissipating circuits.

Circuit current


Icc=3µA (Typ. , normal mode, Vcc=3.0V)

- Icc=1µA (Typ. , backup mode, Vcc=2.5V)
- Two-step detection of supply voltage Detection voltage in normal mode Vs=2.7V (Typ.) Detection voltage in backup mode VBATT=2.0V (Typ.)
- Two outputs Reset output (RESET) : Output of compulsive reset signal Interruption output (INT) : Output of interruption signal
- Output forms

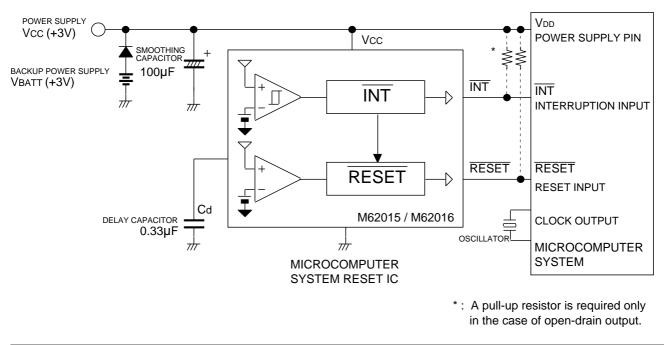
CMOS output : M62015 Open drain : M62016

APPLICATION

Prevention of malfunction of microcomputer systems in electronic, equipment such as OA equipment, industrial equipment, and homeuse electronic appliances.

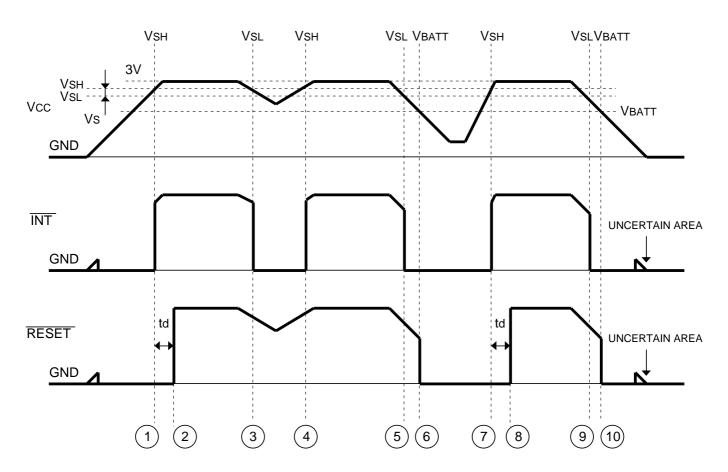
MITSUBISHI <Dig./Ana.INTERFACE> M62015L,FP / M62016L,FP

LOW POWER 2 OUTPUT SYSTEM RESET IC


ABSOLUTE MAXIMUM RATINGS (Ta=25°C, unless otherwise noted.)

Symbol	Parameter	Conditions	Ratings	Unit
Vcc	Supply voltage		8	V
Isink	Output sink voltage		4	mA
Pd	Power dissipation		440	mW
Kθ	Thermal derating	(Ta 25°C)	4.4	mW/ °C
Topr	Operating temperature		-20 to +75	°C
Tstg	Storage temperature		-40 to +125	°C

ELECTRICAL CHARACTERISTICS (Ta=25°C, unless otherwise noted.)


Symbol	Parameter	Test Conditions	Limits			Unit
			Min	Тур	Max	Onic
Vs	Supply voltage	Interruption level during Vcc drop	2.55	2.70	2.85	V
VBATT	Battery voltage	Reset level at backup	1.85	2.00	2.15	V
Vs	Hysteresis voltage	Vs=VsH-VsH		60		mV
Icc	Circuit current	Vcc=3.0V : In normal mode		3.0	12	μA
		VCC=2.5V : In backup mode		1.0	4.0	μA
Vsat	Sink ability	VCC=2.5V, Isink=2mA		0.4	0.6	V
td	Delay time	External capacitance Cd=0.33µF		50		ms
t RESET	Reset output response time	When Vcc falling		50		μs
tint	Interruption output response time	When VCC falling		40		μs

APPLICATION EXAMPLE

MITSUBISHI <Dig./Ana.INTERFACE> M62015L,FP / M62016L,FP

LOW POWER 2 OUTPUT SYSTEM RESET IC

OPERATION DESCRIPTION

- 1). If VCC rises to VSH(2.76V), the \overline{INT} output is set to high level.
- 3. If VCC drops to VSH (2.70V), INT goes low.
 ☆RESET output continues to be held high.
- (4). If VCC returns to VSH, the INT output is set to high level.

5). Same as (3)

 $\widehat{6}$. If VCC becomes lower than VBATT (2.00V), the

RESET output is set to low thereby resetting the microcomputer and initializing system.

- 7
 . Same as
 1

 8
 . Same as
 2
- 9). Same as (3) and (5)
- (10). Same as (6)