## Pedestal Clamp 2-Input 1-Output 3-Circuit Video Switch Monolithic IC MM1389

## Outline

This is a video switch IC developed for use in video cameras, with 2-input and 1-output circuits. It has pedestal clamp input, making it ideal for RGB and video signal switching,

## Features

1. Pedestal clamp input
2. Low current consumption

12mA typ.(Vcc5V)
3. Frequency response

10 MHz typ. OdB
4. Operating power supply voltage
4.5~12V

## Package

SOP-16B (MM1389XF)

## Applications

1. TV
2. VCR
3. Other video equipment

## Block Diagram



Control input truth table

| SW | OUT |
| :---: | :--- |
| L | IN2a |
|  | IN2b |
| $H$ | IN2c |
|  | IN1a |
|  | IN1b |

## Pin Description

| Pin no. | Pin name | Function | Internal equivalent circuit diagram |
| :---: | :---: | :---: | :---: |
| $\begin{gathered} 1 \\ 8 \\ 9 \\ 11 \\ 14 \\ 16 \end{gathered}$ | IN2a <br> IN2c <br> IN1c <br> IN1b <br> IN2b <br> IN1a | Input pin 2SWa Input pin 2SWc <br> Input pin 1SWc <br> Input pin 1SWb <br> Input pin 2SWb <br> Input pin 1SWa |  |
| $\begin{gathered} 2 \\ 7 \\ 12 \end{gathered}$ | $\begin{aligned} & \mathrm{C}_{\mathrm{T}} \mathrm{La} \\ & \mathrm{C}_{\mathrm{T}} \mathrm{Lb} \\ & \mathrm{C}_{\mathrm{T}} \mathrm{Lc} \end{aligned}$ | Switching pin a Switching pin b Switching pin c |  |
| $\begin{aligned} & 3 \\ & 5 \\ & 6 \end{aligned}$ | OUTa <br> OUTb <br> OUTc | Output pin SWa <br> Output pin SWb <br> Output pin SWc |  |
| $\begin{gathered} 4 \\ 15 \end{gathered}$ | $\begin{aligned} & \text { GND } \\ & \text { GND } \end{aligned}$ | GND pin 1 <br> GND pin 2 | (4) <br> (15) |
| 10 | CLAMP PULSE | Clamp pulse input pin |  |
| 13 | Vcc | Power supply voltage pin | (13) $\quad \mathrm{Vcc}$ |

## Absolute Maximum Ratings ( $\mathrm{Ta=25}^{\circ} \mathrm{C}$ ) ) ${ }^{\circ} \mathrm{l}$

| Item | Symbol | Ratings | Units |
| :---: | :---: | :---: | :---: |
| Storage temperature | TSTG | $-40 \sim+125$ | ${ }^{\circ} \mathrm{C}$ |
| Operating temperature | TopR | $-25 \sim+75$ | ${ }^{\circ} \mathrm{C}$ |
| Power supply voltage | Vcc max. | 15 | V |
| Allowable loss | Pd | 350 | mW |

## Recommended Operating Conditions

| Item | Symbol | Ratings | Units |
| :---: | :---: | :---: | :---: |
| Operating temperature | Topr | $-25 \sim+75$ | ${ }^{\circ} \mathrm{C}$ |
| Operating voltage | Vop | $4.5 \sim 12.0$ | V |

Electrical Characteristics (Except where noted therwise, $\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{vcc}=5.0 \mathrm{~V}$ )

| Item | Symbol | Measurement conditions | Min. | Typ. | Max. | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Consumption current | ID | Refer to Measuring Circuit |  | 12.0 | 17.0 | mA |
| Voltage gain | Gv | Refer to Measuring Circuit | -0.5 | 0 | +0.5 | dB |
| Frequency characteristic | Fc | Refer to Measuring Circuit | -1 | 0 | +1 | dB |
| Dynamic range 1 | VD1 | Refer to Measuring Circuit | 1.40 | 1.65 |  | Vp-p |
| Dynamic range 2 | VD2 | Refer to Measuring Circuit | 0.80 | 0.95 |  | Vp-p |
| Crosstalk | $\mathrm{C}_{\text {T }}$ | Refer to Measuring Circuit |  | -70 | -60 | dB |
| Switch input voltage H | VIH | Refer to Measuring Circuit | 2.1 |  |  | V |
| Switch input voltage L | VIL | Refer to Measuring Circuit |  |  | 0.7 | V |
| Clamp pin input voltage H | Vстн | Refer to Measuring Circuit | 2.1 |  |  | V |
| Clamp pin input voltage L | Vctl | Refer to Measuring Circuit |  |  | 0.7 | V |

$V_{D 1}$ : Positive dynamic range (from clamp level)
$V_{D 2}$ : Negative dynamic range (from clamp level)

## Measuring Procedures

(Except where noted otherwise, $\mathrm{Vcc}=5.0 \mathrm{~V}, \mathrm{Vc} 1=\mathrm{Vcc}, \mathrm{Vc} 2=0 \mathrm{~V}$, PULSE=Vcc, $\mathrm{C} 1 \sim \mathrm{C} 6=0.1 \mu \mathrm{~F}$, impress $\mathrm{V}_{\mathrm{B}}=3.5 \mathrm{~V}$ when S 9 is 2)

(Except where noted otherwise, $\mathrm{Vcc}=5.0 \mathrm{~V}, \mathrm{~V} c 1=\mathrm{Vcc}, \mathrm{V} c 2=0 \mathrm{~V}$, $\mathrm{PULSE}=\mathrm{V} c \mathrm{c}, \mathrm{C} 1 \sim \mathrm{C} 6=0.1 \mu \mathrm{~F}$, impress $\mathrm{V}_{\mathrm{B}}=3.5 \mathrm{~V}$ when S 9 is 2)

| Item | Symbol | Measurement conditions | Notes |
| :---: | :---: | :---: | :---: |
| Consumption current | ID | Connect a DC ammeter to the Vcc pin and measure. The ammeter is shorted for subsequent measurements. |  |
| Voltage gain | Gv | Input a $2.0 \mathrm{VP}-\mathrm{P}, 100 \mathrm{kHz}$ sine wave to SG , and obtain Gv from the following formula given TP1 voltage as V1 and TP3 voltage as V2. $\mathrm{Gv}=20 \log (\mathrm{~V} 2 / \mathrm{V} 1) \mathrm{dB}$ | $\begin{aligned} & \mathrm{f}=100 \mathrm{kHz} \\ & \mathrm{~V}=2.0 \mathrm{~V}-\mathrm{P} \end{aligned}$ |
| Frequency characteristic | Fc | For the above Gv measurement, given TP3 voltage for 10 MHz as $\mathrm{V} 3, \mathrm{~F}_{\mathrm{c}}$ is obtained from the following formula. $\mathrm{FC}_{\mathrm{C}}=20 \log (\mathrm{~V} 3 / \mathrm{V} 2) \mathrm{dB}$ | $\begin{gathered} 10 \mathrm{MHz} / 100 \mathrm{kHz} \\ \mathrm{~V}=2.0 \mathrm{~V}-\mathrm{P} \end{gathered}$ |
| Dynamic range 1, 2 | $\begin{aligned} & \mathrm{V}_{\mathrm{D}} 1 \\ & \mathrm{~V}_{\mathrm{D}} 2 \end{aligned}$ | Input a video signal to SG and a 5 V P-P clamp pulse to PULSE. Given input amplitude on the positive side of clamp level Vc as $V_{D} 1$ in, and output amplitude as $V_{D} 1$ out and negative side input amplitude as $V_{D} 2 \mathrm{IN}$, and output amplitude as $\mathrm{V}_{\mathrm{D}} 2$ out, $\mathrm{V}_{\mathrm{D}} 2$ is obtained from the following formula. <br> VD1:20Log (VD1out/VD1in) $\leqq V_{D} 1$ in for-1dB <br> VD2: 20Log (Vd2out/VD2in) $\leqq V_{D} 2$ in for-1dB |  |
| Crosstalk | $\mathrm{C}_{\text {T }}$ | Input a $2.0 \mathrm{VP-P}, 4.43 \mathrm{MHz}$ sine wave to SG , and given TP1 voltage as V4 and TP3 voltage as V5, $\mathrm{C}_{\mathrm{T}}$ is obtained from the following formula. $\mathrm{C}_{\mathrm{T}}=20 \log (\mathrm{~V} 5 / \mathrm{V} 4) \mathrm{dB}$ | $\begin{gathered} \mathrm{f}=4.43 \mathrm{MHz} \\ \mathrm{~V}=2.0 \mathrm{~V}_{\mathrm{P}-\mathrm{P}} \end{gathered}$ |
| Switch input voltage H, L | $\begin{aligned} & \mathrm{V}_{\mathrm{IH}} \\ & \mathrm{~V}_{\mathrm{IL}} \end{aligned}$ | Make S10, S12 and S14 1, and S11, S13 and S15 2. Input a $2.0 \mathrm{VP}-\mathrm{P}, 100 \mathrm{kHz}$ sine wave to SG , and raise gradually from Vc1=0V. TP4 voltage when the SG signal appears on TP2 is VIN. Next, reverse S10~S15 settings and lower gradually from $\mathrm{Vc} 1=\mathrm{Vcc}$. TP4 voltage when the SG signal appears on TP2 is VIL. |  |
| Clamp pin input voltage H, L | $\begin{aligned} & \mathrm{V}_{\text {стн }} \\ & \mathrm{V}_{\mathrm{CtL}} \end{aligned}$ | Impress 4 V on VB and raise gradually from PULSE $=0 \mathrm{~V}$. TP11 voltage when less than 2.0 V appears on TP2 is Vстн. Lower from PULSE=Vcc, and TP11 voltage when more than 2.2 V appears on TP2 is Vctl. |  |

Measuring Circuit



