16-Bit Buffer/Line Driver with 3-State Outputs

GENERAL DESCRIPTION

The ML6516244 is a BiCMOS, 16-bit buffer/line driver with 3-state outputs. This device was specifically designed for high speed bus applications. Its 16 channels support propagation delay of 2.5 ns maximum, and fast output enable and disable times of 7.0 ns or less to minimize datapath delay.

This device is designed to minimize undershoot, overshoot, and ground bounce to decrease noise delays. These transceivers implement a unique digital and analog implementation to eliminate the delays and noise inherent in traditional digital designs. The device offers a new method for quickly charging up a bus load capacitor to minimize bus settling times, or FastBus ${ }^{\text {TM }}$ Charge. FastBus Charge is a transition current, (specified as I DYNAMIC) that injects between 60 to 200 mA (depending on output load) of current during the rise time and fall time. This current is used to reduce the amount of time it takes to charge up a heavily-capacitive loaded bus, effectively reducing the bus settling times, and improving data/clock margins in tight timing budgets.

Micro Linear's solution is intended for applications for critical bus timing designs that include minimizing device propagation delay, bus settling time, and time delays due to noise. Applications include; high speed memory arrays, bus or backplane isolation, bus to bus bridging, and sub2.5 ns propagation delay schemes.

FEATURES

■ Low propagation delays - 2.5 ns maximum for 3.3 V
2.25 ns maximum for 5.0 V

■ Fast output enable/disable times of 5.0ns maximum
■ FastBus Charge current to minimize the bus settling time during active capacitive loading

■ 3.0 to 3.6 V and 4.5 to $5.5 \mathrm{~V} \mathrm{~V}_{\mathrm{CC}}$ supply operation; LV-TTL compatible input and output levels with 3-state capability

■ Industry standard pinout compatible to FCT, ALV, LCX, LVT, and other low voltage logic families

■ ESD protection exceeds 2000 V

- Full output swing for increased noise margin
- Undershoot and overshoot protection to 400 mV typically

■ Low ground bounce design

* This part is End of Life as of August 1, 2000.

The ML6516244 follows the pinout and functionality of the industry standard 3.3 V -logic families.

BLOCK DIAGRAM

PIN CONFIGURATION

ML6516244
48-Pin SSOP (R48) 48-Pin TSSOP (T48)

FUNCTION TABLE

(Each 4-bit section)

INPUTS		OUTPUTS
OE	$\mathbf{1 A i}, \mathbf{2 A i}, \mathbf{3 A i}, \mathbf{4 A i}$	$\mathbf{1 B i}, \mathbf{2 B i}, \mathbf{3 B i}, \mathbf{4 B i}$
L	H	H
L	L	L
H	X	Z

$\mathrm{L}=$ Logic Low, $\mathrm{H}=$ Logic High, $\mathrm{X}=$ Don't Care, $\mathrm{Z}=$ High Impedance

PIN DESCRIPTION

PIN	NAME	FUNCTION	PIN	NAME	FUNCTION
1	$1 \overline{\mathrm{OE}}$	Output Enable	25	$3 \overline{\mathrm{OE}}$	Output Enable
2	$1 \mathrm{B0}$	Data Output	26	4A3	Data Input
3	1B1	Data Output	27	4A2	Data Input
4	GND	Signal Ground	28	GND	Signal Ground
5	1B2	Data Output	29	4A1	Data Input
6	1B3	Data Output	30	4A0	Data Input
7	$\mathrm{V}_{\text {CC }}$	3.3 V or 5.0V Supply	31	$\mathrm{V}_{\text {CC }}$	3.3 V or 5.0V Supply
8	2B0	Data Output	32	3A3	Data Input
9	2B1	Data Output	33	3A2	Data Input
10	GND	Signal Ground	34	GND	Signal Ground
11	2B2	Data Output	35	3A1	Data Input
12	2B3	Data Output	36	3 AO	Data Input
13	3B0	Data Output	37	2A3	Data Input
14	3B1	Data Output	38	2A2	Data Input
15	GND	Signal Ground	39	GND	Signal Ground
16	3B2	Data Output	40	2A1	Data Input
17	3B3	Data Output	41	2A0	Data Input
18	$\mathrm{V}_{\text {CC }}$	3.3 V or 5.0V Supply	42	$\mathrm{V}_{\text {CC }}$	3.3 V or 5.0V Supply
19	4B0	Data Output	43	1A3	Data Input
20	4B1	Data Output	44	1A2	Data Input
21	GND	Signal Ground	45	GND	Signal Ground
22	4B2	Data Output	46	1A1	Data Input
23	4B3	Data Output	47	1A0	Data Input
24	$4 \overline{\mathrm{OE}}$	Output Enable	48	$2 \overline{\mathrm{OE}}$	Output Enable

ABSOLUTE MAXIMUM RATINGS

Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.
V_{Cc} 7V
DC Input Voltage -0.3 V to $\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}$
AC Input Voltage (PW < 20ns) 3.0 V
DC Output Voltage -0.3 V to 7 VDC
Output Current, Source or Sink 180mA

OPERATING CONDITIONS

Temperature Range... $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
VIN Operating Range......................... 3.0 V to 5.5 V
3.0 V to 5.5 V

ELECTRICAL CHARACTERISTICS - 3.3V OPERATION

Unless otherwise specified, $\mathrm{V}_{I \mathrm{~N}}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=$ Operating Temperature Range (Note 1).

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS

AC ELECTRICAL CHARACTERISTICS (CLOAD $=50 \mathrm{pF}$)

$t_{\text {PHL }} \mathrm{t}_{\text {PLH }}$	Propagation Delay	Ai to Bi	1.8	2.1	2.5	ns
t_{OE}	Output Enable Time	$\overline{\mathrm{OE}}$ to Ai			7.0	ns
t_{OD}	Output Disable Time	$\overline{\mathrm{OE}}$ to Ai			7.0	ns
$\mathrm{~T}_{\mathrm{OS}}$	Output-to-Output Skew				500	ps
$\mathrm{C}_{\text {IN }}$	Input Capacitance				5	pF

DC ELECTRICAL CHARACTERISTICS (CLOAD $=50 \mathrm{pF}$, R LOAD $=$ Open $)$

V_{IH}	Input High Voltage	Logic high	2.0			V
$\mathrm{V}_{\text {IL }}$	Input Low Voltage	Logic low			0.8	V
$\mathrm{IIH}^{\text {H }}$	Input High Current	Per pin, $\mathrm{V}_{\mathrm{IN}}=3 \mathrm{~V}$			300	$\mu \mathrm{A}$
$\mathrm{I}_{\text {IL }}$	Input Low Current	Per pin, $\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$			300	$\mu \mathrm{A}$
$\mathrm{I}_{\mathrm{HI}-\mathrm{Z}}$	Three-State Output Current	$\mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V}, 0<\mathrm{V}_{\text {IN }}<\mathrm{V}_{\mathrm{CC}}$			5	$\mu \mathrm{A}$
$V_{\text {IC }}$	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V}, \mathrm{I}_{\mathrm{IN}}=18 \mathrm{~mA}$		-0.7	-0.2	V
$I_{\text {dynamic }}$	Dynamic Transition Current (FastBus Charge)	Low to high transitions		80		mA
		High to low transitions		80		mA
V_{OH}	Output High Voltage	$\mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V}, \mathrm{I}_{\mathrm{OH}}=-2 \mathrm{~mA}$	2.4			V
V_{OL}	Output LowVoltage	$\mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V}, \mathrm{I}_{\mathrm{OL}}=2 \mathrm{~mA}$			0.6	V
I_{CC}	Quiescent Power Supply Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V}, \mathrm{f}=0 \mathrm{~Hz}, \\ & \text { inputs }=\mathrm{V}_{\mathrm{CC}} \text { or } 0 \mathrm{~V} \end{aligned}$			3	$\mu \mathrm{A}$

[^0]ELECTRICAL CHARACTERISTICS - 5V OPERATION
Unless otherwise specified, $\mathrm{V}_{\text {IN }}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=$ Operating Temperature Range (Note 1).

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
AC ELECTRICAL CHARACTERISTICS ($\mathrm{C}_{\text {LOAD }}=50 \mathrm{pF}$)						
$t_{\text {PHL }}$, tPLH	Propagation Delay	Ai to Bi	1.6	1.9	2.25	ns
toe	Output Enable Time	$\overline{\mathrm{OE}}$ to Ai			7.0	ns
${ }_{\text {tod }}$	Output Disable Time	$\overline{\mathrm{OE}}$ to $\mathrm{Ai} / \mathrm{Bi}$			7.0	ns
T_{OS}	Output-to-Output Skew				500	ps
$\mathrm{CIN}^{\text {N }}$	Input Capacitance				5	pF

DC ELECTRICAL CHARACTERISTICS (CLOAD $=50 \mathrm{pF}$, R LOAD $=$ Open $)$

V_{IH}	Input High Voltage	Logic high	3.6			V
$\mathrm{~V}_{\mathrm{IL}}$	Input Low Voltage	Logic low			0.8	V
I_{IH}	Input High Current	Per pin, $\mathrm{V}_{\mathrm{IN}}=4.5 \mathrm{~V}$			300	$\mu \mathrm{~A}$
I_{IL}	Input Low Current	Per pin, $\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$		300	$\mu \mathrm{~A}$	
$\mathrm{I}_{\mathrm{HI}-\mathrm{Z}}$	Three-State Output Current	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, 0<\mathrm{V}_{\mathrm{IN}}<\mathrm{V}_{\mathrm{CC}}$			5	$\mu \mathrm{~A}$
$\mathrm{~V}_{\mathrm{IC}}$	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{I}_{\mathrm{IN}}=18 \mathrm{~mA}$		-0.7	-0.2	V
$\mathrm{I}_{\mathrm{DYNAMIC}}$	Dynamic Transition Current (FastBus Charge)	Low to high transitions		120		mA
	High to low transitions		120	mA		
$\mathrm{~V}_{\mathrm{OH}}$	Output High Voltage	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{I}_{\mathrm{OH}}=-2 \mathrm{~mA}$		V		
$\mathrm{~V}_{\mathrm{OL}}$	Output Low Voltage	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{I}_{\mathrm{OL}}=2 \mathrm{~mA}$			1.2	V
I_{CC}	Quiescent Power Supply Current	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{f}=0 \mathrm{~Hz}$, inputs $=\mathrm{V}_{\mathrm{CC}}$ or 0 V		3 A		

Note 1: Limits are guaranteed by 100% testing, sampling, or correlation with worst-case test conditions.

PERFORMANCE DATA 3.3V OPERATION

Figure 1. Propagation Delay over Load Capacitance: 30 to $150 \mathrm{pF}, \mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{IN}}=3.3 \mathrm{~V}, 20 \mathrm{MHz}$

Figure 3. Ground Bounce:
ML6516244, $\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{IN}}=3.0 \mathrm{~V}$
$\mathrm{V}_{\mathrm{IN}}: \mathrm{t}_{\mathrm{RISE}}=\mathrm{t}_{\mathrm{FALL}}=2 \mathrm{~ns}$

Figure 5a. Typical V_{OL} vs. I_{OL} for One Buffer Output

Figure 2. ICC vs. Frequency (10 to 100 MHz) over Load,
$\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{IN}}=3.3 \mathrm{~V}$

Figure 4. I ML6516244, $\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{IN}}=3.3 \mathrm{~V}, 50 \mathrm{pF}$ load, 40mA/DIV, $V_{\text {IN }}: \mathrm{t}_{\text {RISE }}=\mathrm{t}_{\mathrm{FALL}}=2 \mathrm{~ns}$

Figure 5b. Typical V_{OH} vs. I_{OH} for One Buffer Output

PERFORMANCE DATA 5.0V OPERATION

Figure 6. Propagation Delay over Load Capacitance: 30 to $150 \mathrm{pF}, \mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{IN}}=5.0 \mathrm{~V}, 20 \mathrm{MHz}$

Figure 7. ICC vs. Frequency (10 to 100 MHz) over Load, $\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{IN}}=5.0 \mathrm{~V}$

Figure 8. $I_{\text {Dynamic }}$ Current (FastBus Charge): ML6516244, $\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\text {IN }}=5.0 \mathrm{~V}, 50 \mathrm{pF}$ load, $100 \mathrm{~mA} /$ DIV, $\mathrm{V}_{\mathrm{IN}}: \mathrm{t}_{\text {RISE }}=\mathrm{t}_{\text {FALL }}=2 \mathrm{~ns}$

FUNCTIONAL DESCRIPTION

Figure 9. Logic Diagram

Figure 10. Logic Symbol

ARCHITECTURAL DESCRIPTION

The ML6516244 is a 16-bit buffer/line driver with 3-state outputs designed for 3.0 V to 3.6 V and 4.5 V to $5.5 \mathrm{~V} \mathrm{~V}_{\mathrm{CC}}$ operation. This device is designed for Quad-Nibble, Dual-Byte or single 16-bit word memory interleaving operations. Each bank has an independently controlled 3state output enable pin with output enable/disable access times of less than 7.Ons. Each bank is configured to have four independent buffer/line drivers.

Until now, these buffer/line drivers were typically implemented in CMOS logic and made to be TTL compatible by sizing the input devices appropriately. In order to buffer large capacitances with CMOS logic, it is necessary to cascade an even number of inverters, each successive inverter larger than the preceding, eventually leading to an inverter that will drive the required load capacitance at the required frequency. Each inverter stage represents an additional delay in the gating process because in order for a single gate to switch, the input must slew more than half of the supply voltage. The best of these 16-bit CMOS buffers has managed to drive 50pF load capacitance with a delay of 3.6 ns .

Micro Linear has produced a 16-bit buffer/line driver with a delay less than 2.5 ns by using a unique circuit architecture that does not require cascade logic gates.

The basic architecture of the ML6516244 is shown in Figure 11. In this circuit, there are two paths to the output.

One path sources current to the load capacitance where the signal is asserted, and the other path sinks current from the output when the signal is negated.

The assertion path is the Darlington pair consisting of transistors Q1 and Q2. The effect of transistor Q1 is to increase the current gain through the stage from input to output, to increase the input resistance and to reduce input capacitance. During an input low-to-high transition, the output transistor Q2 sources large amount of current to quickly charge up a highly capacitive load which in effect reduces the bus settling time. This current is specified as IDYNAMIC.

The negation path is also the Darlington pair consisting of transistor Q3 and transistor Q4. With M1 connecting to the input of the Darlington pair, Transistor Q4 then sinks a large amount of current during the input transition from high-to-low.

Inverter X2 is a helpful buffer that not only drives the output toward the upper rail but also pulls the output to the lower rail.

There are a number of MOSFETs not shown in Figure 11. These MOSFETs are used to 3-state the buffers. For instance, R1 and R2 were implemented as resistive transmission gates to ensure that disabled buffers do not load the lines of which they are connected.

Figure 11. One Buffer Cell of the ML6516244

Figure 12. Test Circuits for All Outputs

Figure 14. Enable and Disable Times

INPUT

Figure 13. Propagation Delay

Figure 15. Output Skew

PHYSICAL DIMENSIONS inches (millimeters)

Package: T48
48-Pin TSSOP

ORDERING INFORMATION

PART NUMBER	TEMPERATURE RANGE	PACKAGE
ML6516244CR (OBS)	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	48 -Pin SSOP (R48)
ML6516244CT (EOL)	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	48 -Pin TSSOP (T48)

Micro Linear Corporation
2092 Concourse Drive
San Jose, CA 95131
Tel: (408) 433-5200
Fax: (408) 432-0295
www.microlinear.com
© Micro Linear 2000. is a registered trademark of Micro Linear Corporation. All other trademarks are the property of their respective owners.

Products described herein may be covered by one or more of the following U.S. patents: $4,897,611 ; 4,964,026 ; 5,027,116$; $5,281,862 ; 5,283,483 ; 5,418,502 ; 5,508,570 ; 5,510,727 ; 5,523,940 ; 5,546,017 ; 5,559,470 ; 5,565,761 ; 5,592,128 ; 5,594,376 ;$ $5,652,479 ; 5,661,427 ; 5,663,874 ; 5,672,959 ; 5,689,167 ; 5,714,897 ; 5,717,798 ; 5,742,151 ; 5,747,977 ; 5,754,012 ; 5,757,174 ;$ $5,767,653 ; 5,777,514 ; 5,793,168 ; 5,798,635 ; 5,804,950 ; 5,808,455 ; 5,811,999 ; 5,818,207 ; 5,818,669 ; 5,825,165 ; 5,825,223$; $5,838,723 ; 5.844,378 ; 5,844,941$. Japan: $2,598,946 ; 2,619,299 ; 2,704,176 ; 2,821,714$. Other patents are pending.

[^0]: Note 1: Limits are guaranteed by 100% testing, sampling, or correlation with worst-case test conditions.

