Universal Dual High Frequency Filter

GENERAL DESCRIPTION

The ML2111 consists of two independent switched capacitor filters that operate at up to 150 kHz and perform second order filter functions such as lowpass, bandpass, highpass, notch and allpass. All filter configurations, including Butterworth, Bessel, Cauer, and Chebyshev can be formed.

The center frequency of these filters is tuned by an external clock or the external clock and resistor ratio.

The ML2111 frequency range is specified up to 150 kHz with $\pm 5.0 \mathrm{~V} \pm 10 \%$ power supplies. Using a single 5.0 V $\pm 10 \%$ power supply the frequency range is up to 100 kHz . These filters are ideal where center frequency accuracy and high Qs are needed.

The ML2111 is a pin compatible superior replacement for MF10, LMF100, and LTC1060 filters.

FEATURES

- Specified for operation up to 150 kHz
- Center frequency $\times \mathrm{Q}$ product $\leq 5 \mathrm{MHz}$
- Separate highpass, notch, allpass, bandpass, and lowpass outputs

■ Center frequency accuracy of $\pm 0.4 \%$ or $\pm 0.8 \%$ max.

- Q accuracy of $\pm 4 \%$ or $\pm 8 \%$ max.
- Clock inputs are TTL or CMOS compatible
- Single $5 \mathrm{~V}(\pm 2.25 \mathrm{~V}$) or $\pm 5 \mathrm{~V}$ supply operation
* Some Packages Are End Of Life and Obsolete

BLOCK DIAGRAM

PIN CONFIGURATION

PIN DESCRIPTION

PIN	NAME	FUNCTION
1	LP_{A}	Lowpass output for biquad A .
2	BP_{A}	Bandpass output for biquad A .
3	$\mathrm{N} / \mathrm{AP} / \mathrm{HP}_{\mathrm{A}}$	Notch/allpass/highpass output for biquad A .
4	$\mathrm{INV}_{\text {A }}$	Inverting input of the summing op amp for biquad A .
5	S1 ${ }_{\text {A }}$	Auxiliary signal input pin used in modes 1a, 1d, 4, 5, and 6b.
6	$\mathrm{S}_{\mathrm{A} / \mathrm{B}}$	Controls S2 input function.
7	$\mathrm{V}_{\text {A+ }}$	Positive analog supply.
8	$\mathrm{V}_{\text {D+ }}$	Positive digital supply.
9	LSh	Reference point for clock input levels. Logic threshold typically 1.4V above LSh voltage.
10	$\mathrm{CLK}_{\mathrm{A}}$	Clock input for biquad A .

PIN	NAME	FUNCTION
11	CLK_{B}	Clock input for biquad B.
12	50/100/HOL	Input pin to control the clock-to-center-frequency ratio of 50:1 or 100:1, or to stop the clock to hold the last sample of the bandpass or lowpass outputs.
13	$\mathrm{V}_{\mathrm{D}-}$	Negative digital supply.
14	$\mathrm{V}_{\text {A- }}$	Negative analog supply.
15	AGND	Analog ground.
16	S1 B	Auxiliary signal input pin used in modes 1a, 1d, 4, 5, and 6b.
17	$I N V_{B}$	Inverting input of the summing op amp for biquad B.
18	N/AP/HP ${ }_{\text {B }}$	Notch/allpass/highpass output for biquad B.
19	$B P_{B}$	Bandpass output for biquad B.
20	$L_{\text {B }}$	Lowpass output for biquad B.

ABSOLUTE MAXIMUM RATINGS

Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

Supply Voltage
$\left|\mathrm{V}_{\mathrm{A}+}\right|,\left|\mathrm{V}_{\mathrm{D}+}\right|-\left|\mathrm{V}_{\mathrm{A}}\right|,\left|\mathrm{V}_{\mathrm{D}-}\right|$ 13 V
$\mathrm{V}_{\mathrm{A}+}, \mathrm{V}_{\mathrm{D}+}$ to LSh. 13V

Inputs $\left|\mathrm{V}_{\mathrm{A}+}, \mathrm{V}_{\mathrm{D}+}\right|+0.3 \mathrm{~V}$ to $\left|\mathrm{V}_{\mathrm{A}-} \mathrm{V}_{\mathrm{D}-\mid}\right|-0.3 \mathrm{~V}$
Outputs $\left|\mathrm{V}_{\mathrm{A}+}, \mathrm{V}_{\mathrm{D}+}\right|+0.3 \mathrm{~V}$ to $\left|\mathrm{V}_{\mathrm{A}-} \mathrm{V}_{\mathrm{D}-}\right|-0.3 \mathrm{~V}$
$\left|\mathrm{V}_{\mathrm{A}+}\right|$ to $\left|\mathrm{V}_{\mathrm{D}+}\right|$ $\pm 0.3 \mathrm{~V}$
Junction Temperature $.150^{\circ} \mathrm{C}$
Storage Temperature Range
..................... $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec)

$300^{\circ} \mathrm{C}$

Thermal Resistance (θ_{JA})

20-Pin PDIP

$67^{\circ} \mathrm{C} / \mathrm{W}$

20-Pin SOIC ... $95^{\circ} \mathrm{CN}$

OPERATING CONDITIONS

Temperature Range

ML2111CCX ... $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
ML2111CIP ... $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
Supply Range $\pm 2.25 \mathrm{~V}$ to $\pm 6.0 \mathrm{~V}$

ELECTRICAL CHARACTERISTICS

Unless otherwise specified, $\mathrm{V}_{\mathrm{A}_{+}}=\mathrm{V}_{\mathrm{D}_{+}}=5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{A}_{-}}=\mathrm{V}_{\mathrm{D}-}=-5 \mathrm{~V} \pm 10 \%, \mathrm{C}_{\mathrm{L}}=25 \mathrm{pF}, \mathrm{V}_{\mathrm{IN}}=1.41 \mathrm{~V}_{\mathrm{PK}}\left(1.000 \mathrm{~V}_{\mathrm{RMS}}\right)$, Clock Duty Cycle $=50 \%, \mathrm{~T}_{\mathrm{A}}=$ Operating Temperature Range (Note 1)

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
FILTER							
$\mathrm{f}_{0(\mathrm{MAX})}$	Maximum Center Frequency (Note 2) $\mathrm{V}_{\mathrm{IN}}=1 \mathrm{~V}_{\mathrm{PK}}\left(0.707 \mathrm{~V}_{\mathrm{RMS}}\right)$	Figure 15 (Mode 1), $\mathrm{Q} \leq 50$, Q Accuracy $\leq \pm 25 \%$				100	kHz
		Figure 15 (Mode 1), $\mathrm{Q} \leq 20, \mathrm{Q}$ Accuracy $\leq \pm 15 \%$				150	kHz
$\mathrm{f}_{0(\mathrm{MIN})}$	Minimum Center Frequency (Note 2) $\mathrm{V}_{\mathrm{IN}}=1 \mathrm{~V}_{\mathrm{PK}}\left(0.707 \mathrm{~V}_{\mathrm{RMS}}\right)$	Figure 15 (Mode 1), $\mathrm{Q} \leq 50, \mathrm{Q}$ Accuracy $\leq \pm 30 \%$		25			Hz
		Figure 15 (Mode 1), $\mathrm{Q} \leq 20$, Q Accuracy $\leq \pm 15 \%$		25			Hz
	f_{0} Temperature Coefficient	$\mathrm{f}_{\text {CLK }}<5 \mathrm{MHz}$			-10		ppm $/{ }^{\circ} \mathrm{C}$
	Clock to Center Frequency Ratio $\mathrm{Q}=10$, Figure 15 (Mode 1)	$50: 1, \mathrm{f}_{\text {CLK }}=5 \mathrm{MHz}$	B Suffix	49.65	49.85	50.05	
			C Suffix	49.45	49.85	50.25	
		$100: 1, \mathrm{f}_{\text {CLK }}=5 \mathrm{MHz}$	B Suffix	99.6	100.0	100.4	
			C Suffix	99.2	100.0	100.8	
$\mathrm{f}_{\text {CLK }}$	Clock Frequency	$\mathrm{Q} \leq 20, \mathrm{Q}$ Accuracy $\leq \pm 15 \%$		2.5		7500	kHz
	Clock Feedthrough	$\mathrm{f}_{\mathrm{CLK}} \leq 5 \mathrm{MHz}$			10	20	$\mathrm{mV}{ }_{(\mathrm{P}-\mathrm{P})}$
	Q Accuracy	$\mathrm{f}_{\mathrm{CLK}}=5 \mathrm{MHz}, \mathrm{Q}=10,$ 50:1, Figure 15 (Mode 1)	B Suffix			± 3	\%
			C Suffix			± 5	\%
		$\mathrm{f}_{\mathrm{CLK}}=5 \mathrm{MHz}, \mathrm{Q}=10,$ 100:1, Figure 15 (Mode 1)	B Suffix			± 4	\%
			C Suffix			± 8	\%
	Q Temperature Coefficient	$\mathrm{f}_{\mathrm{CLK}}<5 \mathrm{MHz}, \mathrm{Q}=10$			20		$\mathrm{ppm} /{ }^{\circ} \mathrm{C}$
$\mathrm{V}_{\mathrm{OS} 2,3}$	DC Offset	$\begin{aligned} & 50: 1, \mathrm{f}_{\mathrm{CLK}}=5 \mathrm{MHz} \\ & \mathrm{~S}_{\mathrm{A} / \mathrm{B}}=\text { High or Low } \end{aligned}$	B Suffix		7	40	mV
			C Suffix		7	60	mV
		$\begin{aligned} & 100: 1, \mathrm{f}_{\mathrm{CLK}}=5 \mathrm{MHz} \\ & \mathrm{~S}_{\mathrm{A} / \mathrm{B}}=\text { High or Low } \end{aligned}$	B Suffix		14	60	mV
			C Suffix		14	100	mV

ELECTRICAL CHARACTERISTICS
(Continued)

SYMBOL	PARAMETER	CONDITIONS			MIN	TYP	MAX	UNITS
FILTER (Continued)								
	Gain Accuracy, DC Lowpass	$\begin{aligned} & \mathrm{R} 1, \mathrm{R} 3=20 \mathrm{k} \Omega, \mathrm{R} 2=2 \mathrm{k} \Omega \\ & 100: 1, \mathrm{f}_{0}=50 \mathrm{kHz}, \mathrm{Q}=10 \end{aligned}$				0.01	2	\%
	Gain Accuracy, Bandpass at f_{0}	$\begin{aligned} & \mathrm{R} 1, \mathrm{R} 3=20 \mathrm{k} \Omega, \mathrm{R} 2=2 \mathrm{k} \Omega, \\ & 100: 1, \mathrm{f}_{0}=50 \mathrm{kHz}, \mathrm{Q}=10 \end{aligned}$		B Suffix		1	4	\%
				C Suffix		1	6	\%
	Gain Accuracy, DC Notch Output	$\begin{aligned} & \mathrm{R} 1, \mathrm{R} 3=20 \mathrm{k} \Omega, \mathrm{R} 2=2 \mathrm{k} \Omega, \\ & 100: 1, \mathrm{f}_{0}=50 \mathrm{kHz}, \mathrm{Q}=10 \end{aligned}$				0.02	2	\%
	Noise (Note 3) Figure 15 (Mode 1), $\mathrm{Q}=1, \mathrm{R} 1=\mathrm{R} 2=\mathrm{R} 3=2 \mathrm{k} \Omega$	Bandpass	100kHz, 50:1			103		$\mu \mathrm{V}_{\text {RMS }}$
			$50 \mathrm{kHz}, 100: 1$			121		$\mu \mathrm{V}_{\text {RMS }}$
		Lowpass	100kHz, 50:1			120		$\mu \mathrm{V}_{\text {RMS }}$
			$50 \mathrm{kHz}, 100: 1$			150		$\mu \mathrm{V}_{\text {RMS }}$
		Notch	100kHz, 50:1			115		$\mu \mathrm{V}_{\text {RMS }}$
			$50 \mathrm{kHz}, 100: 1$			135		$\mu \mathrm{V}_{\text {RMS }}$
	Noise (Note 3) Figure 15 (Mode 1), $\mathrm{Q}=10, \mathrm{R} 3=20 \mathrm{k} \Omega, \mathrm{R} 2=2 \mathrm{k} \Omega$	Bandpass,$\mathrm{R} 1=20 \mathrm{k} \Omega$	100kHz, 50:1			262		$\mu \mathrm{V}_{\text {RMS }}$
			$50 \mathrm{kHz}, 100: 1$			333		$\mu \mathrm{V}_{\text {RMS }}$
		Lowpass,$\mathrm{R} 1=2 \mathrm{k} \Omega$	100kHz, 50:1			268		$\mu \mathrm{V}_{\text {RMS }}$
			$50 \mathrm{kHz}, 100: 1$			342		$\mu \mathrm{V}_{\text {RMS }}$
		Notch,$\mathrm{R} 1=2 \mathrm{k} \Omega$	100kHz, 50:1			64		$\mu \mathrm{V}_{\text {RMS }}$
			$50 \mathrm{kHz}, 100: 1$			72		$\mu \mathrm{V}_{\text {RMS }}$
	Crosstalk	$\mathrm{f}_{\text {CLK }}=5 \mathrm{MHz}, \mathrm{f}_{0}=100 \mathrm{kHz}$				-50		dB

FILTER, $\mathrm{V}_{\mathrm{A}^{+}}=\mathrm{V}_{\mathrm{D}^{+}}=2.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{A}^{-}}=\mathrm{V}_{\mathrm{D}^{-}}=-2.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=0.707 \times \mathrm{V}_{\mathrm{PK}}\left(0.5 \times \mathrm{V}_{\mathrm{RMS}}\right)$

$\mathrm{f}_{0(\mathrm{MAX})}$	Maximum Center Frequency	Figure 15 (Mode 1), $\mathrm{Q} \leq 50$, Q Accuracy $\leq \pm 30 \%$				75	kHz
		Figure 15 (Mode 1), $\mathrm{Q} \leq 20$, Q Accuracy $\leq \pm 15 \%$				100	kHz
$\mathrm{f}_{0(\mathrm{MIN})}$	Minimum Center Frequency	Figure 15 (Mode 1),$\mathrm{Q} \leq 50, \mathrm{Q} \text { Accuracy } \leq \pm 30 \%$		25			Hz
		Figure 15 (Mode 1), $\mathrm{Q} \leq 20, \mathrm{Q}$ Accuracy $\leq \pm 15 \%$		25			Hz
	Clock to Center Frequency Ratio $\mathrm{Q}=10$, Figure 15 (Mode 1)	$50: 1, \mathrm{f}_{\text {CLK }}=2.5 \mathrm{MHz}$	B Suffix	49.65	49.85	50.05	
			C Suffix	49.45	49.85	50.25	
		$100: 1, \mathrm{f}_{\text {CLK }}=2.5 \mathrm{MHz}$	B Suffix	99.60	100.0	100.4	
			C Suffix	99.20	100.0	100.8	
$\mathrm{f}_{\text {CLK }}$	Clock Frequency	$\mathrm{Q} \leq 20, \mathrm{Q}$ Accuracy $\leq \pm 15 \%$		2.5		5000	kHz
	Q Accuracy	$\begin{aligned} & \mathrm{f}_{\mathrm{CLK}}=2.5 \mathrm{MHz}, \mathrm{Q}=10, \\ & 50: 1, \text { Figure } 15(\text { Mode } 1) \end{aligned}$	B Suffix			± 4	\%
			C Suffix			± 8	\%
		$\begin{aligned} & \mathrm{f}_{\mathrm{CLK}}=2.5 \mathrm{MHz}, \mathrm{Q}=10 \\ & \text { 100:1, Figure } 15(\text { Mode } 1) \end{aligned}$	B Suffix		± 3		\%
			C Suffix		± 6		\%

ELECTRICAL CHARACTERISTICS
(Continued)

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
FILTER, $\mathrm{V}_{\mathrm{A}^{+}}=\mathrm{V}_{\mathrm{D}^{+}}=2.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{A}^{-}}=\mathrm{V}_{\mathrm{D}^{-}}=-2.25 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=0.707 \times \mathrm{V}_{\text {PK }}\left(0.5 \times \mathrm{V}_{\text {RMS }}\right)$ (Continued)							
	Noise (Note 3) Figure 15 (Mode 1), $\mathrm{Q}=1, \mathrm{R} 1=\mathrm{R} 2=\mathrm{R} 3=2 \mathrm{k} \Omega$	Bandpass	100kHz, 50:1		105		$\mu \mathrm{V}_{\text {RMS }}$
			50kHz, 100:1		123		$\mu \mathrm{V}_{\text {RMS }}$
		Lowpass	100kHz, 50:1		122		$\mu \mathrm{V}_{\text {RMS }}$
			50kHz, 100:1		152		$\mu \mathrm{V}_{\text {RMS }}$
		Notch	100kHz, 50:1		117		$\mu \mathrm{V}_{\text {RMS }}$
			50kHz, 100:1		138		$\mu \mathrm{V}_{\text {RMS }}$
	Noise (Note 3) Figure 15 (Mode 1), $\mathrm{Q}=10$, $\mathrm{R} 3=20 \mathrm{k} \Omega, \mathrm{R} 2=2 \mathrm{k} \Omega$	Bandpass,$\mathrm{R} 1=20 \mathrm{k} \Omega$	100kHz, 50:1		265		$\mu \mathrm{V}_{\text {RMS }}$
			50kHz, 100:1		335		$\mu \mathrm{V}_{\text {RMS }}$
		Lowpass,$\mathrm{R} 1=2 \mathrm{k} \Omega$	100kHz, 50:1		270		$\mu \mathrm{V}_{\text {RMS }}$
			50kHz, 100:1		245		$\mu \mathrm{V}_{\text {RMS }}$
		Notch,$\mathrm{R} 1=2 \mathrm{k} \Omega$	100kHz, 50:1		65		$\mu \mathrm{V}_{\text {RMS }}$
			50kHz, 100:1		73		$\mu \mathrm{V}_{\text {RMS }}$

OPERATIONAL AMPLIFIERS

$\mathrm{V}_{\mathrm{OS} 1}$	DC Offset Voltage		2	15	mV
$\mathrm{A}_{\mathrm{VOL}}$	DC Open Loop Gain	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$		95	
	Gain Bandwidth Product		dB		
	Slew Rate		2.4		MHz
	Output Voltage Swing (Clipping Level)	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega,\|\mathrm{V}\|$ from $\mathrm{V}_{\mathrm{A}+}$ or $\mathrm{V}_{\mathrm{A}-}$	2.0		$\mathrm{~V} / \mathrm{\mu s}$
	Output Short Circuit Current	Source	0.5	1.2	V
		Sink	50		mA

CLOCK

	$\mathrm{V}_{\text {CLK }}$ Input Low Voltage				0.6
	$\mathrm{~V}_{\text {CLK }}$ Input High Voltage		3.0		V
	CLK $_{\mathrm{A}}$, CLK $_{\mathrm{B}}$ Pulse Width	$\left\|\mathrm{V}_{\mathrm{D}+}\right\|-\left\|\mathrm{V}_{\mathrm{D}-}\right\| \geq 4.5 \mathrm{~V}$	100		V
	CLK $_{\mathrm{A}}$, CLK $_{\mathrm{B}}$ Pulse Width	$\left\|\mathrm{V}_{\mathrm{D}+}\right\|-\left\|\mathrm{V}_{\mathrm{D}-}\right\| \geq .90 \mathrm{~V}$	66		ns

SUPPLY

$\left(\mathrm{I}_{\mathrm{A}+}\right)+\left(\mathrm{I}_{\mathrm{D}+}\right)$	Supply Current, $\left(\mathrm{V}_{\mathrm{A}+}\right)+\left(\mathrm{V}_{\mathrm{D}+}\right)$	$\mathrm{f}_{\mathrm{CLK}}=5 \mathrm{MHz}$	13	22	mA
$\left(\mathrm{I}_{\mathrm{A}-}\right)+\left(\mathrm{I}_{\mathrm{D}-}\right)$	Supply Current, $\left(\mathrm{V}_{\mathrm{A}_{-}}\right)+\left(\mathrm{V}_{\mathrm{D}-}\right)$	$\mathrm{f}_{\mathrm{CLK}}=5 \mathrm{MHz}$		12	21
$\mathrm{I}_{\mathrm{LSh}}$	Supply Current, LSh	$\mathrm{f}_{\mathrm{CLK}}=5 \mathrm{MHz}$	mA		

Note 1: Limits are guaranteed by 100% testing, sampling, or correlation with worst case test conditions.
Note 2: The center frequency is defined as the peak of the bandpass output.
Note 3: The noise is meassured with an HP8903A audio analyzer with a bandwidth of 700 kHz , which is 7.5 times the f_{0} at $50: 1$ and 15 times the f_{0} at $100: 1$.

TYPICAL PERFORMANCE CURVES

Figure $1 \mathrm{~A} . \mathrm{f}_{\mathrm{CLK}} / \mathrm{f}_{\mathbf{0}}$ vs. $\mathrm{f}_{\mathrm{CLK}}\left(\mathbf{5 0 : 1}, \mathrm{V}_{\mathrm{S}}= \pm \mathbf{5}\right)$

Figure 1B. $\mathrm{f}_{\mathrm{CLK}} / \mathrm{f}_{\mathbf{0}}$ vs. $\mathrm{f}_{\mathrm{CLK}}\left(\mathbf{1 0 0 : 1 ,} \mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}\right)$

Figure $1 \mathrm{C} . \mathrm{f}_{\mathrm{CLK}} / \mathrm{f}_{\mathbf{0}}$ vs. $\mathrm{f}_{\mathrm{CLK}}\left(\mathbf{5 0 : 1}, \mathrm{V}_{\mathrm{S}}= \pm \mathbf{2 . 5 V}\right)$

TYPICAL PERFORMANCE CURVES (Continued)

Figure 1D. $\mathrm{f}_{\mathrm{CLK}} / \mathrm{f}_{\mathbf{0}}$ vs. $\mathrm{f}_{\mathrm{CLK}}\left(\mathbf{1 0 0 : 1}, \mathrm{V}_{\mathrm{S}}= \pm \mathbf{2 . 5} \mathrm{V}\right)$

Figure 2A. $\mathbf{f}_{\mathbf{C L K}} / \mathbf{f}_{0}$ Deviation vs. Temperature
(50:1, $\mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}$)

Figure 2C. $\mathrm{f}_{\mathrm{CLK}} / \mathrm{f}_{0}$ Deviation vs. Temperature (50:1, $\mathrm{V}_{\mathrm{S}}= \pm 2.5 \mathrm{~V}$)

Figure 2B. $f_{\text {CLK }} / f_{0}$ Deviation vs. Temperature ($100: 1, V_{S}= \pm 5 \mathrm{~V}$)

Figure 2D. $\mathrm{f}_{\mathrm{CLK}} / \mathrm{f}_{0}$ Deviation vs. Temperature ($100: 1, \mathrm{~V}_{\mathrm{S}}= \pm 2.5 \mathrm{~V}$)

TYPICAL PERFORMANCE CURVES (Continued)

Figure $2 \mathrm{E} . \mathrm{Q}$ Error vs. $\mathrm{f}_{\mathrm{CLK}}\left(50: 1, \mathrm{~V}_{\mathrm{S}}= \pm \mathbf{5}\right)$

Figure 2F. Q Error vs. $f_{C L K}\left(100: 1, V_{S}= \pm 5 V\right)$

Figure 2G. Q Error vs. $\mathrm{f}_{\mathrm{CLK}}\left(50: 1, \mathrm{~V}_{\mathrm{S}}= \pm \mathbf{2 . 5 V}\right)$

TYPICAL PERFORMANCE CURVES (Continued)

Figure 2 H . Q Error vs. $\mathrm{f}_{\mathrm{CLK}}\left(100: 1, \mathrm{~V}_{\mathrm{S}}= \pm \mathbf{2 . 5 V}\right)$

Figure 3A. Q Deviation vs. Temperature (50:1, $V_{S}= \pm 5 \mathrm{~V}$)

Figure 3C. Q Deviation vs. Temperature
$\left(50: 1, V_{S}= \pm 2.5 \mathrm{~V}\right)$

Figure 3B. Q Deviation vs. Temperature $\left(100: 1, V_{S}= \pm 5 \mathrm{~V}\right)$

Figure 3D. Q Deviation vs. Temperature $\left(100: 1, V_{S}= \pm 2.5 \mathrm{~V}\right)$

Figure 4A. $f_{C L K} / f_{0}$ Deviation vs. $Q\left(V_{S}= \pm 5 \mathrm{~V}\right)$

Figure 5A. Q Deviation vs. $Q\left(50: 1, V_{S}= \pm 5 \mathrm{~V}\right)$

Figure 6A. Distortion vs. $\mathrm{f}_{\mathrm{IN}}\left(50: 1, \mathrm{~V}_{\mathrm{S}}= \pm 5 \mathrm{~V}\right)$

Figure 4A. $f_{C L K} / f_{\text {NOTCH }}$ Deviation vs. $Q\left(V_{S}= \pm 5 V\right)$

Figure 5B. Q Deviation vs. $Q\left(100: 1, V_{S}= \pm 5 V\right)$

Figure 6B. Distortion vs. $\mathrm{f}_{\mathrm{IN}}\left(\mathbf{1 0 0 : 1}, \mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}\right)$

Figure 7A. Noise Spectrum Density ($\mathrm{Q}=1$)

Figure 8. $\mathfrak{f}_{\mathbf{C L K}} / \mathbf{f}_{\text {NOTCH }}$ vs. $\mathfrak{f}_{\mathbf{C L K}}$

Figure 10. Supply Current vs. Supply Voltage

Figure 7B. Noise Spectrum Density $(Q=10)$

Figure 9. Notch Depth vs. $\mathbf{f}_{\text {CLK }}$

Figure 11. Supply Current vs. Temperature

FUNCTIONAL DESCRIPTION

POWER SUPPLIES

The analog $\left(\mathrm{V}_{\mathrm{A}_{+}}\right)$and digital $\left(\mathrm{V}_{\mathrm{D}_{+}}\right)$supply pins, in most cases, are tied together and bypassed to AGND with 100 nF and 10 nF disk ceramic capacitors. The supply pins can be bypassed separately if a high level of digital noise exists. These pins are internally connected by the IC substrate and should be biased from the same DC source. The ML2111 operates from either a single supply from 4V to 12 V , or with dual supplies at $\pm 2 \mathrm{~V}$ to $\pm 6 \mathrm{~V}$.

CLOCK INPUT PINS AND LEVEL SHIFT

With dual supplies equal to or higher than $\pm 4.0 \mathrm{~V}$, the LSh pin can be connected to the same potential as either the AGND or the $\mathrm{V}_{\mathrm{A}^{-}}$pin. With single supply operation the negative supply pins and LSh pin should be tied to the system ground. The AGND pin should be biased half way between $\mathrm{V}_{\mathrm{A}+}$ and $\mathrm{V}_{\mathrm{A} \text {. }}$. Under these conditions the clock levels are TTL or CMOS compatible. Both input clock pins share the same level shift pin.

50/100/HOLD

Tying the $50 / 100 /$ HOLD pin to the $\mathrm{V}_{\mathrm{A}+}$ and $\mathrm{V}_{\mathrm{D}+}$ pins makes the filter operate in the $50: 1$ mode. Tying the pin half way between $\mathrm{V}_{\mathrm{A}+}$ and V_{A}. makes the filter operate in the $100: 1$ mode. The input range for $50 / 100 / \mathrm{HOLD}$ is either $2.5 \mathrm{~V} \pm 0.5 \mathrm{~V}$ with a total power supply range of 5 V , or $5 \mathrm{~V} \pm 0.5 \mathrm{~V}$ with a total power supply range of 10 V . When $50 / 100 / \mathrm{HOLD}$ is tied to the negative power supply input, the filter operation is stopped and the bandpass and lowpass outputs act as a sample/hold circuit which holds the last sample.

$\mathbf{S} 1_{\mathrm{A}} \boldsymbol{\&} \boldsymbol{S} \mathbf{1}_{\mathrm{B}}$

These voltage signal input pins should be driven by a source impedance of less than $5 \mathrm{k} \Omega$. The $\mathrm{S}_{1 \mathrm{~A}}$ and $\mathrm{S}_{1 \mathrm{~B}}$ pins can be used to feedforward the input signal for allpass filter configurations (see modes $4 \& 5$) or to alter the clock-to-center-frequency ratio $\left(\mathrm{f}_{\mathrm{CLK}} / \mathrm{f}_{0}\right)$ of the filter (see modes 1b, 1c, 2a, \& 2b). When these pins are not used they should be tied to the AGND pin.

$\mathbf{S}_{\mathrm{A} / \mathrm{B}}$

When $\mathrm{S}_{\mathrm{A} / \mathrm{B}}$ is high, the S2 negative input of the voltage summing device is tied to the lowpass output. When the $\mathrm{S}_{\mathrm{A} / \mathrm{B}}$ pin is connected to the negative supply, the S 2 input switches to ground.

AGND

AGND is connected to the system ground for dual supply operation. When operating with a single positive supply the analog ground pin should be biased half way between $\mathrm{V}_{\mathrm{A}+}$ and $\mathrm{V}_{\mathrm{A}-}$, and bypassed with a 100 nF capacitor. The positive inputs of the internal op amps and the reference point of the internal switches are connected to the AGND pin.

$\mathrm{f}_{\mathrm{CLK}} / \mathrm{f}_{\mathbf{0}}$ RATIO

The ML2111 is a sampled data filter and approximates continuous time filters. The filter deviates from its ideal continuous filter model when the ($\mathrm{f}_{\mathrm{CLK}} / \mathrm{f}_{0}$) ratio decreases and when the Qs are low.

$\mathrm{f}_{\mathbf{0}} \times \mathbf{Q}$ PRODUCT RATIO

The $f_{0} \times Q$ product of the ML2111 depends on the clock frequency and the mode of operation. The $f_{0} \times Q$ product is mainly limited by the desired f_{0} and Q accuracy for clock frequencies below 1 MHz in mode 1 and its derivatives. If the clock to center frequency ratio is lowered below 50:1, the $f_{0} \times Q$ product can be further increased for the same clock frequency and for the same Q value.

Mode 3, (Figure 23) and the modes of operation where R4 is finite, are "slower" than the basic mode 1. The resistor R4 places the input op amp inside the resonant loop. The finite GBW of this op amp creates an additional phase shift and enhances the Q value at high clock frequencies.

OUTPUTNOISE

The wideband RMS noise on the outputs of the ML2111 is nearly independent of the clock frequency, provided that the clock itself does not become part of the noise. Noise at the BP and LP outputs increases for high values of Q .

FILTER FUNCTION DEFINITIONS

Each filter of the ML2111, along with external resistors and a clock, approximates second order filter functions. These are tabulated below in the frequency domain.

1. Bandpass function: available at the bandpass output pins $\left(\mathrm{BP}_{\mathrm{A}}, \mathrm{BP}_{\mathrm{B}}\right)$, Figure 12.

$$
\begin{equation*}
\mathrm{G}(\mathrm{~s})=\mathrm{H}_{\mathrm{OBP}} \times \frac{\frac{\mathrm{s} \times \omega_{0}}{\mathrm{Q}}}{s^{2}+\left(\frac{\mathrm{s} \times \omega_{0}}{\mathrm{Q}}\right)+\omega_{0}^{2}} \tag{1}
\end{equation*}
$$

where:

$$
\mathrm{H}_{\mathrm{OBP}}=\text { Gain at } \omega=\omega_{0}
$$

$f_{0}=\omega_{0} / 2 \pi$. The center frequency of the complex pole pair is f_{0}. It is measured as the peak frequency of the bandpass output.
$\mathrm{Q}=$ the Quality factor of the complex pole pair. It is the ratio of f_{0} to the -3 dB bandwidth of the 2 nd order bandpass function. The Q is always measured at the filter BP output.

FILTER FUNCTION DEFINITIONS (Continued)

2. Lowpass function: available at the LP output pins,

Figure 13.

$$
\begin{equation*}
\mathrm{G}(\mathrm{~s})=\mathrm{H}_{\mathrm{OLP}} \times \frac{\omega_{0}^{2}}{\mathrm{~s}^{2}+\left(\frac{\mathrm{s} \times \omega_{0}}{\mathrm{Q}}\right)+\omega_{0}^{2}} \tag{2}
\end{equation*}
$$

where:
$\mathrm{H}_{\mathrm{OLP}}=\mathrm{DC}$ gain of the LP output
3. Highpass function: available only in mode 3 at $\mathrm{N} / \mathrm{AP} / \mathrm{HP}_{\mathrm{A}}$ and $\mathrm{N} / \mathrm{AP} / \mathrm{HP}_{\mathrm{B}}$, Figure 14.

$$
\begin{equation*}
\mathrm{G}(\mathrm{~s})=\mathrm{H}_{\mathrm{OHP}} \times \frac{\mathrm{s}^{2}}{\mathrm{~s}^{2}+\left(\frac{\mathrm{s} \times \omega_{0}}{\mathrm{Q}}\right)+\omega_{0}^{2}} \tag{3}
\end{equation*}
$$

$\mathrm{H}_{\mathrm{OHP}}=$ Gain of the HP output for $\mathrm{f} \rightarrow \mathrm{f}_{\mathrm{CLK}} / 2$.
)

$$
\begin{aligned}
& \text { LOWPASS OUTPUT } \\
& \text { f (LOG SCALE) } \\
& f_{C}=f_{0} \times \sqrt{\left(1-\frac{1}{2 Q^{2}}\right)+\sqrt{\left(1-\frac{1}{2 Q^{2}}\right)^{2}+1}} \\
& \mathrm{f}_{\mathrm{p}}=\mathrm{f}_{0} \times \sqrt{1-\frac{1}{2 \mathrm{Q}^{2}}} \\
& \mathrm{H}_{\mathrm{OP}}=\mathrm{H}_{\mathrm{OLP}} \times \frac{1}{\frac{1}{\mathrm{Q}} \times \sqrt{1-\frac{1}{4 \mathrm{Q}^{2}}}}
\end{aligned}
$$

Figure 13.
BANDPASS OUTPUT

f(LOG SCALE)

$$
\mathrm{Q}=\frac{\mathrm{f}_{0}}{\mathrm{f}_{\mathrm{H}}-\mathrm{f}_{\mathrm{L}}} ; \mathrm{f}_{0}=\sqrt{\mathrm{f}_{\mathrm{L}} \times \mathrm{f}_{\mathrm{H}}}
$$

$$
\begin{aligned}
& f_{L}=f_{0} \times\left(\frac{-1}{2 Q}+\sqrt{\left(\frac{1}{2 Q}\right)^{2}+1}\right) \\
& f_{H}=f_{0} \times\left(\frac{1}{2 Q}+\sqrt{\left(\frac{1}{2 Q}\right)^{2}+1}\right)
\end{aligned}
$$

Figure 12.
HIGHPASS OUTPUT

$$
\begin{gathered}
\mathrm{f}_{\mathrm{C}}=\mathrm{f}_{0} \times\left[\sqrt{\left(1-\frac{1}{2 \mathrm{Q}^{2}}\right)+\sqrt{\left(1-\frac{1}{2 \mathrm{Q}^{2}}\right)^{2}+1}}\right]^{-1} \\
\mathrm{f}_{\mathrm{P}}=\mathrm{f}_{0} \times\left[\sqrt{\left.1-\frac{1}{2 \mathrm{Q}^{2}}\right]^{-1}}\right. \\
\mathrm{H}_{\mathrm{OP}}=\mathrm{H}_{\mathrm{OHP}} \times \frac{1}{\frac{1}{\mathrm{Q}} \times \sqrt{1-\frac{1}{4 \mathrm{Q}^{2}}}}
\end{gathered}
$$

Figure 14.

FILTER FUNCTION DEFINITIONS

4. Notch function: available at $\mathrm{N} / \mathrm{AP} / \mathrm{HP}_{\mathrm{A}}$ and $\mathrm{N} / \mathrm{AP} / \mathrm{HP}_{\mathrm{B}}$ for several modes of operation.

$$
\begin{equation*}
\mathrm{G}(\mathrm{~s})=\mathrm{H}_{\mathrm{ON} 2} \times \frac{\left(\mathrm{s}^{2}+\omega_{\mathrm{n}}^{2}\right)}{\mathrm{s}^{2}+\left(\frac{\mathrm{s} \times \omega_{0}}{\mathrm{Q}}\right)+\omega_{0}^{2}} \tag{4}
\end{equation*}
$$

$\mathrm{H}_{\mathrm{ON} 2}=$ Gain of the notch output for $\mathrm{f} \rightarrow \mathrm{f}_{\mathrm{CLK}} / 2$.
$\mathrm{H}_{\mathrm{ON} 1}=$ Gain of the HP output for $\mathrm{f} \rightarrow 0$
$f_{n}=\omega_{n} / 2 \pi$. The frequency of the notch occurrence is f_{n}.
5. Allpass function: available at $\mathrm{N} / A P / H P_{\mathrm{A}}$ and $\mathrm{N} / \mathrm{AP} /$ HP_{B} for modes 4 and 4a.

$$
\begin{equation*}
\mathrm{G}(\mathrm{~s})=\mathrm{H}_{\mathrm{OAP}} \times \frac{\mathrm{s}^{2}-\frac{\mathrm{s} \times \omega_{0}}{\mathrm{Q}}+\omega_{0}^{2}}{\mathrm{~s}^{2}+\frac{\mathrm{s} \times \omega_{0}}{\mathrm{Q}}+\omega_{0}^{2}} \tag{5}
\end{equation*}
$$

$\mathrm{H}_{\mathrm{OAP}}=$ Gain of the allpass output for $0<\mathrm{f}<\mathrm{f}_{\mathrm{CLK}} / 2$
For allpass functions, the center frequency and the Q of the numerator complex zero pair is the same as the denominator. Under these conditions the magnitude response is a straight line. In mode 5, the center frequency f_{Z} of the numerator complex zero pair is different than f_{0}. For high numerator Q 's, the magnitude response will have a notch at f_{Z}.

OPERATION MODES

There are three basic modes of operation - Modes 1, 2, and 3 , each of which has derivatives; and four secondary modes of operation - Modes 4, 5, 6, and 7, each of which also has derivatives.

In Figure 15, the input amplifier is outside the resonant loop. Because of this, mode 1 and its derivatives (modes $1 \mathrm{a}, 1 \mathrm{~b}, 1 \mathrm{c}$, and 1 d) are faster than modes 2 and 3 .

Mode 1 provides a clock tunable notch. It is a practical configuration for second order clock tunable bandpass/ notch filters. In mode 1, a band pass output with a very high Q, together with unity gain can be obtained with the dynamics of the remaining notch and lowpass outputs.

Mode 1a (Figure 16) represents the simplest hookup of the ML2111. It is useful when voltage gain at the bandpass output is required. However, the bandpass voltage gain is equal to the value of Q , and second order, clock tunable, BP resonator can be achieved with only 2 resistors. The filter center frequency directly depends on the external clock frequency. Mode 1a is not practical for high order filters as it requires several clock frequencies to tune the overall filter response.

Modes 1b and 1c, Figures 17 and 18, are similar. They both produce a notch with a frequency which is always equal to the filter center frequency. The notch and the center frequency can be adjusted with an external resistor ratio.
$1 / 2$ ML2111

Figure 15. Mode 1: 2nd Order Filter Providing Notch, Bandpass, Lowpass
$1 / 2$ ML2111

Figure 16. Mode 1a: 2nd Order Filter Providing Bandpass, Lowpass

MODE	$\mathbf{B P}_{\mathbf{A}}, \mathbf{B P}_{\mathbf{B}}$	$\mathbf{N} / \mathbf{A P} / \mathbf{H P} \mathbf{A}_{\mathbf{A}} \mathbf{N} / \mathbf{A P} / \mathbf{H P} \mathbf{B}_{\mathbf{B}}$	\mathbf{f}_{C}	$\mathrm{f}_{\mathbf{Z}}$
6 a	LP	HP	$\frac{\mathrm{f}_{\mathrm{CLK}}}{100(50)} \times \frac{\mathrm{R} 2}{\mathrm{R} 3}$	
6 b	LP	LP	$\frac{\mathrm{f}_{\mathrm{CLK}}}{100(50)} \times \frac{\mathrm{R} 2}{\mathrm{R} 3}$	
7	LP	AP	$\frac{\mathrm{f}_{\mathrm{CLK}}}{100(50)} \times \frac{\mathrm{R} 2}{\mathrm{R} 3}$	$\frac{\mathrm{f}_{\mathrm{CLK}}}{100(50)} \times \frac{\mathrm{R} 2}{\mathrm{R} 3}$

Table 1. First Order Functions.

MODE	$\mathbf{L P}_{\text {A }}, \mathbf{L P}_{\text {B }}$	$\mathbf{B P}_{A},{ }^{\text {BP }}$ B	N/AP/HP ${ }_{\text {A\& }}$	f_{0}	f_{N}
1	LP	BP	Notch	$\frac{\mathrm{f}_{\mathrm{CLK}}}{100(50)}$	f_{0}
1a	LP	BP	BP	$\frac{\mathrm{f}_{\mathrm{CLK}}}{100(50)}$	
1b	LP	BP	Notch	$\frac{\mathrm{f}_{\mathrm{CLK}}}{100(50)} \times \sqrt{1+\frac{\mathrm{R} 6}{\mathrm{R} 5+\mathrm{R} 6}}$	$\frac{\mathrm{f}_{\text {LLK }}}{100(50)} \times \sqrt{1+\frac{\mathrm{R} 6}{\mathrm{R} 5+\mathrm{R} 6}}$
1c	LP	BP	Notch	$\frac{\mathrm{f}_{\mathrm{CLK}}}{100(50)} \times \sqrt{\frac{\mathrm{R} 6}{\mathrm{R} 5+\mathrm{R} 6}}$	$\frac{\mathrm{f}_{\text {CLK }}}{100(50)} \times \sqrt{\frac{\mathrm{R} 6}{\mathrm{R} 5+\mathrm{R} 6}}$
1d	LP	BP		$\frac{\mathrm{f}_{\mathrm{CLK}}}{100(50)}$	
2	LP	BP	Notch	$\frac{\mathrm{f}_{\mathrm{CLK}}}{100(50)} \times \sqrt{1+\frac{\mathrm{R} 2}{\mathrm{R} 4}}$	$\frac{f_{\mathrm{CLK}}}{100(50)}$
2a	LP	BP	Notch	$\frac{\mathrm{f}_{\mathrm{CLK}}}{100(50)} \times \sqrt{1+\frac{\mathrm{R} 2}{\mathrm{R} 4}+\frac{\mathrm{R} 6}{\mathrm{R} 5+\mathrm{R} 6}}$	$\frac{\mathrm{f}_{\text {CLK }}}{100(50)} \times \sqrt{1+\frac{\mathrm{R} 6}{\mathrm{R} 5+\mathrm{R} 6}}$
2 b	LP	BP	Notch	$\frac{\mathrm{f}_{\mathrm{CLK}}}{100(50)} \times \sqrt{\frac{\mathrm{R} 2}{\mathrm{R} 4}+\frac{\mathrm{R} 6}{\mathrm{R} 5+\mathrm{R} 6}}$	$\frac{\mathrm{f}_{\mathrm{CLK}}}{100(50)} \times \sqrt{\frac{\mathrm{R} 6}{\mathrm{R} 5+\mathrm{R6}}}$
3	LP	BP	HP	$\frac{\mathrm{f}_{\mathrm{CLK}}}{100(50)} \times \sqrt{\frac{\mathrm{R} 2}{\mathrm{R} 4}}$	
3 a	LP	BP	Notch	$\frac{\mathrm{f}_{\text {CLK }}}{100(50)} \times \sqrt{\frac{\mathrm{R} 2}{\mathrm{R} 4}}$	$\frac{\mathrm{f}_{\text {CLK }}}{100(50)} \times \sqrt{\frac{R_{h}}{R_{l}}}$
4	LP	BP	AP	$\frac{f_{\mathrm{CLK}}}{100(50)}$	
4a	LP	BP	AP	$\frac{\mathrm{f}_{\mathrm{CLK}}}{100(50)} \times \sqrt{\frac{\mathrm{R} 2}{\mathrm{R} 4}}$	
5	LP	BP	CZ	$\frac{\mathrm{f}_{\mathrm{CLK}}}{100(50)} \times \sqrt{1+\frac{\mathrm{R} 2}{\mathrm{R} 4}}$	$\frac{\mathrm{f}_{\text {CLK }}}{100(50)} \times \sqrt{1-\frac{\mathrm{R} 2}{\mathrm{R} 4}}$

Table 2. Second Order Functions

$$
\begin{aligned}
& \mathrm{f}_{0}=\frac{\mathrm{f}_{\mathrm{CLK}}}{100(50)} \times \sqrt{1+\frac{\mathrm{R} 6}{\mathrm{R} 5+\mathrm{R} 6}} ; \mathrm{f}_{\mathrm{n}}=\mathrm{f}_{0} \\
& \mathrm{Q}=\frac{\mathrm{R} 3}{\mathrm{R} 2} \times \sqrt{1+\frac{\mathrm{R} 6}{\mathrm{R} 5+\mathrm{R} 6}} ; \mathrm{R} 5<5 \mathrm{k} \Omega \\
& \mathrm{H}_{\mathrm{ON} 1}(\mathrm{f} \rightarrow 0)=\mathrm{H}_{\mathrm{ON} 2}\left(\mathrm{f} \rightarrow \frac{\mathrm{f}_{\mathrm{CLK}}}{2}\right)=-\frac{\mathrm{R} 2}{\mathrm{R} 1} \\
& \mathrm{H}_{\mathrm{OBP}}=-\frac{\mathrm{R} 3}{\mathrm{R} 1} ; \mathrm{H}_{\mathrm{OLP}}=\frac{-\mathrm{R} 2 / \mathrm{R} 1}{1+\mathrm{R} 6 /(\mathrm{R} 5+\mathrm{R} 6)}
\end{aligned}
$$

Figure 17. Mode 1b: 2nd Order Filter Providing Notch, Bandpass, Lowpass

$$
\begin{aligned}
& \mathrm{f}_{0}=\frac{\mathrm{f}_{\mathrm{CLK}}}{100(50)} \times \sqrt{\frac{\mathrm{R} 6}{\mathrm{R} 5+\mathrm{R} 6}} ; \mathrm{f}_{\mathrm{n}}=\mathrm{f}_{0} \\
& \mathrm{Q}=\frac{\mathrm{R} 3}{\mathrm{R} 2} \times \sqrt{\frac{\mathrm{R} 6}{\mathrm{R} 5+\mathrm{R} 6}} ; \\
& \mathrm{H}_{\mathrm{ON1}}(\mathrm{f} \rightarrow 0)=\mathrm{H}_{\mathrm{ON} 2}\left(\mathrm{f} \rightarrow \frac{\mathrm{f}_{\mathrm{CLK}}}{2}\right)=-\frac{\mathrm{R} 2}{\mathrm{R} 1} ; \\
& \mathrm{H}_{\mathrm{OBP}}=-\frac{\mathrm{R} 3}{\mathrm{R} 1} ; \mathrm{H}_{\mathrm{OLP}}=\frac{-\mathrm{R} 2 / \mathrm{R} 1}{\mathrm{R} 6 /(\mathrm{R} 5+\mathrm{R} 6)} ; \mathrm{R} 5<5 \mathrm{k} \Omega
\end{aligned}
$$

Figure 18. Mode 1c: 2nd Order Filter Providing Notch, Bandpass, Lowpass

$\mathrm{f}_{0}=\frac{\mathrm{f}_{\mathrm{CLK}}}{100(50)} ; \mathrm{Q}=1+\frac{\mathrm{R} 3_{\mathrm{A}}}{\mathrm{R} 3_{\mathrm{B}}} ; \mathrm{H}_{\mathrm{OBP}}=-\frac{\mathrm{R} 2}{\mathrm{R} 1} \times \mathrm{Q} ;$
$H_{\text {OLP }}=-\frac{R 2}{R 1} ; V_{N}-\frac{R 2}{R 1} \times V_{I N}$

Figure 19. Mode 1d: 2nd Order Filter Providing Bandpass and Lowpass for Qs Greater Than or Equal To 1.

Figure 20. Mode 2: 2nd Order Filter Providing Notch, Bandpass, Lowpass

Figure 21. Mode 2a: 2nd Order Filter Providing Notch, Bandpass, Lowpass

Figure 22. Mode 2b: 2nd Order Filter Providing Notch, Bandpass, Lowpass

OPERATION MODES (Continued)

The clock to center frequency ratio range is:

$$
\begin{align*}
& \frac{500}{1} \geq \frac{f_{\mathrm{CLK}}}{\mathrm{f}_{0}} \geq \frac{100}{1} \text { or } \frac{50}{1}(\text { mode } 1 \mathrm{c}) \tag{6}\\
& \frac{100}{1} \text { or } \frac{50}{1} \geq \frac{\mathrm{f}_{\mathrm{CLK}}}{\mathrm{f}_{0}} \geq \frac{100}{\sqrt{2}} \text { or } \frac{50}{\sqrt{2}}(\text { mode } 1 \mathrm{~b}) \tag{7}
\end{align*}
$$

The input impedance of the S 1 pin is clock dependent, and in general R5 should not be larger than $5 \mathrm{k} \Omega$ for $\mathrm{f}_{\mathrm{CLK}}<$ 2.5 MHz and $2 \mathrm{k} \Omega$ for $\mathrm{f}_{\mathrm{CLK}}>2.5 \mathrm{MHz}$. Mode 1 c can be used to increase the clock-to-center-frequency ratio beyond 100:1. The limit for the $\left(\mathrm{f}_{\mathrm{CLK}} / \mathrm{f}_{0}\right)$ ratio is $500: 1$ for this mode. The filter will exhibit large output offsets with larger ratios. Mode 1d (Figure 19) is the fastest mode of operation: center frequencies beyond 20 kHz can easily be achieved at a 50:1 ratio.

Modes 2, 2a, and 2b (Figures 20, 21, and 22) have notch outputs whose frequency, f_{n}, can be tuned independently from the center frequency, f_{0}. However, for all cases $f_{n}<$ f_{0}. These modes are useful when cascading second order functions to create an overall elliptic highpass, bandpass or notch response. The input amplifier and its feedback resistors R2 and R4 are now part of the resonant loop. Because of this, mode 2 and its derivatives are slower than mode 1 and its derivatives.

In Mode 3 (Figure 23) a single resistor ratio, R2/R4, can tune the center frequency below or above the $\mathrm{f}_{\mathrm{CLK}} / 100$ (or $\mathrm{f}_{\mathrm{CLK}} / 50$) ratio. Mode 3 is a state variable configuration since it provides a highpass, bandpass, lowpass output through progressive integration. Notches are acquired by summing the highpass and lowpass outputs (mode 3a, Figure 24). The notch frequency can be tuned below or

$$
\begin{aligned}
& \mathrm{f}_{0}=\frac{\mathrm{f}_{\mathrm{CLK}}}{100(50)} \times \sqrt{\frac{\mathrm{R} 2}{\mathrm{R} 4}} ; \mathrm{Q}=\frac{\mathrm{R} 3}{\mathrm{R} 2} \times \sqrt{\frac{\mathrm{R} 2}{\mathrm{R} 4}} ; \\
& \mathrm{H}_{\mathrm{OHP}}=-\frac{\mathrm{R} 2}{\mathrm{R} 1} ; \mathrm{H}_{\mathrm{OLP}}=-\frac{\mathrm{R} 4}{\mathrm{R} 1} ; \mathrm{H}_{\mathrm{OBP}}=-\frac{\mathrm{R} 3}{\mathrm{R} 1}
\end{aligned}
$$

Figure 23. Mode 3: 2nd Order Filter Providing Highpass, Bandpass, Lowpass — $1 / 2$ ML2111

Figure 24. Mode 3a: 2nd Order Filter Providing Highpass, Bandpass, Lowpass, Notch — ½ ML2111

OPERATION MODES (Continued)
above the center frequency through the resistor ratio $R_{h} /$ R_{l}. Because of this, modes 3 and 3 a are the most versatile and useful modes for cascading second order sections to obtain high order elliptic filters. For very selective bandpass/bandreject filters the mode 3a approach, as in Figure 24, yields better dynamic range since the external op amp helps to optimize the dynamics of the output nodes of the ML2111.

Modes 4 and 5 are useful for constructing allpass response filters. Mode 4, Figure 25, gives an allpass response, but due to the sampled nature of the filter, a slight 0.5 dB peaking can occur around the center
frequency. Mode 4a (Figure 26) gives a non-inverting output, but requires an external op amp. Mode 5 is recommended if this response is unacceptable. Mode 5 (Figure 27) gives a flatter response than mode 4 if R1 $=$ R2 $=0.02 \times \mathrm{R} 4$.

Modes 6 and 7 are used to construct 1 st order filters. Mode 6a (Figure 28) gives a lowpass and a highpass single pole response. Mode 6b (Figure 29) gives an inverting and non-inverting lowpass single pole filter response. Mode 7 (Figure 30) gives an allpass and lowpass single pole response.

Figure 25. Mode 4: 2nd Order Filter Providing Allpass, Bandpass, Lowpass — ½ ML2111

Figure 26. Mode 4a: 2nd Order Filter Providing Highpass, Bandpass, Lowpass, Allpass - ½ ML2111

$$
\begin{gathered}
\mathrm{f}_{0}=\frac{\mathrm{f}_{\mathrm{CLK}}}{100(50)} \times \sqrt{1+\frac{\mathrm{R} 2}{\mathrm{R} 4}} ; \mathrm{f}_{\mathrm{Z}}=\frac{\mathrm{f}_{\mathrm{CLK}}}{100(50)} \times \sqrt{1-\frac{\mathrm{R} 1}{\mathrm{R} 4}} ; \\
\mathrm{Q}=\frac{\mathrm{R} 3}{\mathrm{R} 2} \times \sqrt{1+\frac{\mathrm{R} 2}{\mathrm{R} 4}} ; \mathrm{Q}_{\mathrm{Z}}=\frac{\mathrm{R} 3}{\mathrm{R} 1} \times \sqrt{1-\frac{\mathrm{R} 1}{\mathrm{R} 4}} ;
\end{gathered}
$$

$$
\mathrm{H}_{\mathrm{OBP}}=\frac{\mathrm{R} 3}{\mathrm{R} 2} \times\left(1+\frac{\mathrm{R} 2}{\mathrm{R} 1}\right) ; \mathrm{H}_{\mathrm{OZ}}(\mathrm{f} \rightarrow 0)=\frac{(\mathrm{R} 4 / \mathrm{R} 1)-1}{(\mathrm{R} 4 / \mathrm{R} 2)+1} ;
$$

$$
\mathrm{H}_{\mathrm{OZ}}\left(\mathrm{f} \rightarrow \frac{\mathrm{f}_{\mathrm{CLK}}}{2}\right)=\frac{\mathrm{R} 2}{\mathrm{R} 1} ; \mathrm{H}_{\mathrm{OLP}}=\frac{1+(\mathrm{R} 2 / \mathrm{R} 1)}{1+(\mathrm{R} 2 / \mathrm{R} 4)}
$$

Figure 27. Mode 5: 2nd Order Filter Providing Numerator Complex Zeroes, Bandpass, Lowpass - $1 / 2$ ML2111

$$
\mathrm{f}_{\mathrm{C}}=\frac{\mathrm{f}_{\mathrm{CLK}}}{100(50)} \times \frac{\mathrm{R} 2}{\mathrm{R} 3} ; \mathrm{H}_{\mathrm{OLP} 1}=1 ; \mathrm{H}_{\mathrm{OLP} 2}=-\frac{\mathrm{R} 3}{\mathrm{R} 2}
$$

Figure 29. Mode 6b: 1st Order Filter Providing Lowpass — ½ ML2111

$$
\mathrm{f}_{\mathrm{C}}=\frac{\mathrm{f}_{\mathrm{CLK}}}{100(50)} \times \frac{\mathrm{R} 2}{\mathrm{R} 3} ; \mathrm{H}_{\mathrm{OLP}}=-\frac{\mathrm{R} 3}{\mathrm{R} 1} ; \mathrm{H}_{\mathrm{OHP}}=-\frac{\mathrm{R} 2}{\mathrm{R} 1}
$$

Figure 28. Mode 6a: 1st Order Filter Providing Highpass, Lowpass - ½ ML2111

$$
\mathrm{f}_{\mathrm{P}}=\mathrm{f}_{\mathrm{Z}}=\frac{\mathrm{f}_{\mathrm{CLK}}}{100(50)} \times \frac{\mathrm{R} 2}{\mathrm{R} 3} ; \mathrm{H}_{\mathrm{OLP}}=2 \times-\frac{\mathrm{R} 2}{\mathrm{R} 3}
$$

$\mid \mathrm{GAIN}$ AT OUTPUT $\mid=1$ FOR $0 \leq f \leq \frac{\mathrm{f}_{\mathrm{CLK}}}{2}$
Figure 30. Mode 7: 1st Order Filter Providing Allpass, Lowpass — 1 12 ML2111

1% RESISTOR VALUES

$$
\begin{array}{ll}
\text { R21 }=3746 \Omega & \text { R22 }=1996 \Omega \\
\text { R31 }=2003 \Omega & \text { R32 }=2604 \Omega
\end{array}
$$

Figure 31. 4th Order, 100 kHz Lowpass Butterworth Filter Obtained by Cascading Two Sections in Mode 1a.

Figure 32. Cascasding 2 Sections Connected in Mode 1, each with $Q=10$, to obtain a Bandpass Filter with $Q=15.5$, and $f_{0}=150 \mathrm{kHz}\left(f_{C L K}=7.5 \mathrm{MHz}\right)$.

Figure 33. Cascading Two Sections in Mode 1d, Each with Q =1, (Independent of Resistor Ratios) to Create a Sharper 4th Order Lowpass Filter.

Figure 34. Notch Filter with $Q=50$ and $f_{0}=130 \mathrm{kHz}$. This Circuit Uses Side A in Mode $\mathbf{1 d}$ and the Side B Op Amp to Create a Notch Whose Depth is Controlled by R31. The Notch is Created by Subtracting the Bandpass from Vin. The Bandpass of Side A is Subtracted Using the Op Amp of Side B.

OPERATION MODES (Continued)

Mode 1a is a good choice when Butterworth filters are desired since they have poles in a circle with the same f_{0}. Figure 31 shows an example of a 4 th order, 100 kHz lowpass Butterworth filter clocked at 5 MHz .

A monotonic passband response with a smooth transition band results, showing the circuit's low sensitivity, even though 1% resistors are used which results in an approximate value of Q .

Figure 32 gives an example of a 4th order bandpass filter implemented by cascading 2 sections, each with a Q of 10. This figure shows the amplitude response when $\mathrm{f}_{\mathrm{CLK}}=$ 7.5 MHz , resulting in a center frequency of 150 kHz and a Q of 15.5.

Figure 33 uses mode 1d of a 4th order flter where each section has a Q of 1, independent of resistor ratios. In this mode, the input amplifier is outside the damping (Q) loop. Therefore, its finite bandwidth does not degrade the response at high frequency. This allows the amplifier to be used as an anti-aliasing and continuous smoothing fliter by placing a capacitor across R2.

OFFSETS

Switched capacitor integrators generally exhibit higher input offsets than discrete RC integrators.

These offsets are mainly the charge injection of the CMOS switchers into the integrating capacitors. The internal op amp offsets also add to the overall offset budget.Figure 35 shows half of the ML2111 filter with its equivalent input offsets $\mathrm{V}_{\mathrm{OS} 1}, \mathrm{~V}_{\mathrm{OS} 2}, \& \mathrm{~V}_{\mathrm{OS} 3}$.

The DC offset at the filter bandpass output is always equal to $\mathrm{V}_{\mathrm{OS3} 3}$. The DC offsets at the remaining two outputs (Notch and LP) depend on the mode of operation and external resistor ratios. Table 3 illustrates this.

It is important to know the value of the DC output offsets, especially when the filter handles input signals with large dynamic range. As a rule of thumb, the output DC offsets increase when:

1. The Qs decrease

2. The ratio $\left(\mathrm{f}_{\mathrm{CLK}} / \mathrm{f}_{\mathrm{O}}\right)$ increases beyond $100: 1$. This is done by decreasing either the (R2/R4) or the R6/(R5 + R6) resistor ratios.

Figure 35. Equivalent Input Offsets of $1 \not 12$ of an ML2111 Filter.

MODE	$V_{\text {OSN }}$ $\mathrm{N} / \mathrm{AP}^{\prime} / \mathrm{HP}_{\mathrm{A}}, \mathrm{N} / \mathrm{AP} / \mathrm{HP}_{\mathrm{B}}$	$\begin{gathered} \mathrm{V}_{\mathrm{OSBP}} \\ \mathbf{B P}_{\mathrm{A}}, \mathbf{B P _ { B }} \end{gathered}$	$\begin{gathered} \mathrm{V}_{\mathrm{OSLP}} \\ \mathbf{L P}_{\mathrm{A}}, \mathrm{LP}_{\mathrm{B}} \end{gathered}$		
1,4	$\mathrm{V}_{\mathrm{OS} 1}\left[(1 / \mathrm{Q})+1+\left\\|\mathrm{H}_{\text {OLP }}\right\\|\right]-\mathrm{V}_{\text {OS3 }} / \mathrm{Q}$	$\mathrm{V}_{\text {OS3 }}$	$\mathrm{V}_{\text {OSN }}-\mathrm{V}_{\text {OS2 }}$		
1a	$\mathrm{V}_{\mathrm{OS} 1}[1+(1 / \mathrm{Q})]-\mathrm{V}_{\mathrm{OS} 3} / \mathrm{Q}$	$\mathrm{V}_{\text {OS3 }}$	$\mathrm{V}_{\text {OSN }}-\mathrm{V}_{\text {OS2 }}$		
1b	$\left.\mathrm{V}_{\mathrm{OS} 1}[(1 / \mathrm{Q})]+1+\mathrm{R} 2 / \mathrm{R} 1\right]-\mathrm{V}_{\mathrm{OS} 3} / \mathrm{Q}$	$\mathrm{V}_{\text {OS3 }}$	$\sim\left(\mathrm{V}_{\text {OSN }}-\mathrm{V}_{\text {OS2 }}\right)(1+\mathrm{R} 5 / \mathrm{R} 6)$		
1c	$\left.\mathrm{V}_{\text {OS1 }}[(1 / \mathrm{Q})]+1+\mathrm{R} 2 / \mathrm{R} 1\right]-\mathrm{V}_{\text {OS3 }} / \mathrm{Q}$	$\mathrm{V}_{\text {OS3 }}$	$\sim\left(V_{\mathrm{OSN}}-V_{\mathrm{OS} 2}\right) \frac{R 5+R 6}{R 5+2 R 6}$		
1d	$\mathrm{V}_{\mathrm{OS} 1}[1+\mathrm{R} 2 / \mathrm{R} 1]$	$\mathrm{V}_{\text {OS3 }}$	$\mathrm{V}_{\text {OSN }}-\mathrm{V}_{\text {OS2 }}-\mathrm{V}_{\text {OS3 }} / \mathrm{Q}$		
2,5	$\left[\mathrm{V}_{\mathrm{OS} 1}(1+\mathrm{R} 2 / \mathrm{R} 1+\mathrm{R} 2 / \mathrm{R} 3+\mathrm{R} 2 / \mathrm{R} 4)-\mathrm{V}_{\mathrm{OS} 3}(\mathrm{R} 2 / \mathrm{R} 3)\right] \times$ $[R 4 /(R 2+R 4)]+V_{\mathrm{OS} 2}[R 2 /(R 2+R 4)]$	$\mathrm{V}_{\text {OS3 }}$	$\mathrm{V}_{\text {OSN }}-\mathrm{V}_{\text {OS2 }}$		
2 a	$\begin{aligned} & {\left[V_{\mathrm{OS} 1}(1+\mathrm{R} 2 / \mathrm{R} 1+\mathrm{R} 2 / \mathrm{R} 3+\mathrm{R} 2 / \mathrm{R} 4)-\mathrm{V}_{\mathrm{OS} 3}(\mathrm{R} 2 / \mathrm{R} 3)\right] \times} \\ & {\left[\frac{\mathrm{R} 4(1+\mathrm{k})}{\mathrm{R} 2+\mathrm{R} 4(1+\mathrm{k})}\right]+\mathrm{V}_{\mathrm{OS} 2}\left[\frac{\mathrm{R} 2}{\mathrm{R} 2+\mathrm{R} 4(1+\mathrm{k})}\right] ; \mathrm{k}=\frac{\mathrm{R} 6}{\mathrm{R} 5+\mathrm{R} 6}} \end{aligned}$	$\mathrm{V}_{\text {OS3 }}$	$\sim\left(V_{\mathrm{OSN}}-V_{\mathrm{OS} 2}\right) \frac{\mathrm{R} 5+\mathrm{R} 6}{\mathrm{R} 5+2 R 6}$		
2 b	$\left[\mathrm{V}_{\mathrm{OS} 1}(1+\mathrm{R} 2 / \mathrm{R} 1+\mathrm{R} 2 / \mathrm{R} 3+\mathrm{R} 2 / \mathrm{R} 4)-\mathrm{V}_{\mathrm{OS} 3}(\mathrm{R} 2 / \mathrm{R} 3)\right] \times$ $\left[\frac{\mathrm{R} 4(\mathrm{k})}{\mathrm{R} 2+\mathrm{R} 4(\mathrm{k})}\right]+\mathrm{V}_{\mathrm{OS} 2}\left[\frac{\mathrm{R} 2}{\mathrm{R} 2+\mathrm{R} 4(\mathrm{k})}\right] ; \mathrm{k}=\frac{\mathrm{R} 6}{\mathrm{R} 5+\mathrm{R} 6}$	$\mathrm{V}_{\text {OS3 }}$	$\sim\left(\mathrm{V}_{\mathrm{OSN}}-\mathrm{V}_{\mathrm{OS} 2}\right)\left(1+\frac{\mathrm{R} 5}{\mathrm{R} 6}\right)$		
3, 4a	$\mathrm{V}_{\mathrm{OS} 2}$	$\mathrm{V}_{\text {OS3 }}$	$V_{\text {OS } 1}\left[1+\frac{R 4}{R 1}+\frac{R 4}{R 2}+\frac{R 4}{R 3}\right]-V_{\text {OS } 2}\left(\frac{R 4}{R 2}\right)-V_{\text {OS } 3}\left(\frac{R 4}{R 3}\right)$		

Table 3.

PHYSICAL DIMENSIONS inches (millimeters)

Package: S20
20-Pin SOIC

ORDERING INFORMATION

PART NUMBER	TEMPERATURE RANGE	PACKAGE
ML2111CCP (EOL)	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	20 -Pin PDIP (P20)
ML2111CCS	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	$20-$ Pin SOIC (S20)
ML2111CIP (OBS)	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	$20-\mathrm{Pin} \mathrm{PDIP} \mathrm{(P20)}$

> Micro Linear Corporation
> 2092 Concourse Drive
> San Jose, CA 95131
> Tel: (408) 433-5200
> Fax: (408) 432-0295
© Micro Linear 1999. 佂 \mathbf{L} Micro Linear is a registered trademark of Micro Linear Corporation. All other trademarks are the property of their respective owners.

[^0] $5,027,116 ; 5,281,862 ; 5,283,483 ; 5,418,502 ; 5,508,570 ; 5,510,727 ; 5,523,940 ; 5,546,017 ; 5,559,470 ; 5,565,761$; $5,592,128 ; 5,594,376 ; 5,652,479 ; 5,661,427 ; 5,663,874 ; 5,672,959 ; 5,689,167 ; 5,714,897 ; 5,717,798 ; 5,742,151$; $5,747,977 ; 5,754,012 ; 5,757,174 ; 5,767,653 ; 5,777,514 ; 5,793,168 ; 5,798,635 ; 5,804,950 ; 5,808,455 ; 5,811,999$; $5,818,207 ; 5,818,669 ; 5,825,165 ; 5,825,223 ; 5,838,723 ; 5.844,378 ; 5,844,941$. Japan: 2,598,946; 2,619,299; $2,704,176 ; 2,821,714$. Other patents are pending.
Micro Linear makes no representations or warranties with respect to the accuracy, utility, or completeness of the contents of this publication and reserves the right to makes changes to specifications and product descriptions at any time without notice. No license, express or implied, by estoppel or otherwise, to any patents or other intellectual property rights is granted by this document. The circuits contained in this document are offered as possible applications only. Particular uses or applications may invalidate some of the specifications and/or product descriptions contained herein. The customer is urged to perform its own engineering review before deciding on a particular application. Micro Linear assumes no liability whatsoever, and disclaims any express or implied warranty, relating to sale and/or use of Micro Linear products including liability or warranties relating to merchantability, fitness for a particular purpose, or infringement of any intellectual property right. Micro Linear products are not designed for use in medical, life saving, or life sustaining applications.

[^0]: Products described herein may be covered by one or more of the following U.S. patents: 4,897,611; 4,964,026;

