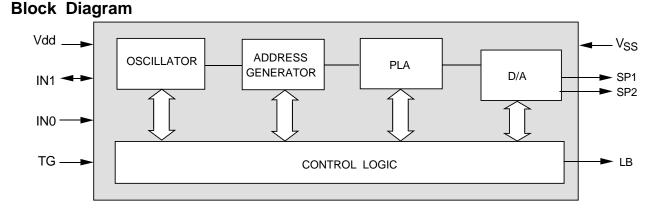


Preliminary

MSS0271

2.7" VOICE ROM

Features


- Single power can operate at 2.4 V through 6 V.
- Current output can directly drive either buzzer or speaker without a transistor.
- Built-in Oscillating Resistor.
- Single section, 2.79 seconds (4380h).
- Speech with mute (behind) is up to 21.1 seconds (20000h).
- Repeat function that can repeat up to 8 times.
- To turn on LED in sink connection.
- Automatic power down.
- CDS interface is provided.

Mask options

- Either level or edge trigger type at pin TG.
- Either LED flasher or BUSY output at pin LED/BZ.
- Either 6200Hz or 8400Hz S.R. for built-in Rosc.
- Either holdable output or not.
- Either retriggerable output or not.
- Either fixed or dynamic type on LED flasher.
- Either 3Hz or 6Hz LED fixed flasher, (S.R. dependent).
- Either Fast or Slow debounce time.

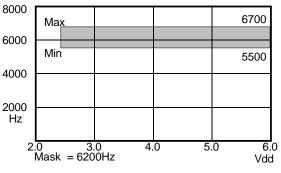
General Description

The MSS0271 is a single-chip CMOS LSI demands minimal external components and memorizes voice up to 2.88 seconds (at 6 KHz S.R.) using the MOSEL qualified coding method (MPCM-4). The chip contains most of the necessary circuit like oscillator, PLA, D/A converter, buzzer buffer, control and timing logic. Therefore, it can apply to various voice systems with minimum external parts. Customer speech data will be edited and programmed into PLA by changing one mask during the device fabrication.

MOSEL VITELIC INC.

Preliminary

Pad Description


P20 COB pin #	P28 COB pin #	Pad#	Symbol	Active	i/o	Names
1	1	1	TG	high	i	trigger to play sound, internal pull low
3	3	2	LB	-	0	LED flasher output or high true Busy signal output
5	7	3	IN0		i	input control 0
7	11	4	IN1		i/o	input control 1
14	19	5	NC			no connection
15	21	6	SP2		0	speaker drive 2
16	23	7	Vss			ground
17	24	8	SP1		0	speaker drive 1
18	26	9	Vdd			positive power supply

Absolute Maximum Rating

Symbol	Rating	Unit
V _{DD} ~ V _{SS}	-0.5 ~ +7.0	V
V _{IN} (TG)	$V_{SS}-0.3 < V_{IN} < V_{DD}+0.3$	V
V _{OUT} (STP)	V _{SS} <v<sub>OUT < V_{DD}</v<sub>	V
T (Operating)	-10 ~ +60	°C
T (Storage)	-55 ~ +125	°C

Operation beyond Absolute Maximal Rating can adversely affect device reliability

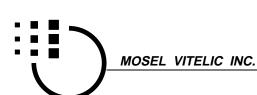
FOSC Characteristics

Operating Conditions

Symbol	Description	Min.	typ.	Max	Unit	Remarks
TA	Ambient temperature under bias	-10		60	°C	
VCC	supply voltage	2.4		6.0	V	
SR	sample rate		6200		Hz	or 8400

AC Characteristics at 4.5 V, 6200 Hz SR

Symbol	Parameter	Valid	Min.	typ.	Max	Unit	Remarks
T T1	trigger pulse width	TG		5		mS	slow debounce time, SRD
T T2	trigger pulse width	TG		1		uS	fast debounce time, SRD
T PUD	power up delay	Vdd, TG		0		uS	
T THLO	trigger high to LED on	TG, LED				uS	mask = edge, SRD
T THZH	trigger high to busy high	TG, BUSY				uS	mask = edge, SRD
T THAS	trigger high to audio start	TG, SPs				uS	mask = edge, SRD
T TLLF	trigger low to LED off	TG, LED		0		uS	mask = level, SRD
T TLZL	trigger low to busy low	TG, BUSY		0		uS	mask = level, SRD
T THAE	trigger low to audio end	TG, SPs		0		uS	mask = level, SRD
T AELF	audio end to LED off	TG, LED		0		uS	holdable output, SRD
T AEZL	audio end to busy low	TG, BUSY		0		uS	holdable output, SRD
T IWR1	interval when repeat	SPs		0		uS	inside sentence
T IWR2	interval when repeat	SPs		322		uS	between sentences, SRD
T LED3	LED on time at 3 Hz	LED		161		mS	SRD
T LED6	LED on time at 6 Hz	LED		81		mS	SRD
ТΡ	power rise up time	Vdd			1	mS	
TR	power ripple width	Vdd			1	mS	


DC Characteristics at 4.5 V

Symbol	Parameter	Valid	Min.	typ.	Max	Unit	conditions
I SB	standby I	Vdd			1	uA	
I OP	operation I	Vdd			200	uA	
I IH	input high I	TG		10	20	uA	
I IL	input low I	TG			2	uA	
I LED	output low I	LED		9		mA	
і он	output high I	BUSY		-8		mA	
I OL	output low I	BUSY		8		mA	
I OHS	output high drive I	SPs		-90		mA	
I OLS	output low sink I	SPs		200		mA	
I LEDT	threshold sound to furn LED on			75		%	of IOHS
R TG	pull low R	TG	23			Kohm	
d F/F	frequency stability				5	%	[F(4.5V) - F(4V)] / F(4.5V)
d F/F	frequency variation				10	%	

Note: A bulk capacitor 0.1uF across the Vdd to Vss is demanded.

DC Characteristics at 3.0 V

Symbol	Parameter	Valid	Min.	typ.	Max	Unit	conditions
I SB	standby I	Vdd			1	uA	
I OP	operation I	Vdd			150	uA	
ТН	input high I	TG		5	15	uA	
I IL	input low I	TG		1	2	uA	
I LED	output low I	LED		8		mA	
І ОН	output high l	BUSY		-3		mA	
I OL	output low I	BUSY		3		mA	
I OHS	output high drive I	SPs		-45		mA	
I OLS	output low sink I	SPs		100		mA	
I LEDT	threshold sound to furn LED on			75		%	of IOHS
R TG	pull low R	TG	20			Kohm	
d F/F	frequency stability				5	%	[F(3V) - F(2.7V)] / F(3V)
d F/F	frequency variation				10	%	

Signals

SP+ and SP-

They are tristate during standby.

They are not at standby current when the data is in the middle.

These two pins can drive buzzer or speaker, 8 ohm or 16 ohm, directly. The speaker used should have its band width (BW) at the center of your sound frequency domain or you are unable to play your sound good by this speaker.

For instance, you have your sound spans over frequency from 100 Hz through 10 KHz. A speaker with BW meets requirement will play this sound good. A speaker with BW narrower than requirement (either has higher low-cut or lower high-cutoff) will distort the sound very much because that most of the energy of the playback sound is unable to be played by this speaker.

This pair has zero output when sound data is zero. This pair has full output when sound data is the highest. This pair has half of full output when sound is silence at middle data value. This pair has half of full output when playing sound at appended memory-less mute.

The output depends on Vdd bias very much.

Herein zero output does not mean zero potential, neither ground.

It is recommended to select voltage source carefully and do not supply this chip with a voltage potential source in poor flatness or in poor drive capability.

What the poor source means either its potential drops as the load varies or its potential drops as its capacity exhausted.

The speaker characeristics and housing impacts the loudness very much.

TG

This is a high true activating signal input pin. An internal pull low R TG is built in.

There is no schmit trigger circuit implemented.

IN0 and IN1

They should be bonded to ground both regularly. While abnormal lot (pitch shifted) is encountered, special bonding could be done herein.

LB

This pin could be optionally masked as either high true Busy signal or LED flasher which is turned on in sink way by I LED. Refers to paragraphs "Mask option" and "terms". Up to 3 types of LED flasher could be chosen.

Terms

Audio

Audio means the signal from the pin pair SP+ and SP-. Due to a sophisticated architecture, there demands no ramp up (or ramp down) to eliminate the pop noise at the sound starting and ending. Ramp up and Ramp down

See the explanation of Audio.

Sample Rate

All the AC parameters depend on sample rate except three - t PUD, t P and t R. The numbers mentioned in this data sheet are based on 6 KHz sample rate if not specified. Higher SR has quicker LED flasher, quicker response. Lower SR has slower LED flasher, slower response.

Retriggerable TG

Retriggerable TG means the sound played could be terminated immediately while further TG activated and play the sound from the very beginning.

Holdable and retriggerable

This combination allows user controlling both the output and the input. Its output is holdable and the input could retrigger the former. This is an exquisite feature. It is not provided on this single trigger voice chip.

Fix flash LED

Fix 3 Hz flash means this pin turns LED lamp on for T LED3 and then turns it off for T LED3 alternately. Fix 6 Hz flash means quicker, it turns on T LED6 and then turns off T LED6.

The 3 Hz as well as 6 Hz is sample rate dependent.

When repeatedly playing a word, interesting LED flash may happen in concatenation. The word length may not be the multiples of T LED3 (or T LED6), a new flash cycle will start before the last flash cycle terminates.

Dymanic Flash LED

The LED turns on whenever the sound amplitude (the current from SPs) is over a certain threshold potential (I LEDT). The sound potential could be measured in data value as an alternative.

Debounce time

Either Fast or Slow debounce are provided by mask options. The Fast debounce acknowledges very short trigger. So, the sound will play "sensitively". User should be very carefully to choose trigger switch while "Fast debounce" is specified.

Application Notes

Speaker

The typical application speaker is 8 ohm, 1/4 watt. Refers to above paragraph SP+ and SP- for more description on required speaker.

Buzzer

The recommended resonant frequency should be 1 KHz to get the best sound response. The response BW also should be fit to the required sound band width. Refer to above paragraph SP+ and SP- for more description.

Choice of sample rate

The sample rate should be chosen before chip manufactured. Two sample rates are provided on S0271 - either 6200 KHz or 8400 KHz. User is able to select them on the attached PRF (product request form).

Rosc

No external Rosc is required.

Audio band amplifier transistor

No amplifier transistor is demanded.

PCB layout

To minimize the interference, the route from trigger switch to chip should be as short as possible. The route of trigger signal is recommended to as far away as possible to speaker output.

CDS as trigger

to be defined.

Power On play

This chip provides power on play function. User should be noted that the time parameter T PUD is zero. To connect the trigger to Vdd, the sound will be played whenever power is turned on.

Cascading

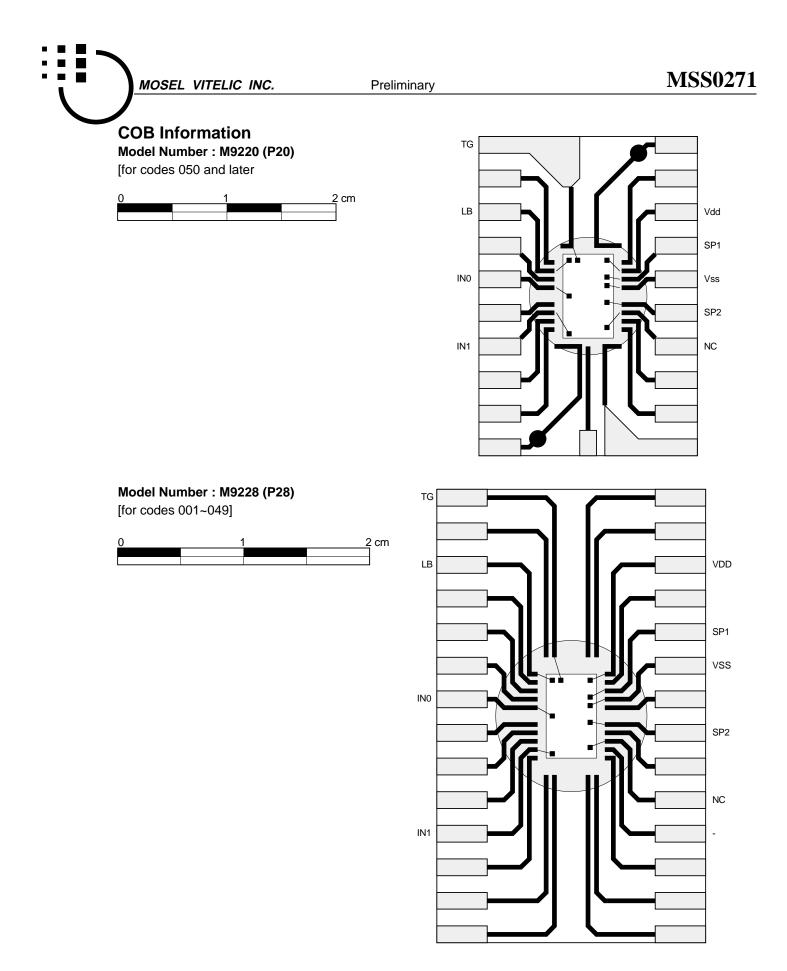
Cascading chips to have longer duration is possible by special wiring but not recommended.

Paralleling

Paralleling chips to have more triggers is possible by special wiring but not recommended.

Bulk Capacitor

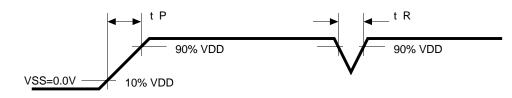
A bulk capacitor 0.1uF across the Vdd to Vss is demanded when using 4.5V (or higher) working voltage. At every working voltage, the value of bulk capacitor should be less than or equal to 0.47uF.

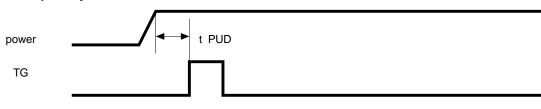

Bonding change while Rosc shifts

MVI S0271 provides reliable built-in Rosc by advance technology. In case Rosc is shilfted (pitch shifted), the bonding change is able to bias Rosc into nominal value. The bonding changes are described on page 11/12.

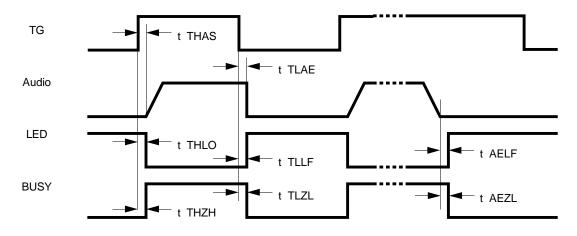
While the pitch shift encountered even it is rarely, the part number will have a postfix letter-capital "Z" while the lot number will have the two letter extension simultaneously. The two-letter extension could be "LH", "HL" or "HH". This two-letter extension tells how the bonding should be done which are described on page 11/12.

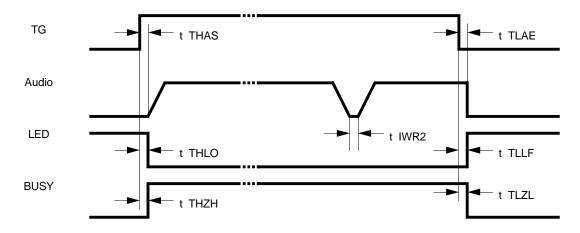
			Times to	Times to						SR	
	Code#	Title	Repeat	Play	Trigger			LB	Deb.	(Hz)	Remarks
1	002	Ho,Ho,Ho, Merry X'mas!!	0	1	Edge	Unhold	Irret.	Busy	Fast	6.2 K	
2	010	Happy Hollween!!	1	2	Edge	Unhold	Irret.	Busy	Fast	6.2 K	
3	017	Barking Dog	2	3	Edge	Unhold	Irret.	Busy	Fast	8.4 K	
4	018	Screaming Girl	0	1	Edge	Unhold	Irret.	6 Hz LED	Fast	8.4 K	
5	020	Croaking Frog	2	3	Edge	Unhold	Irret.	3 Hz LED	Slow	6.2 K	
6	021	Sound of Cow	1	2	Level	Unhold	Irret.	3 Hz LED	Slow	6.2 K	


Standard Code Line Up



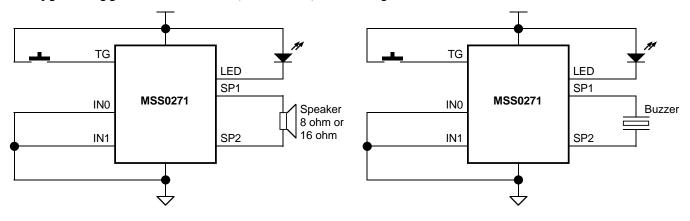
Timing Critical


Acceptable Power on Signal & Ripple

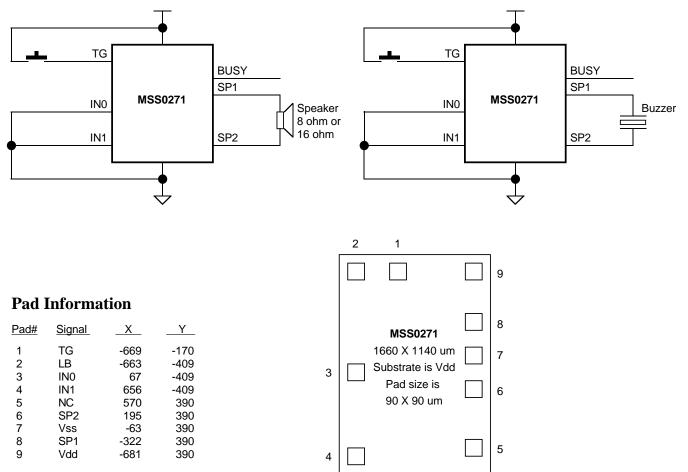

Power Up Delay

To play

To play repeatedly



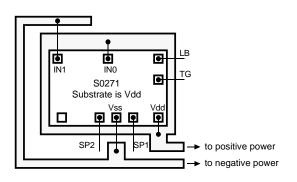
MOSEL VITELIC INC. Prelimina	ary MSSO
iming Diagram	
Edge Trigger Mask I.1. Unholdable output with BUSY a. When trigger is shorter than output TG AUDIO BUSY	b. When trigger is longer than output
I.2. Unholdable output with Fixed-Type LED Flasher a. When trigger is shorter than output TG	b. When trigger is longer than output
I.3. Unholdable output with Dynamic-Type LED Flasher a. When trigger is shorter than output TG	b. When trigger is longer than output
I.4. Holdable output with BUSY a. When trigger is shorter than a whole section output TG AUDIO BUSY	b. When trigger is longer than a whole section out
 I.5. Holdable output with Fixed-Type LED Flasher a. When trigger is shorter than a whole section output TG	b. When trigger is longer than a whole section outp
a. When trigger is shorter than a whole section output TG	b. When trigger is longer than a whole section ou
I.7. Unholdable output with Retrigger a. When trigger is shorter than a whole section output TG	b. When trigger is longer than a whole section ou


•)	MOSEL VITELIC INC.	Preliminary	MSS02
. Level Tri			
	dable output with BUSY output en trigger is shorter than a whole	section output b. When trigger is	longer than a whole section outpu
		section output b. When trigger is	longer than a whole section outpu
	dable output with Dynamic-Type L en trigger is shorter than a whole		longer than a whole section outpu X X X X X X X X X X X X X X X X X X X
II.4. Holdat a. Wh TG AUDIO BUSY	ble output with BUSY output en trigger is shorter than a whole	section output b. When trigger is	longer than a whole section outpu
			longer than a whole section outpu
	ble output with Dynamic-Type LEI en trigger is shorter than a whole		longer than a whole section outpu
II.7. Unholo TG AUDIO	dable output with Retrigger		

I. Typical Application Circuit I, Rosc less, LED output

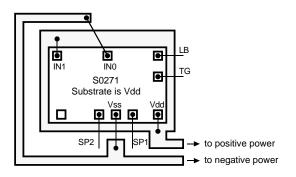
II. Typical Application Circuit II, Rosc less, Busy output

Preliminary

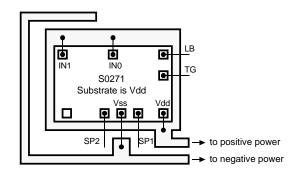

Bonding to Offset the Shifted Pitch

Below three special bonding means are used to offset the shifted pitch (frequency) and let it perform normally. This happens only for those chip lots have their part number with postfix letter "Z". To not use these special bonding means on normal part is strongly recommended.

Of course, the copper route may have different layout on PCB (printed circuit board). It should be decided by user himself. Below shows only what we recommended, not restricted.


I. Type LH Bonding

For lot number with extension letters "LH"


II. Type HL Bonding

For lot number with extension letters "HL"

III. Type HH Bonding

For lot number with extension letters "HH"

Revision history: pid 257* 12/96 pid 257** 02/97 pid 257*** 05/97

Taiwan	Taipei	China	Hongkong	U.S.A.
#1 Creation Road I,	7F, #102 Section 3,	(Vitelic HKG ShenZhen)	#19 Dai Fu Street,	#3910 North First Stre
Science - based Industrial Park,	Ming Chung E. Road,	Room #209.	Taipo Industrial Estate,	San Jose, CA. 65134-
Hsinchu, 30077	Taipei, 105	#19 ZhenHua road.	Taipo, N.T.	U.S.A.
Taiwan, ROC	Taiwan, ROC	ShenZhen, China	Hongkong	TEL: 1-408-433-6000
"audio reply@mosel.com.tw"		,	TEL: 852-2388-8277 (MKO)	FAX: 1-408-433-0952
TEL: 886-3-5770055	TEL: 886-2-5451213	TEL: 86-755-334-5766	TEL: 852-2665-4883	
FAX: 886-3-5772788	FAX: 886-2-5451214	FAX: 86-755-332-3995	FAX: 852-2664-2406	Japan
FAX: 886-3-5784732	Mdm: 886-2-545-1464	Mdm: 86-755-332-3995	FAX: 852-2770-8011 (MKO)	Rm. 302, Annex-G, 1-
Mdm: 886-3-578-0493			Mdm: 852-2388-0244 (MKO)	Higashi-Nakano
				Nakano-Ku Tokyo 16

http://www.moselvitelic.com

reet, 4-1501

00 52

1-31-10 Nakano-Ku, Tokyo 164 Japan TEL:81-3-3365-2851 FAX:81-3-3365-2836

•	-		MOSEL	VITELIC	INC.

To: Mosel Vitelic Inc. 886-3-578-4732 (fax) Attn :

Sales & Marketing Department

Product Request Form

I hereby request MVI to start preparing produce **MSS0271** which is specified as below description. I already read this data sheet PID257 *** and understand MSS0271 completely and know how to specify to fit my requirement. Its voice storage limitation is 4380h.

Ge	eneral Descriptions	Chip desc	ription	S
Customer		Title:		Buzzer (F fr =1KHz)
	Cannot proceed when empty	Edge Level		Speaker (0.25W,
Agent		Built-in Rosc at 6200 Hz	Output	16 ohm, 1" diam.)
Sales		☐ Built-in Rosc at 8400 Hz	Device	Speaker (0.25W,
Repr'tives	Who is MVI sales you contact ?	Debounce = Slow, T T1		8 ohm, 1" diam.)
Providing	8-bit PCM sound files	Debounce = Fast, T T2		Other:
to	.WAV sound files		Working	□ 2.5 V □ 3.5 V
MVI	DAT or equivalent		Voltage	□ 3.0 V □ 4.0 V
	application is special,	Holdable & Irretriggerable	voltage	☐ 4.5 V w/Bulk Cap.
	see our written memo	Unholdable & Irretriggerable		🗌 5.0 V w/Bulk Cap.
	Others	Unholdable & Retriggerable		🗌 5.5 V w/Bulk Cap.
	EPROMs with data inside	□ No use & don't care		🗌 6.0 V w/Bulk Cap.
Service	\Box files to be programmed into	LB = Busy output		Battery size "D"
Required	EPROM	\square LB = dynamic LED flasher		□ Battery size "AA"
from MVI	emulation board & Eprom	\square LB = 3Hz LED flasher		□ Battery size "AAA"
	Confirm table	\Box LB = 6Hz LED falsher	Power	other size =
	Others	□ No use and don't care	Source	□ Mains
			222.30	Other

Voice content	Voice Length	Mute length (behind)	Total Length	repeat times	total play times
	S ≤2.79 s	S	00h		
	00h	00h			
	<u>≤</u> 4380h		≤20000h	0≤ ≤7	1 <u>≤ ≤</u> 8
Company Name :		Fax number:			
Signature :		Date :			
Department/Section :		Position Title :			