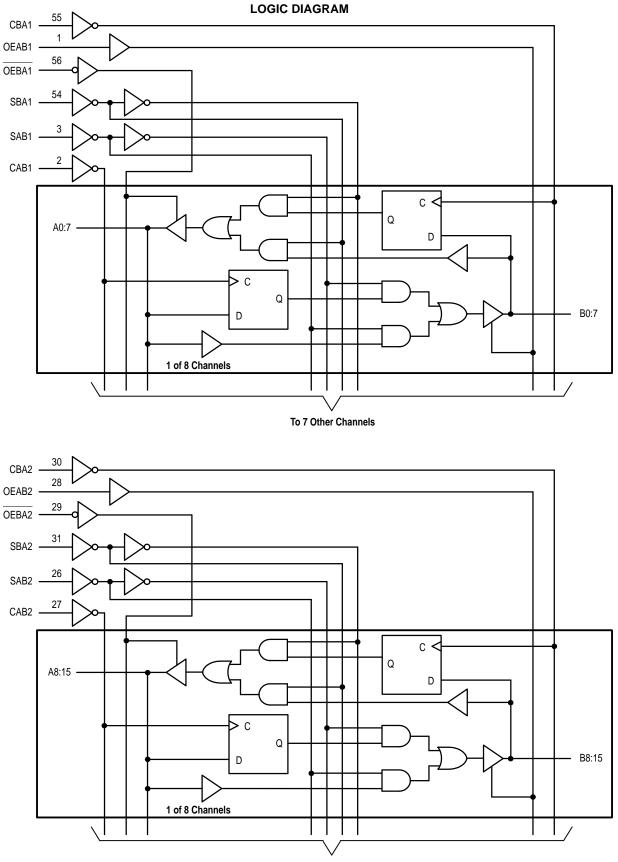

Advance Information Low-Voltage CMOS 16-Bit Transceiver/Registered Transceiver With Dual Enable With 5V-Tolerant Inputs and Outputs (3-State, Non-Inverting)

The MC74LCX16652 is a high performance, non-inverting 16-bit transceiver/registered transceiver operating from a 2.7 to 3.6V supply. The device is byte controlled. Each byte has separate control inputs which can be tied together for full 16-bit operation. High impedance TTL compatible inputs significantly reduce current loading to input drivers while TTL compatible outputs offer improved switching noise performance. A V_I specification of 5.5V allows MC74LCX16652 inputs to be safely driven from 5V devices. The MC74LCX16652 is suitable for memory address driving and all TTL level bus oriented transceiver applications.

Data on the A or B bus will be clocked into the registers as the appropriate clock pin goes from a LOW-to-HIGH logic level. Output Enable pins (OEBAn, OEABn) are provided to control the transceiver outputs. In the transceiver mode, data present at the high impedance port may be stored in either the A or the B register or in both. The select controls (SBAn, SABn) can multiplex stored and real-time (transparent mode) data. In the isolation mode (both outputs disabled), A data may be stored in the B register or B data may be stored in the A register. When in the real-time mode, it is possible to store data without using the internal registers by simultaneously enabling OEAB and OEBA. In this configuration, each output reinforces its input (data retention is not guaranteed in this mode).

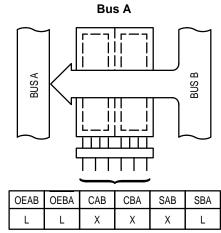
- Designed for 2.7 to 3.6V V_{CC} Operation
- 5.7ns Maximum tpd
- 5V Tolerant Interface Capability With 5V TTL Logic
- Supports Live Insertion and Withdrawal
- IOFF Specification Guarantees High Impedance When VCC = 0V
- LVTTL Compatible
- LVCMOS Compatible
- 24mA Balanced Output Sink and Source Capability
- Near Zero Static Supply Current in All Three Logic States (20µA) Substantially Reduces System Power Requirements
- Latchup Performance Exceeds 500mA
- ESD Performance: Human Body Model >2000V; Machine Model >200V

PIN NAMES


Pins	Function
A0–A15	Side A Inputs/Outputs
B0–B15	Side B Inputs/Outputs
CABn, CBAn	Clock Pulse Inputs
<u>SABn, S</u> BAn	Select Control Inputs
OEBAn, OEABn	Output Enable Inputs

This document contains information on a new product. Specifications and information herein are subject to change without notice.

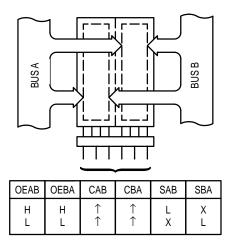
		1	
OEAB1 1	\circ	56	OEBA1
CAB1 2		55	CBA1
SAB1 3		54	SBA1
GND 4		53	GND
A0 5		52	B0
A1 6		51	B1
V _{CC} 7		50	V _{CC}
A2 8		49	B2
A3 9		48	B3
A4 10		47	B4
GND 11		46	GND
A5 12		45	B5
A6 13		44	B6
A7 14		43	B7
A8 15		42	B8
A9 16		41	B9
A10 17		40	B10
GND 18		39	GND
A11 19		38	B11
A12 20		37	B12
A13 21		36	B13
V _{CC} 22		35	VCC
A14 23		34	B14
A15 24		33	B15
GND 25		32	GND
SAB2 26		31	SBA2
CAB2 27		30	CBA2
OEAB2 28		29	OEBA2


MC74LCX16652

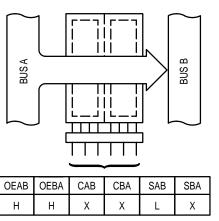
To 7 Other Channels

BUS APPLICATIONS

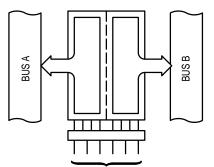
Real Time Transfer – Bus B to



Store Data from Bus A, Bus B or Bus A and Bus B



OEAB	OEBA	CAB	CBA	SAB	SBA
X L L	Ξ×Ξ	$\stackrel{\leftarrow}{\rightarrow} X \stackrel{\leftarrow}{\rightarrow}$	X↑↑	X X X	X X X


Store Bus A in Both Registers or Store Bus B in Both Registers

Real Time Transfer – Bus A to Bus B

Transfer A Stored Data to Bus B or Stored Data Bus B to Bus A or Both at the Same Time

OEAB	OEBA	CAB	CBA	SAB	SBA
H L H	H L L	H or L X H or L	X HorL HorL	Н×Н	X H H

Isolation

FUNCTION TABLE

		In	puts			Data	Ports	Operating Mode
OEABn	OEBAn	CABn	CBAn	SABn	SBAn	An	Bn	Operating Mode
L	н					Input	Input	
		\$	\$	х	Х	Х	Х	Isolation, Hold Storage
		←	Ŷ	х	х	l h	l h	Store A and/or B Data
н	Н					Input	Output	
		4	Х*	L	х	L H	L H	Real Time A Data to B Bus
				н	Х	Х	QA	Stored A Data to B Bus
		¢	Х*	L	х	l h	L H	Real TIme A Data to B Bus; Store A Data
				н	х	L H	QA QA	Clock A Data to B Bus; Store A Data
L	L					Output	Input	
		Х*	¢	х	L	L H	L H	Real Time B Data to A Bus
				х	н	QB	Х	Stored B Data to A Bus
		Х*	Ŷ	х	L	L H	l h	Real Time B Data to A Bus; Store B Data
				х	н	QB QB	L H	Clock B Data to A Bus; Store B Data
н	L					Output	Output	
		1	¢	н	н	QB	QA	Stored A Data to B Bus, Stored B Data to A Bus

H = High Voltage Level; h = High Voltage Level One Setup Time Prior to the Low-to-High Clock Transition; L = Low Voltage Level; I = Low Voltage Level One Setup Time Prior to the Low-to-High Clock Transition; $X = Don't Care; \uparrow = Low-to-High Clock Transition; \uparrow = NOT Low-to-High Clock Transition; QA = A input storage register; QB = B input storage register; * = The clocks are not internally gated with either the Output Enables or the Source Inputs. Therefore, data at the A or B ports may be clocked into the storage registers, at any time. For I_{CC} reasons, Do Not Float Inputs.$

ABSOLUTE MAXIMUM RATINGS*

Symbol	Parameter	Value	Condition	Unit
VCC	DC Supply Voltage	-0.5 to +7.0		V
VI	DC Input Voltage	$-0.5 \le V_1 \le +7.0$		V
VO	DC Output Voltage	$-0.5 \le V_O \le +7.0$	Output in 3–State	V
		$-0.5 \le V_O \le V_{CC} + 0.5$	Note 1.	V
ΙIK	DC Input Diode Current	-50	V _I < GND	mA
lок	DC Output Diode Current	-50	V _O < GND	mA
		+50	VO > ACC	mA
IO	DC Output Source/Sink Current	±50		mA
ICC	DC Supply Current Per Supply Pin	±100		mA
I _{GND}	DC Ground Current Per Ground Pin	±100		mA
T _{STG}	Storage Temperature Range	-65 to +150		°C

* Absolute maximum continuous ratings are those values beyond which damage to the device may occur. Exposure to these conditions or conditions beyond those indicated may adversely affect device reliability. Functional operation under absolute–maximum–rated conditions is not implied.

1. Output in HIGH or LOW State. IO absolute maximum rating must be observed.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min	Тур	Max	Unit
VCC	Supply Voltage Operating Data Retention Only	2.0 1.5	3.3 3.3	3.6 3.6	V
VI	Input Voltage	0		5.5	V
VO	Output Voltage (HIGH or LOW State) (3–State)	0 0		V _{CC} 5.5	V
ЮН	HIGH Level Output Current, V _{CC} = 3.0V – 3.6V			-24	mA
IOL	LOW Level Output Current, $V_{CC} = 3.0V - 3.6V$			24	mA
ЮН	HIGH Level Output Current, $V_{CC} = 2.7V - 3.0V$			-12	mA
I _{OL}	LOW Level Output Current, $V_{CC} = 2.7V - 3.0V$			12	mA
T _A	Operating Free–Air Temperature	-40		+85	°C
Δt/ΔV	Input Transition Rise or Fall Rate, V _{IN} from 0.8V to 2.0V, V _{CC} = $3.0V$	0		10	ns/V

DC ELECTRICAL CHARACTERISTICS

			T _A = −40°C	to +85°C	
Symbol	Characteristic	Condition	Min	Max	Unit
VIH	HIGH Level Input Voltage (Note 2.)	$2.7V \le V_{CC} \le 3.6V$	2.0		V
VIL	LOW Level Input Voltage (Note 2.)	$2.7V \le V_{CC} \le 3.6V$		0.8	V
VOH	HIGH Level Output Voltage	$2.7V \le V_{CC} \le 3.6V; I_{OH} = -100\mu A$	V _{CC} – 0.2		V
		$V_{CC} = 2.7V; I_{OH} = -12mA$	2.2		
		V _{CC} = 3.0V; I _{OH} = -18mA	2.4		
		V _{CC} = 3.0V; I _{OH} = -24mA	2.2		
VOL	LOW Level Output Voltage	$2.7V \le V_{CC} \le 3.6V; I_{OL} = 100\mu A$		0.2	V
		V _{CC} = 2.7V; I _{OL} = 12mA		0.4	
		V _{CC} = 3.0V; I _{OL} = 16mA		0.4	1
		V _{CC} = 3.0V; I _{OL} = 24mA		0.55	1
l	Input Leakage Current	$2.7 \text{V} \leq \text{V}_{CC} \leq 3.6 \text{V}; \ 0 \text{V} \leq \text{V}_{I} \leq 5.5 \text{V}$		±5.0	μA
I _{OZ}	3–State Output Current	$2.7 \leq V_{CC} \leq 3.6 \text{V}; \ 0 \text{V} \leq \text{V}_{O} \leq 5.5 \text{V};$ $\text{V}_{I} = \text{V}_{IH} \text{ or } \text{V} \text{ IL}$		±5.0	μA
IOFF	Power-Off Leakage Current	$V_{CC} = 0V; V_I \text{ or } V_O = 5.5V$		10	μA
ICC	Quiescent Supply Current	$2.7 \le V_{CC} \le 3.6$ V; VI = GND or V _{CC}		20	μΑ
		$2.7 \le V_{CC} \le 3.6V$; $3.6 \le V_I$ or $V_O \le 5.5V$		±20	μΑ
∆ICC	Increase in I _{CC} per Input	$2.7 \le V_{CC} \le 3.6V; V_{IH} = V_{CC} - 0.6V$		500	μA

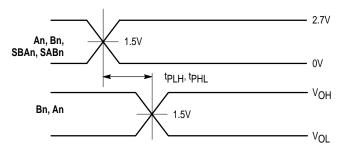
2. These values of V_I are used to test DC electrical characteristics only. Functional test should use V_{IH} \ge 2.4V, V_{IL} \le 0.5V.

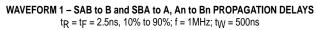
				Lin	nits		
				T _A = -40°	C to +85°C		
			V _{CC} = 3.	0V to 3.6V	VCC	= 2.7V	
Symbol	Parameter	Waveform	Min	Max	Min	Max	Unit
f _{max}	Clock Pulse Frequency	3	170				MHz
^t PLH ^t PHL	Propagation Delay Input to Output	1	1.5 1.5	5.7 5.7	1.5 1.5	6.2 6.2	ns
^t PLH ^t PHL	Propagation Delay Clock to Output	3	1.5 1.5	6.2 6.2	1.5 1.5	7.0 7.0	ns
^t PLH ^t PHL	Propagation Delay Select to Output	1	1.5 1.5	6.5 6.5	1.5 1.5	7.0 7.0	ns
^t PZH ^t PZL	Output Enable Time to High and Low Level	2	1.5 1.5	7.0 7.0	1.5 1.5	8.0 8.0	ns
^t PHZ ^t PLZ	Output Disable Time From High and Low Level	2	1.5 1.5	6.5 6.5	1.5 1.5	7.0 7.0	ns
t _S	Setup Time, HIGH or LOW Data to Clock	3	2.5		2.5		ns
t _h	Hold Time, HIGH or LOW Data to Clock	3	1.5		1.5		ns
tw	Clock Pulse Width, HIGH or LOW	3	3.0		3.0		ns
^t OSHL ^t OSLH	Output-to-Output Skew (Note 4.)			1.0 1.0			ns

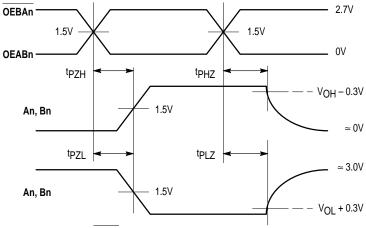
AC CHARACTERISTICS (Note 3.; $t_R = t_F = 2.5n_s$; $C_L = 50p_F$; $R_L = 500\Omega$)

3. These AC parameters are preliminary and may be modified prior to release.

4. Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device. The specification applies to any outputs switching in the same direction, either HIGH-to-LOW (t_{OSHL}) or LOW-to-HIGH (t_{OSLH}); parameter guaranteed by design.

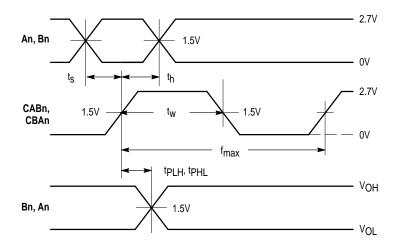

DYNAMIC SWITCHING CHARACTERISTICS


			T _A = +25°C			
Symbol	Characteristic	Condition	Min	Тур	Max	Unit
V _{OLP}	Dynamic LOW Peak Voltage (Note 5.)	V_{CC} = 3.3V, C_{L} = 50pF, V_{IH} = 3.3V, V_{IL} = 0V		0.8		V
VOLV	Dynamic LOW Valley Voltage (Note 5.)	$V_{\mbox{\scriptsize CC}}$ = 3.3V, $C_{\mbox{\scriptsize L}}$ = 50pF, $V_{\mbox{\scriptsize IH}}$ = 3.3V, $V_{\mbox{\scriptsize IL}}$ = 0V		0.8		V


 Number of outputs defined as "n". Measured with "n-1" outputs switching from HIGH-to-LOW or LOW-to-HIGH. The remaining output is measured in the LOW state. The LCX16652 is characterized with 15 outputs switching with 1 output held LOW.

CAPACITIVE CHARACTERISTICS

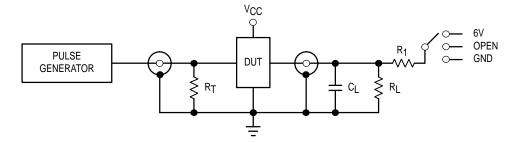
Symbol	Parameter	Condition	Typical	Unit
C _{IN}	Input Capacitance	$V_{CC} = 3.3V$, $V_I = 0V$ or V_{CC}	7	pF
C _{I/O}	Input/Output Capacitance	$V_{CC} = 3.3V$, $V_I = 0V$ or V_{CC}	8	pF
C _{PD}	Power Dissipation Capacitance	10MHz, V_{CC} = 3.3V, V_{I} = 0V or V_{CC}	20	pF





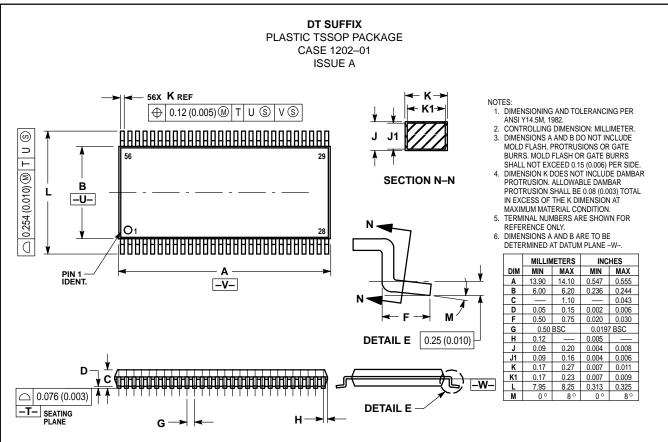
WAVEFORM 2 – $\overrightarrow{\text{OEBA/OEAB}}$ to An/Bn OUTPUT ENABLE AND DISABLE TIMES $t_R = t_F = 2.5ns, 10\%$ to 90%; f = 1MHz; t_W = 500ns

Figure 1. AC Waveforms



WAVEFORM 3 – CLOCK to Bn/An PROPAGATION DELAYS, CLOCK MINIMUM PULSE WIDTH, An/Bn to CLOCK SETUP AND HOLD TIMES t_{R} = t_{F} = 2.5ns, 10% to 90%; f = 1MHz; t_{W} = 500ns except when noted

WAVEFORM 4 - INPUT PULSE DEFINITION $t_R = t_F = 2.5$ ns, 10% to 90% of 0V to 2.7V



TEST	SWITCH
^t PLH ^{, t} PHL	Open
tPZL, tPLZ	6V
Open Collector/Drain tPLH and tPHL	6V
^t PZH ^{, t} PHZ	GND

 $C_L = 50 pF$ or equivalent (Includes jig and probe capacitance) $R_L = R_1 = 500\Omega$ or equivalent $R_T = Z_{OUT}$ of pulse generator (typically 50 Ω)

Figure 2. Test Circuit

OUTLINE DIMENSIONS

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and **()** are registered trademarks of Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

How to reach us:

USA/EUROPE/Locations Not Listed: Motorola Literature Distribution; P.O. Box 5405, Denver, Colorado 80217. 1–800–441–2447 JAPAN: Nippon Motorola Ltd.; Tatsumi–SPD–JLDC, 6F Seibu–Butsuryu–Center, 3–14–2 Tatsumi Koto–Ku, Tokyo 135, Japan. 03–81–3521–8315

Mfax™: RMFAX0@email.sps.mot.com – TOUCHTONE 602–244–6609 INTERNET: http://Design–NET.com

 \Diamond

ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park, 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298

