Token Ring Copper-to-Fiber Converter

GENERAL DESCRIPTION

The ML6680 is a single-chip conversion between Token Ring ISO /IEC8802-5 copper-based media and Token Ring ISO/IEC8802-5 fiber-based media. The M L6680 fiber-optic interface contains a data quantizer, circuitry for fiber optic key signal generation and recognition, pin-selectable signal switching, and current driven transmitter outputs.
The M L6680 copper interface consists of a twisted pair line equalizer, receive squelch circuit, pin selectable phantom wire fault detection and signal switching, and a transmit driver. This section supports the ISO /IEC8802-5 standard requirements. The ML6680 provides an optional PECL compatible interface.

The M L6680 may be configured to one of four modes:

1. Standard Media Converter
2. Concentrator M edia Converter
3. Lobe or Ring Out Port M edia Converter
4. Ring In Port M edia Converter

FEATURES

- Single-chip copper-to-fiber converter for Token Ring
- 16Mbps and 4M bps data rates with the same external components
- Four modes of operation covering a wide variety of applications
- Full duplex operation
- Highly stable data quantizer with 55dB input dynamic range
- Current driven fiber optic LED driver for accurate launch power
■ Current driven output for low RFI noise and low jitter
- Capable of driving 100Ω UTP or 150Ω STP
- Pin selectable phantom wire fault detection and signal switching

BLOCK DIAGRAM

ML6680
28-Pin PLCC (Q28)

PIN DESCRIPTION

PIN\#	NAME	FUNCTION
1,28	$\begin{aligned} & \text { XTAL1, } \\ & \text { XTAL2 } \end{aligned}$	Crystal inputs. A 32.768 kHz watch crystal connected between these pins provides timing for the fiber optic insertion key signal. An external clock can be used to drive XTAL1 while grounding XTAL2. The frequency of the external clock should be between 32.7 kHz and 34.5 kHz .
2	$V_{\text {CC2 }}$	Positive 5V power supply.
3, 4	EQ A, EQ B	Equalizer network pins. An external combination of two resistors and a capacitor connected at EQA and EQB sets up the on-chip twisted pair receive equalizer.
5,6	TPIN P/N	Receive twisted pair inputs. This differential input pair receives differential M anchester signals from the coupling transformer (or PECL compatible levels).
7, 8	PHTM 1/2	Phantom drive/sense inputs/outputs. In configuration 1, these pins are TTL inputs from two external opto isolators. They are low when phantom power is present and high when phantom power is removed. These pins provide the phantom drive current and are used to check for a wire fault on the phantom circuits when it is required in configuration 2. In configuration 3, these pins are don't cares. In configuration 4, these pins are low for normal operation, or any or both of them is high to force the M L6680 into the "Bypass State."
9	GND 2	Ground.
10, 11	TPOUTP/N	Transmit twisted pair outputs. This differential current output pair drives differential M anchester signals into the network coupling transformer and transmit filter. O utput edge rates are controlled to allow use of a simpler filter than would otherwise be required. These outputs can be PECL compatible with an external resistor network.
12	$\overline{\text { TPINOK }}$	Valid twisted pair input signal indicator. It is an active low, open collector LED driver. This output goes low when the signal at TPIN P/N meets frequency and amplitude squelch requirements. This input is tied to ground for configurations 3 and 4 to enable signal path switching.

PIN\#	NAME	FUNCTION
13	RTSETTP	Twisted pair transmit level set resistor input. A precision resistor between RTSETTP and VCC sets the amplitude of the TPOUTP/N output.
14	VCC1	Positive 5V power supply.
15	INSERTED	Insertion indicator. It is an active low, open collector LED driver. In configurations 1,3 and 4 this output goes low when the ML6680 is in the "Insert State." In configuration 2 this output goes low when the ML6680 is in the "Insert State" and no wire fault is detected. This input is tied to ground to disable the frequency squelch, and to reduce the time constant of the amplitude squelch of the optical input.
16	RTSETO P	A precision resistor betw een RTSETO P and VCC sets the amplitude of the O POUT output.
17	$\overline{\text { OPINOK }}$	Valid fiber optic input signal indicator. It is an active low, open collector LED driver. This output goes low when the signal at O PIN P/N meets frequency and amplitude squelch limit for received signals at TPIN P/N.
18	OPVCC	Positive 5V power supply for fiber optic LED driver.
19	OPOUT	Fiber optic LED driver output. The fiber optic LED connects between this pin and OPVCC.
20	OPGND	Ground for the fiber optic LED driver.
21	GND 1	Ground.
22	KEYGEN	Key generation select CM O S input. This input is low for configurations 2 and 3 of the general description, and is high for configurations 1 and 4 .
23	VDC	O ffset correction time constant capacitor input. An external capacitor between this pin and Q GND determines the time constant of the internal offset correction circuit for the fiber optic quantizer.
24	Q GND	Q uantizer's ground.
26, 25	OPIN P/N	Receive fiber inputs. This pair of inputs receive differential M anchester signals from the fiber optic receiver/preamp and present them to the on-chip fiber optic quantizer. These inputs should be capacitively coupled to the input source. The input resistance is approximately $1.3 \mathrm{k} \Omega$.
27	Q VCC	Quantizer's positive 5V power supply.

ABSOLUTE MAXIMUM RATINGS

Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.
Power Supply Voltage Range, V_{Cc} -0.3 to 6 V
Input Voltage Range -0.3 to V_{Cc}
O utput Current
TPOUTP, TPOUTN 50 mA
OPOUT 70 mA
PHTM 1, PHTM 2 10 mA
Input Current
RTSETTP, RTSETO P, TPINOK,OPINOK, INSERTED20 mA
Storage Temperature $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10 sec .) 260°
Thermal Resistance $68^{\circ} \mathrm{C} / \mathrm{W}$

ELECTRICAL CHARACTERISTICS

O ver full range of operating conditions unless otherwise specified (Note 1).

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
POWER SUPPLY CURRENT	$V_{\text {CC }}$ Supply Current	No transmitting, phantom power off	30	36	50	mA
$I_{\text {CC1 }}$	$V_{\text {CC }}$ Supply Current	RTSETTP $=255$, RTSETO P $=115$, transmitting, phantom power on (Note 2)				
$I_{\text {CC2 }}$		120		160	mA	

CMOS INPUTS PHTM1, PHTM2 (when KEYGEN = High or TPINOK is grounded) AND KEYGEN

$\mathrm{V}_{\text {ILC }}$	Input Low Voltage				$0.1 \times \mathrm{V}_{\mathrm{CC}}$	V
$\mathrm{V}_{\text {IHC }}$	Input High Voltage		$0.9 \times \mathrm{V}_{\mathrm{CC}}$			V

TTL INPUT: XTAL1

$\mathrm{V}_{\text {ILT }}$	Input Low Voltage				0.8
$\mathrm{~V}_{\text {IHT }}$	Input High Voltage		2		V
$\mathrm{I}_{\text {ILT }}$	Input Low Current	$\mathrm{V}(X T A L 1)=0 \mathrm{~V}$	-100		V
$\mathrm{I}_{\text {IHT }}$	Input High Current	$\mathrm{V}(X T A L 1)=2.7 \mathrm{~V}$			$\mu \mathrm{~A}$
$\mathrm{R}_{\text {IXI }}$	Input Resistance		400		100

CONTROL INPUTS: INSERTED, TPINOK

$\mathrm{V}_{\text {ILS }}$	Input Low Voltage				0.1	V
$\mathrm{I}_{\text {ILS }}$	Input Low Current	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$	-50			$\mu \mathrm{~A}$

STATUS LED OUTPUTS: INSERTED, TPINOK, OPINOK

IOLS	O utput Low Current	Pin connected to $V_{\text {CC }}$	14	19	24	mA
I OHS	O utput Off Current			3	10	$\mu \mathrm{~A}$

ELECTRICAL CHARACTERISTICS (Continued)

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
PHANTOM DRIVE OUTPUTS: PHTM1, PHTM2						
R_{NF}	No Fault Phantom Load Resistance		2.9		5.5	$\mathrm{k} \Omega$
RSC	Short Circuit Phantom Load Resistance				50	Ω
Roc	O pen Circuit Phantom Load Resistance		50			k Ω
$\mathrm{V}_{\text {OHP }}$	Phantom O utput High Voltage	$\mathrm{I}_{\text {OHP }}>-1 \mathrm{~mA}$	4.1			V
		$\mathrm{IOHP}>-2 \mathrm{~mA}$	3.5			V
ISC	Phantom Short Circuit Current	$\mathrm{V}($ PHTM 1) or $\mathrm{V}($ PHTM 2$)=0 \mathrm{~V}$		-1.8	-1.2	mA
IOFFP	Phantom Off Current	V (PHTM 1) or $\mathrm{V}($ PHTM 2$)=0 \mathrm{~V}$	-100		100	$\mu \mathrm{A}$

TWISTED PAIR RECEIVER: TPINP, TPINN

$V_{\text {OSRTP }}$	Differential O ffset Voltage		-35		35	mV
$V_{\text {DSTP }}$	Differential Squelch Threshold		200		300	mV P-P
$V_{\text {PSTP }}$	Differential Post-Squelch Threshold		100		150	$\mathrm{mV} V_{\text {P-P }}$
$V_{\text {CMTP }}$	Open-Circuit Common M ode Bias Voltage			2.4		V
$R_{\text {IDRTP }}$	Differential Input Resistance		8	9.6	12.5	$\mathrm{k} \Omega$

TWISTED PAIR TRANSMITTER: TPOUTP, TPOUTN

$I_{\text {TTP }}$	Peak O utput Current	RTSETTP $=255 \Omega$, Pins Connected to V_{CC}	27	29.5	mA
lofftp	O ff State O utput Current			1.5	mA
$\mathrm{I}_{\mathrm{DCI}}$	Differential Current Im Balance		-300	300	$\mu \mathrm{A}$

OPTICAL RECEIVER: OPINP, OPINN

$\mathrm{V}_{\text {CMOP }}$	O pen Circuit Common Mode Bias Voltage			1.6		V
$V_{\text {IROP }}$	Input Signal Range		$\mathrm{V}_{\text {DSOP }}$		1600	mV P-P
$\mathrm{V}_{\text {OSROP }}$	D ifferential Offset Voltage			3		mV
EN	Input Referred Voltage N oise	50 MHz BW		25		$\mu \mathrm{V}_{\text {RMS }}$
RIDROP	D ifferential Input Resistance		1.8	2.6	3.3	$\mathrm{k} \Omega$
$V_{\text {DSOP }}$	Differential Squelch Threshold		5		6	mV P-p
$V_{\text {PSOP }}$	Differential Post Squelch Threshold		4		5	mV P-p
H	H ysteresis			20		\%

OPTICAL TRANSMITTER: OPOUT

$I_{\text {TOP }}$	Peak O utput Current	RTSETOP $=115 \Omega$	47	52	57	mA
$\mathrm{I}_{\text {OFFOP }}$	Off State O utput Current				1	mA

AC CHARACTERISTICS

O ver full range of operating conditions unless otherwise specified. (Note 1)

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS

CLOCK REFERENCE: XTAL1

$f_{\text {xo }}$	Reference Clock Frequency		32.7		34.5	kHz
D_{xo}	Reference Clock Duty Cycle		30		70	$\%$

TWISTED PAIR RECEIVER: TPINP, TPINN

$\mathrm{t}_{\text {TH TP }}$	Input Pulse W idth Threshold		550		1000	ns
t $_{\text {USQTP }}$	Time to Unsquelch (Off to On)		2		5	$\mu \mathrm{~s}$
$\mathrm{t}_{\text {REJP }}$	Time to Reject (On to Off)		550		1000	ns

OPTICAL RECEIVER: OPINP, OPINN

$\mathrm{t}_{\text {THOP }}$	Input Pulse W idth Threshold	V (INSERTED $)>0.7 \mathrm{~V}$	550	1000	ns
tUSQOP	Time to U nsquelch (0 ff to On)	V (INSERTED $)>0.7 \mathrm{~V}$	3	9	$\mu \mathrm{s}$
		$\mathrm{V}(\overline{\text { INSERTED }})=0 \mathrm{~V}$	0.8	1.2	$\mu \mathrm{s}$
$t_{\text {REJ }} \mathrm{P}$	Time to Reject (On to Off)	V (INSERTED $)>0.7 \mathrm{~V}$	3	9	μs
		$\mathrm{V}(\overline{\text { INSERTED }})=0 \mathrm{~V}$	0.8	1.2	$\mu \mathrm{s}$

PROPAGATION DELAYS STEADY STATE

$t_{\text {TPO P }}$	TPINP-TPIN N to OPOUT				20	ns
$t_{0 ~ P T P ~}^{\text {P }}$	OPINP-OPINN to TPO UTP-TPOUTN				30	ns
$\mathrm{t}_{\text {TPTP }}$	TPINP-TPIN N to TPOUTP-TPOUTN				30	ns
$\mathrm{t}_{\mathrm{OPOP}}$	OPINP-OPINN to OPOUT				20	ns

INSERTION AND BYPASS KEY GENERATION (Fig. 1)

T_K1	Key Element \#1 (avg. $\mathrm{P}_{\mathrm{O}}<\mathrm{P}_{\mathrm{O}_{-} \mathrm{Off}}$)		808		858	$\mu \mathrm{s}$
T_K2	Key Element \#2 (avg. $\mathrm{P}_{\mathrm{O}}>\mathrm{P}_{\mathrm{O}}$ Off)		1616		1717	$\mu \mathrm{S}$
T_K3	Key Element \#3 (avg. $\mathrm{P}_{\mathrm{O}}<\mathrm{P}_{\mathrm{O} \text { _Off }}$)		1616			$\mu \mathrm{S}$
T_BYP	Bypass Element (avg. $\mathrm{P}_{\mathrm{O}}>\mathrm{P}_{\mathrm{O}_{-} \mathrm{Off}}$)		4.85	26.5		ms
T_KINIT1	Time that phantom power should be applied in config 1 before generating the insertion key.	$\mathrm{V}(\mathrm{KEYGEN})=\mathrm{V}_{\mathrm{CC}}, \mathrm{V}(\overline{\mathrm{TPINOK}})>0.7 \mathrm{~V}$		26.5		ms
T_KINIT4	Time that the optical input should be valid in config 4 before generating the insertion key.	$\begin{aligned} & \mathrm{V}(\mathrm{KEYGEN})=\mathrm{V}_{\mathrm{CC}}, \mathrm{~V}(\overline{\text { TPINOK }})=0 \mathrm{~V} \\ & \mathrm{~V}(\mathrm{PHTM} 1)=0 \mathrm{~V}, \mathrm{~V}(\text { PHTM } 2)=0 \mathrm{~V} \end{aligned}$		26.5		ms
T_KOFF	Time that the optical input should be invalid before generating the bypass key.	$\begin{aligned} & \mathrm{V}(\text { KEYGEN })=\mathrm{VCC}, \mathrm{~V}(\overline{\mathrm{TPINOK}})=0 \mathrm{~V} \\ & \mathrm{~V}(\text { PHTM } 1)=0 \mathrm{~V}, \mathrm{~V}(\mathrm{PH} T M 2)=0 \mathrm{~V} \end{aligned}$		26.5		ms

AC CHARACTERISTICS (continued)

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS

INSERTION KEY ECHO AND BYPASS KEY RECOGNITION (Fig. 1)

T_ECHO	Time since starting insertion key generation until receiving the insertion key echo.			100	ms
T_E1Key	Key Echo From T_K1		766		900
T_E2Key	Key Echo From T_K2		1533		1800
T_E3Key	Key Echo From T_K3		1533		$\mu \mathrm{~s}$
T_BYPDET	Time of optical input not valid before recognizing a bypass key	4		4 s	

Note 1: Limits are guaranteed by 100% testing, sampling, or correlation with worst-case test conditions.
Note 2: Current into all V_{CC} pins, external bias resistors, and external transmit loads. Does not include status LED 's current.

Figure 1

ML6680

FUNCTIONAL DESCRIPTION

Fiber Optic LED Driver

The output stage of the transmitter is a current mode switch which develops the output light by sinking current from OPVCC through the LED into the OPOUT pin. O nce the current requirement for the LED is determined, the RTSETO P resistor is selected. The following equation is used to select the correct RTSETOP resistor:

$$
\text { RTSETO P }=\left(52 \mathrm{~mA} / \mathrm{l}_{\mathrm{OUT}}\right) \times 115 \Omega
$$

No current is provided during the off cycles of the Insertion, Bypass, or Echo Keys, or when the input signal that should be routed to the Fiber O ptic LED Driver does not meet the corresponding input squelch requirements.

Fiber Optic Quantizer

The O PINP, O PIN N input signal is fed into a limiting amplifier with a gain of about 100 and input resistance of $1.3 \mathrm{k} \Omega$. Maximum sensitivity is achieved through the use of a DC restoration feedback loop and AC coupling the input. When AC coupled, the input DC bias voltage is set by an on-chip network at about 1.7V. These coupling capacitors, in conjunction with the input impedance of the amplifier, establish a high pass filter with 3 dB corner frequency, f_{L}, at

$$
\mathrm{f}_{\mathrm{L}}=1 /(2 \times \pi \times 1300 \times \mathrm{C})
$$

Since the amplifier has a differential input, two capacitors of equal value are required. If the signal driving the input is single ended, one of the coupling capacitors can be tied to V_{CC}. The internal amplifier has a lowpass filter built-in to band limit the input signal which in turn will improve the signal to noise ratio. Although the input is AC coupled, the offset voltage, V_{0}, within the amplifier will be present at the amplifier's output. In order to reduce this error a DC feedback loop nulls the offset voltage, forcing V_{os} to be zero. The comparator is a high-speed differential zero crossing detector that slices and accurately digitizes the receive signal. The output of the comparator is fed in parallel into both the fiber optic squelch circuit and the signal MUX. The capacitor between pin VDC and QGND should be set to 500pF.

Fiber Optic Squelch

The M L6680 monitors the frequency and amplitude of the input from a fiberoptic receiver. The optical squelch circuit rejects signals whose frequencies are lower than 1 MHz or whose amplitudes are lower than -32 dBm .
If both requirements are met, the LED output $\overline{\text { OPINOK }}$ goes low, and the amplitude threshold is lowered 20%.

Copper Pair Driver

The output stage of the twisted pair transmitter is a current mode switch which develops the output voltage by driving current through the terminating resistor and the output filter. The harmonic content is controlled to simplify the filter design. The transmitter employs a center tap 2:1 transformer where the center tap is tied to V_{cc}. While one pin of the transmit pair is pulled low, the other pin floats. The output pins to the twisted pair wires, TPO UTP and TPO UTN, can drive shielded or unshielded twisted pair cable through the appropriate isolation transformer. The output current is set by the value of RTSETTP. No transitions are generated at TPO UTP and TPO UTN when the input signal that should be routed to the Copper Pair Driver does not meet the corresponding input squelch requirements. PECL compatible output are obtained with an external network of 3 resistors. In this case the current of the output stage can be reduced by adjusting the value of RTSETTP.

Twisted Pair Line Equalizer

The receive equalizer compensates for twisted pair cable dispersion, which otherwise would give rise to inter-symbol interference (ISI). The amount of equalization varies with the average amplitude of the received signal. The received signal amplitude gives a rough value for the length of the attached cable. The filter/equalizer characteristic is the inverse of the cable's dispersion characteristic. Both UTP and STP cables approximate a low-pass filter, so the filter/ equalizer approximates an inverse square root equalizer. Two external resistors and one external capacitors are required between pins EQA and EQB. The output of the equalizer is fed into the signal MUX. On a PECL application these pins should be connected between each other.

Twisted Pair Squelch Circuit

The twisted pair line receiver internally sets the common mode bias of the input TPIN P and TPIN N. Voltage offset comparators are used to set the amplitude squelch threshold, and analog timers are used to set the pulse width squelch threshold. When the input signal meets amplitude and pulse width requirements, the squelch circuit reduces the offset voltage of the comparators, decreasing the amplitude squelch threshold by half. This hysteresis allows the receiver to stay on in the presence of a fading input signal. The twisted pair squelch circuit rejects signals whose frequencies are lower than 1 MHz or whose amplitudes are lower than 300 mV p.p. If both requirements are met, the LED output TPINOK goes low.

Clock Oscillator

The ML6680 provides an on-chip clock oscillator by connecting a 32.768 kHz watch crystal between pins XTAL1 and XTAL2. The part can also be driven by an external clock applied at XTAL1 and tying XTAL2 to ground. The frequency of the external clock should be between 32.7 kHz and 34.5 kHz .

Status LED Drivers

The M L6680 has three status LED drivers. The LED driver pins are active low. The LED's are tied to their respective pins through a 300Ω resistor to V_{CC}.

Modes of Operation

Four configurations are possible with the M L6680, as follows:
1.Standard M edia Converter: Senses ISO /IEC 8802-5 phantom power and generates ISO /IEC8802-5 fiberoptic insertion or bypass requests.
2. Concentrator Media Converter: Recognizes the ISO / IEC8802-5 fiberoptic insertion or bypass requests and drives the ISO /IEC8802-5 phantom circuits.
3. Lobe or Ring Out Port Media Converter: Recognizes the ISO /IEC8802-5 fiberoptic insertion or bypass requests.
4. Ring In Port M edia Converter: Generates ISO / IEC8802-5 fiberoptic insertion or bypass requests. Modifies the internal signal paths depending on the presence or absence of a fiberoptic link, and on the reception of the ISO /IEC8802-5 "Insertion Key Echo."

CONFIGURATION 1

Standard Media Converter:

This configuration is selected by tying KEYG EN to VCC. There are alw ays two fixed signal paths, one from TPINP and TPINN to OPVCC and OPOUT, and another from OPINP and OPINN to TPO UTP and TPOUTN. The generation of the "Insertion Key" or "Bypass Key" is exclusively controlled by the logic values at PHTM 1 and PHTM 2. The "Insertion Key" is generated when both PHTM 1 and PHTM 2 go low, and stay low for at least 26.5 ms . If the "Insertion Key Echo" is received within the following 100 ms , the part goes to the "Insert State" and the LED output INSERTED goes low. During the generation of the "Insertion Key," and while waiting for the "Insertion Key Echo" the states of PHTM 1 and PHTM2 do not have any effect. When the part is in the "Insert State" and either PHTM 1 or PHTM 2 goes high, the LED output INSERTED goes high, the part leaves the "Insert State," generates the "Bypass Key," and starts waiting for PHTM 1 and PHTM 2 to go low again.

CONFIGURATION 2

Concentrator Media Converter:

This configuration is selected by tying KEYGEN to ground. There are always two fixed signal paths, one from TPINP and TPINN to OPVCC and OPOUT, and another from OPIN P and OPINN to TPO UTP and TPOUTN. The part powers on in the "Bypass State" where it neither applies phantom current nor checks for a phantom wire fault. After recognizing an "Insertion Key" at its fiber optic inputs, it applies phantom power by providing current at PHTM 1 and PHTM 2, goes to the "Phantom Wire Fault Check State," and starts waiting for a "Bypass Key." At this state, the LED output INSERTED stays low while no phantom wire fault is detected. When the part is in the "Phantom Wire Fault Check State" and a "Bypass Key" is recognized, the part leaves this state, removes the phantom power, and starts waiting for a "Insertion Key" again.

CONFIGURATION 3

Lobe or Ring Out Port Media Converter:

This configuration is selected by tying both KEYGEN and TPINOK to ground. When the ML6680 is in the "Insert State," the signal paths are from TPIN P and TPIN N to OPVCC and OPOUT, and from OPINP and OPINN to TPO UTP and TPO UTN. O therwise, the signal paths are from TPINP and TPINN to TPOUTP and TPOUTN, and from OPINP and OPINN to OPVCC and OPOUT. The part powers on in the "Bypass State" and goes to the "Insert State" after recognizing an "Insertion Key" at its fiber optic inputs. It goes back to the "Bypass State" after recognizing a "Bypass Key." W hile it is at the "Insert State," the LED output INSERTED stays low.

CONFIGURATION 4

Ring In Port Media Converter:

This configuration is selected by tying KEYG EN to VCC and TPINOK to ground. When the part is in the "Insert State," the signal paths are from TPIN P and TPINN to OPVCC and OPOUT, and from OPINP and OPINN to TPO UTP and TPO UTN. Otherwise, the input at TPIN P and TPINN is routed to TPO UTP and TPOUTN, and also to OPVCC and OPOUT. The "Insertion Key" is generated when activity is detected at OPINP and OPINN for at least 26.5 ms and, PHTM 1 and PHTM 2 stay low. If the "Insertion Key Echo" is received within the following 100 ms , the ML6680 goes to the "Insert State" and the LED output INSERTED goes low. During the generation of the "Insertion Key," and while waiting for the "Insertion Key Echo" the logic states of PHTM 1 and PHTM2 do not have any effect. When the part is in the "Insert State" and no activity is detected at OPINP and OPINN for at least 26.5 ms , or either PHTM 1 or PHTM 2 goes high, the LED output INSERTED goes high, the part leaves the "Insert State," generates the "Bypass Key," and starts waiting for 26.5 ms of optical input activity again.

Low Frequency Signaling Mode

Some old implementations of discrete media converters, use a non-standard protocol with frequencies between 1 and 10 kHz . To facilitate the migration to the ML6680, a specific operating mode is provided by grounding the pin INSERTED. Pin KEYGEN should also be grounded to prevent the generation of unwanted "Insertion" or "Bypass Keys." In this operating mode, the optical frequency squelch circuitry is disabled and the time constant of the amplitude squelch is significantly reduced.
For each edge of the low frequency optical input, the ML6680 generates a pulse at the led output OPINOK. It also generates a pulse at the TPO UTP output for each rising edge and another at the TPO UTN output for each falling edge.

VCC
+5 V

U1: RJ45 CONNECTOR
U2: R 2416
U3: HFBR2416 (HP) OR OP2416

U4: HFBR14
OPTICAL TRANSMITTER

 D1-4: LED, SURFACE MOUNT,
PANASONIC LN146IC-(TR)

Figure 3. ML6680 Configurations 3 and 4

PHYSICAL DIMENSIONS inches (millimeters)

Package: Q28
28-Pin PLCC

ORDERING INFORMATION

PART NUMBER	TEMPERATURE RANGE	PACKAGE
ML6680CQ	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	28 -PIN PLCC (Q 28)

[^0]
[^0]: © Micro Linear 1997닌 Micro Linear is a registered trademark of Micro Linear Corporation
 $5,546,017 ; 5,559,470 ; 5,565,761 ; 5,592,128 ; 5,594,376 ;$ Japan: $2598946 ; 2619299$. O ther patents are pending.
 Micro Linear reserves the right to make changes to any product herein to improve reliability, function or design. Micro Linear does not assume any liability arising out of the application or use of any product described herein, neither does it convey any license under its patent right nor the rights of others. The circuits contained in this data sheet are offered as possible applications only. Micro Linear makes no warranties or representations as to whether the illustrated circuits infringe any intellectual property rights of others, and will accept no responsibility or liability for use of any application herein. The customer is urged to consult with appropriate legal counsel

